Skip to main content

Tag: bread

Country moving forward from wheat importer to self-sufficiency

Wheat is critical to millions of households in Pakistan as it serves a dual role as a foundational part of nutritional security and as an important part of the country’s economy. Pakistan’s goal to achieve self-sufficiency in wheat production is more attainable with the release of 31 wheat varieties since 2021.

These new seeds will help the country’s 9 million hectares of cultivated wheat fields become more productive, climate resilient, and disease resistant—a welcome development in a region where climate change scenarios threaten sustained wheat production.

The varieties, a selection of 30 bread wheat and 1 durum wheat, 26 of which developed from wheat germplasm provided by the International Maize and Wheat Improvement Center (CIMMYT) were selected after rigorous testing of international nurseries and field trials by partners across Pakistan. During this period, three bread wheat varieties were also developed from local breeding programs and two varieties (one each of durum and bread wheat) were also developed from the germplasm provided by the ICARDA. These efforts are moving Pakistan closer to its goal of improving food and nutrition security through wheat production, as outlined in the Pakistan Vision 2025 and Vision for Agriculture 2030.

Harvesting wheat in Tandojam, Pakistan (Photo: CIMMYT)

Over multiple years and locations, the new varieties have exhibited a yield potential of 5-20% higher than current popular varieties for their respective regions and also feature excellent grain quality and attainable yields of over seven tons per hectare.

The new crop of varieties exhibit impressive resistance to leaf and yellow rusts, compatibility with wheat-rice and wheat-cotton farming systems, and resilience to stressors such as drought and heat.

Battling malnutrition

Malnutrition is rampant in Pakistan and the release of biofortified wheat varieties with higher zinc content will help mitigate its deleterious effects, especially among children and women. Akbar-2019, a biofortified variety released in 2019, is now cultivated on nearly 3.25 million hectares. Farmers like Akbar-2019 because of its 8-10% higher yields, rust resistance, and consumers report its good chapati (an unleavened flatbread) quality.

“It is gratifying seeing these new varieties resulting from collaborative projects between Pakistani wheat breeding programs and CIMMYT along with funding support from various donors (USAID, Bill & Melinda Gates Foundation, HarvestPlus, and FCDO) and the government of Pakistan,” said Ravi Singh, wheat expert and senior advisor.

Closing the yield gap between research fields and smallholder fields

Releasing a new variety is only the first step in changing the course of Pakistan’s wheat crop. The next step is delivering these new, quality seeds to markets quickly so farmers can realize the benefits as soon as possible.

Increasing evidence suggests the public sector cannot disseminate enough seeds alone; new policies must create an attractive environment for private sector partners and entrepreneurs.

Field monitoring wheat fields (Photo: CIMMYT)

“Pakistan has developed a fast-track seed multiplication program which engages both public and private sectors so the new varieties can be provided to seed companies for multiplication and provided to farmers in the shortest time,” said Javed Ahmad, Wheat Research Institute chief scientist.

Strengthening and diversifying seed production of newly released varieties can be done by decentralizing seed marketing and distribution systems and engaging both public and private sector actors. Marketing and training efforts need to be improved for women, who are mostly responsible for household level seed production and seed care.

A concerted effort to disseminate the improved seed is required, along with implementing conservation agriculture based sustainable intensification, to help Pakistan’s journey to self-sufficiency in wheat production.

Climate change slows wheat breeding progress for yield and wide adaptation, new study finds

Nearly four decades of repeated crossing and selection for heat and drought tolerance have greatly improved the climate resilience of modern wheat varieties, according to new research emerging from a cross-continental science collaboration.

At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.

“Breeders are usually optimistic, overlooking many climate change factors when selecting,” said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. “Our findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.”

What do 10 million data points tell scientists?

Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.

Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.

“To date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,” Xiong said.

Xiong and his colleagues analyzed “crossover interactions” — changes in the relative rankings of pairs of wheat lines — in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat lines’ performance under high temperatures and in semi-arid environments, respectively.

In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.

“We found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,” Xiong said. “This has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.”

Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheat’s adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.

Past research has shown that modern wheat varieties not only increase maximum yields but also guarantee more reliable yields, a benefit that adds millions of dollars each year to farm income in developing countries and greatly reduces farmers’ risk.

“Among other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,” Reynolds added.

Read the full study:
Increased ranking change in wheat breeding under climate change

Cover photo: Wheat fields at CIMMYT’s experimental station in Ciudad Obregón, Sonora state, Mexico. Photo: M. Ellis/CIMMYT.

The science behind the perfect bread and pasta flour

Have you ever considered that bread and pasta are made from different types of wheat? How about the fact that there are thousands of different wheat products consumed around the world, and each one has unique characteristics and processing requirements?

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) understand that the quality of the final product, be it spaghetti, a loaf of sourdough bread or a tandoori naan, is highly dependent on the quality of the grain and the flour it becomes. Every year, CIMMYT analyzes thousands of wheat lines in detail at its Wheat Quality laboratory to determine the nutritional, processing and end-use quality of the grain. In this short video, CIMMYT’s Wheat Quality lab head Maria Itria Ibba explains exactly what they are looking for and how they find it.

First, CIMMYT scientists test the overall grain quality by analyzing grain weight, density, protein content, moisture content and hardness.

The grains are then milled into flour, which is again analyzed for moisture content, protein content, color and protein quality. Protein quality is especially important to determine the end-use for the type of flour, and CIMMYT conducts several tests to determine this characteristic. Bread and durum wheat flours specifically are analyzed for overall protein quality by checking SDS-sedimentation volume. Mixographs are used to assess the flour’s mixing and absorption characteristics, and alveographs are used to measure dough deformation properties.

At the end of the tests, bread wheat flours are transformed into leavened breads and scored based on the loaf’s volume and crumb quality. Durum wheat flour, used to make Italian-style pasta, is scored based on grain quality, flour yellowness, high protein content and protein quality.

CIMMYT’s work ensures that wheat-derived foods produced in developing countries are nutritious, affordable, and maximize profits for each actor in the value chain.

Cover photo: At CIMMYT’s Wheat Quality lab, researchers evaluate how different bread wheat varieties behave at the time of baking. (Photo: CIMMYT)

Breaking Ground: Maria Itria Ibba and the lab that bakes bread

The rising and shifting demand for wheat, with rapid urbanization and increasingly globalized food markets, is pushing farmers more than ever to produce high-quality grain, according to the scientist who leads wheat quality research in the world’s foremost publicly-funded wheat breeding program.

“Wheat quality is becoming more and more important, as the industrial production of bread and other wheat-based foods increases to meet the demands of city dwellers, working women, and wheat consumers in wheat-importing countries,” said Maria Itria Ibba, head of the Wheat Chemistry and Quality Laboratory at the International Maize and Wheat Improvement Center (CIMMYT).

“Companies that produce and market food for such consumers demand high, consistent quality in grain they purchase and we have to help wheat farmers to meet stringent requirements.”

This is so important that CIMMYT’s Global Wheat Program — whose contributions figure in more than half of the wheat varieties released worldwide — directly uses lab data on milling, processing and end-use quality to decide which bread and durum wheat lines to move forward in its breeding programs, according to Ibba.

“Assessing quality is a huge task, because wheat is used to make hundreds of different foods, including all kinds of leavened bread, flat breads, pastas, noodles and steamed bread,” said Ibba. “Our lab is an integral part of breeding, analyzing thousands of grain samples from thousands of wheat lines each year for nearly a dozen quality parameters.”

Cut out for quality

A native of Viterbo, Italy, Ibba has led the Wheat Chemistry and Quality Laboratory since 2019 and is uniquely qualified for the job, with a bachelor’s degree in biotechnology, a master’s degree in biotechnology for the safety and quality of agricultural products — both from the University of Tuscia, Viterbo — and a doctorate in crop science from the Washington State University. Her Ph.D. dissertation addressed “low-molecular-weight glutenin subunit gene family members and their relationship with wheat end-use quality parameters.”

With a mother who studied medicine and a father who worked at the Italian Space Agency, Ibba said that in school she always enjoyed science subjects such as biology and chemistry. “They were easy for me to understand and I really liked how, after studying them, I was able to explain and understand many things around me.”

Ibba said the biggest challenges for her and her lab team are to understand wheat quality needs and conduct faster and better analyses.

“Several of the tests we do are expensive, time-consuming, and require skilled personnel and significant amounts of grain,” she explained, citing the use of exotically named devices such as the “Quadrumat Senior mill,” the “mixograph,” and the “alveograph,” to list a few. “We’re continuously looking for novel methods that are quicker, use smaller samples of grain, and with lower costs.”

Understanding the biochemical and genetic bases of wheat grain and flour quality traits is key to this, according to Ibba, but wheat quality traits are so complex genetically that DNA markers are of little help in breeding. “We’ve begun to explore whole genome selection for wheat quality traits, in collaboration with Kansas State University, but this will never completely replace the laboratory tests.”

Let’s talk health and nutrition

A staple of tours for the hundreds of visitors that come each year to CIMMYT in Mexico, the wheat quality laboratory combines the razzle-dazzle of high-tech devices with hands-on, sensory attractions such as inflating dough balls and freshly baked test loaves.

Ibba’s work includes talking to visitors about wheat, its important history and role in human nutrition and food, and concerns in the popular media regarding wheat and health.

“I think people know more now about what gluten is and its importance, but there is still the need to talk about gluten and wheat so that people can make informed decisions based on scientific facts,” she said. “I was happy to see the recent article from CIMMYT on a review study which, among many other things, showed there was no scientific evidence for the idea that eating refined flour is bad for your health.”

“Wheat provides about 20 percent of calories and protein for more than 4.5 billion people in developing countries,” Ibba pointed out. “There’s an increasing focus on understanding and improving the nutritional quality of wheat and its products because of the greater overall interest in diets and in the nutritional value of diverse foods.”