Skip to main content

Tag: biodiversity

Rockefeller Foundation Invests in Nature to Support Indigenous Peoples and Rainforest Communities at COP29

At COP29, the Rockefeller Foundation highlighted its support for CIMMYT through a grant focused on advancing regenerative agricultural practices on farms in Mexico. This collaboration underscores CIMMYT’s pivotal role in driving sustainable farming solutions that enhance food security, environmental resilience, and biodiversity conservation. By integrating regenerative techniques into agrifood systems, CIMMYT contributes to global efforts to mitigate climate change while safeguarding the productivity and health of vital ecosystems.

Read the full story.

Mexico sends seeds to the Svalbard Global Seed Vault

Germplasm Bank team that participated in the new shipment of seeds to Svalbard (Photo: Jenifer Morales/CIMMYT)

In an act that underlines Mexico’s commitment to biodiversity conservation and global food security, CIMMYT has delivered its ninth shipment of maize seeds to the Svalbard Global Seed Vault. This deposit marks a significant milestone, completing 90% of the maize collection and 92% of the wheat collection, making CIMMYT one of the leading custodians of the world’s agricultural biological heritage.

The Svalbard Vault, known as the “vault at the end of the world,” is an impressive repository located on a Norwegian island, more than 8,000 kilometers from Mexico. Its purpose is to store seeds from around the world to protect biodiversity from natural disasters, conflicts, or the effects of climate change. With this latest shipment, Mexico strengthens its role in conserving seeds that, in critical situations, could mean the difference between the collapse or resilience of global food systems.

Cristian Zavala, germplasm conservation specialist at CIMMYT, emphasized the importance of this shipment for the maize and wheat collections. “This shipment is essential to ensure the availability of seeds in the future,” said Zavala, alluding to the long process needed to complete the conservation of the collections. “While this is not the last shipment to Svalbard, it is a critical one to ensure the availability of the seed in the future,” he added.

These efforts are aimed not only at protecting the genetic diversity of these crops but also at ensuring that the seed is available for distribution. Zavala explained, “In addition to supporting 92% of this shipment, the wheat collection has reached 90% availability for distribution, which makes us eligible to participate in long-term funding.” This availability is key to ensuring food security and allows these seeds to be recovered and distributed to regions that may need repatriation.

The CIMMYT Germplasm Bank at Texcoco, which houses the largest and most diverse collections of maize and wheat in the world, serves not only Mexico but all of humanity. Protected as a “global good,” these seeds are available for research, agriculture, and education. “When we talk about a public good or a global good, we mean that all of humanity has the right to enjoy this diversity in a responsible way,” said Zavala.

The Svalbard Vault, with its ability to withstand natural disasters and other threats, is a guarantee to the countries that store their seed collections there. In Zavala’s words, “If this diversity is lost, only these types of gene banks can and will be able to return it to its place of origin.” This reflects the global and collaborative effort needed to conserve agricultural biodiversity.

This achievement is the result of a collective effort. “To make this shipment possible, a large team of people participated. This year, about 50 people supported this set of seeds,” said Zavala. Conservation of genetic resources is a team effort that involves many actors to ensure the availability of these seeds in the future.

The shipment to Svalbard is a reminder of the importance of gene banks as a critical tool in addressing the challenges of climate change and ensuring global food security. The seeds sent are not intended for immediate cultivation but will serve as a backup, ready to be used in the event of a disaster affecting the original collections. In this way, Mexico is contributing to a public good of inestimable value for all humanity.

In a world increasingly vulnerable to the effects of climate change, biodiversity loss, or social instability, these shipments are more than just storage. They are an act of collective responsibility that will allow humanity to maintain its ability to feed and thrive.

Svalbard and Humanity’s Food Security

The World Food Prize honored Cary Fowler and Geoffrey Hawtin for their lifelong dedication to preserving genetic resources critical to global food security. They have led efforts to protect seeds from over 6,000 crops by establishing germplasm banks worldwide, including the Svalbard Global Seed Vault, to safeguard biodiversity against climate threats. With partners like INIFAP, CIMMYT has played a key role in conserving the genetic diversity of staple crops, ensuring these resources are available for future agricultural resilience.

Read the full story.

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

Strengthening resilience in Mutoko farmers through agroecological research

Participants convene with key stakeholders of the RAIZ project. (Photo: CIMMYT)

Mutoko, a semi-arid area located in Mashonaland east of Zimbabwe, is prone to droughts and unpredictable rainfall patterns. In an effort to tackle the challenges faced by local smallholder farmers in the region, partners of the Resilience Building through agroecological intensification in Zimbabwe (RAIZ) project organized a participatory workshop to amplify the project’s mandate and gather feedback from key stakeholders. The workshop at Mutoko brought together diverse participants from the Women Affairs, Youth, and Agriculture ministries from the government of Zimbabwe, local leaders and council, extension officers, students, and farmers from Wards 10 and 8. Attending farmers and stakeholders expressed interest in the project that would enable them to face challenges and improve agricultural practices in Mutoko.

Working towards climate-smart solutions: the RAIZ project

RAIZ is a collaborative effort between CIMMYT, the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabwe. The project is funded by the European Union, and it focuses on recognizing the strategic role of agroecological approaches in tackling climate change and enhancing sustainable agriculture in arid areas. Research operations are underway in Mutoko to produce scientific evidence and contribute to agroecology policy.

Agroecology offers climate-smart solutions that help farmers adapt to changing conditions, mitigate greenhouse gas emissions, conserve natural resources, and promote food security and resilience in the face of climate uncertainties. RAIZ implements ‘Living Labs’ which strengthens collaboration between diverse stakeholders, including farmers and scientists, whose collective insights help develop demand-driven solutions.

During the Mutoko workshop, Professor and Systems Agronomist Regis Chikowo provided context of RAIZ and emphasized on its goal of helping build resilience in farmers through sustainable approaches. “The aim is not only to help farmers adapt to climate change but also to enable them to thrive in the face of adversity,” said Chikowo.

Students and farmers work together on a visioning exercise. (Photo: CIMMYT)

Building synergies between research and farmer realities

To bridge the gap between research and farmer realities, six student-researchers of RAIZ are working on various aspects of building farmer resilience based on agroecological principles. Their study areas comprise of weed control, climate-proofing with resilient small grain varieties, indigenous knowledge systems, and soil health among others. One student-researcher, in collaboration with farmers, is conducting research on weed control and its impact on crop yield. In all, they are set to articulate and tackle climate change in Mutoko.

“Through my research in weed control and how it affects yields, we are hosting trials with some farmers. We are putting into effect mulch practices gumbeze ramwari, and assessing how it affects yields. We are then intercropping maize with cowpea so that farmers spend less time fighting off weeds, while promoting crop diversification,” says Juliet Murimwa, a Ph.D. student.

Knowledge and sources of information on when to expect rains and average temperatures are vital for farmers to better plan the entire planting-to-harvesting operations. Recognizing this, research student Rejoice Nyoni is studying the types and usefulness of climate services information accessed by smallholder farmers in RAIZ project sites.

“My research is centered on understanding whether smallholder farmers are getting enough knowledge from available sources, including radio which is more prominent,” says Nyoni. Farmers have long relied on traditional knowledge systems to predict weather patterns and plan farming activities. However, with climate change, some of these traditional knowledge sources are being altered. “This season, I will be joining our farmers in Mutoko to discuss and understand which indigenous knowledge systems they use to gather information about weather patterns. We want to find ways to ensure that such wisdom does not get lost, as generations are slowly moving away from traditional cultures and norms,” she adds.

CIMMYT’s work in RAIZ operational areas supported by graduate students, is also testing the effectiveness of newly availed local commercial organic fertilizers and how they contribute to climate smartness when used along with conservation agriculture practices. CIMMYT is also leading the development of an agroecology handbook, set to be used by extension staff and other development practitioners.

In line with the International Year of Millets in 2023, RAIZ actively promotes the cultivation of small grains to enhance the resilience of local farmers. As part of the project, a student researcher is conducting trials in Mutoko to assess the performance of different small grain varieties in the face of climate change. Farmers in Mutoko’s Ward 10 have started experimenting with small grains and have experienced promising yields. A farmer in Mutoko Ward 10, Mudzengera, shared his positive experience with growing sorghum, “Last year we grew three varieties of sorghum. We really liked the new variety as it was not prone to bird attack. On the other hand, the native variety we usually grow is prone to birds feasting on them. We realized good yields which improved household nutrition. I look forward to another farming season with such trials on sorghum,” he says.

Farmers and students work on a shared vision on the future of agriculture. (Photo: CIMMYT)

A shared vision for a sustainable future

A visioning exercise conducted during the workshop, solicited views from the farmers on how they envision the future of agriculture. The session, facilitated by Isaiah Nyagumbo, senior agronomist at CIMMYT, and marking the initiation of Living Laboratories in the district, started with asking farmers what change and developments they would like to see in their ward after three to four years, with respect to agriculture. The farmers were disaggregated into four groups by gender and ward. The emerging aspirations revolved around the twin goals of safeguarding the environment and enhancing crop yields. Farmers from both wards 10 and 8, expressed a shared desire to improve agricultural marketing infrastructure, agroforestry, and the protection of forests, recognizing the critical role that trees play in mitigating climate change and preserving biodiversity. Mulching, which holds immense potential in conserving soil moisture, and adopting mechanized operations were among other aspirations. Furthermore, the participants expressed interest in cultivating small grains, drought-tolerant maize, use of renewable energy, and leveraging digital platforms.

Ismahane Elouafi returns to CIMMYT—on a system-wide tour

As part of her fact-finding mission across CGIAR Research Centers, Ismahane Elouafi, CGIAR’s executive managing director, returned to CIMMYT headquarters in Texcoco, Mexico, where she studied as a Ph.D. student twenty years ago. Through meetings with CIMMYT staff from 21-24 December 2023, Elouafi learned how CIMMYT’s 2030 Strategy of more investment in developing food systems and climate-smart agriculture will contribute to CGIAR’s 2030 vision of a food and nutrition secure future.

“CIMMYT was pleased to host Ismahane,” said Bram Govaerts, CIMMYT director general. “Our ultimate mission is to transform agrifood systems. The only way we will reach our goal of food and nutrition security is by working globally and collaboratively across the value chain.”

Elouafi examines samples with CIMMYT researchers at the biosafety laboratory. (Photo: CIMMYT)

At CIMMYT’s museum and gene bank, Elouafi met with researchers to discuss the latest discoveries in genetic innovation, biodiversity conservation, and crop breeding. Elouafi and Kevin Pixley, director of the Dryland Crops program, visited the biosafety laboratory and glasshouses where gene editing on pearl millet and ground nut represent cutting-edge work with dryland crops. Elouafi also saw gene editing for resistance to maize lethal necrosis, which is already in field validation with Kenyan partners from the Kenya Agricultural & Livestock Research Organization (KALRO).

Global Wheat and Dryland Crops presented CIMMYT’s 2050 vision for wheat in Africa and near-term goals of advancing partnerships from phenotyping platforms to the International Wheat Improvement Network (IWIN). Seed experts from the Seed Health Unit shared progress on the productivity and nutrition findings of key cereals for healthy and balanced diets.

Elouafi also visited conservation trial plots with Jelle Van Loon, associate director of the Sustainable Agrifood Systems (SAS) program, who briefed Elouafi on cropping systems diversity related to maize, wheat, and beans, and showcased a variety of innovative farming technologies. At the trial plots, Elouafi met with Guillermo Bretón, a farmer, to talk about CIMMYT’s efforts to expand the MasAgro program into Central America aiming to address the region’s growing food insecurity contributing to migration.

(Left to right) Guillermo Bretón, Ismahane Elouafi, Bram Govaerts, and Jelle Van Loon, test a range of novel farming technologies. (Photo: CIMMYT)

The value of genetic resources as sources of novel diversity was discussed with Elouafi during a visit to field screenhouses, where she saw wide crosses work for biological nitrification inhibition (BNI) in wheat, gene bank accessions of triticale—a cross between wheat and rye—for use in searching for new sources of resistance to wheat blast, and the ex-situ clonal collection of tripsacum, a wild relative of maize.

“CIMMYT’s 2030 Strategy adopts a systems approach to food science, which I strongly support. Through the development of mechanization and post-harvest management, increased focus on seed systems and health, and most importantly, cooperation with partners to ensure that improved crop varieties are adopted by smallholders, I am confident that this approach will only strengthen CIMMYT’s historical strength of research and innovation for food and nutrition security and contribute to achieving CGIAR’s 2030 mission,” said Elouafi.

Kevin Kabunda, chief of party for the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub (AID-I) and Sieglinde Snapp, director of the SAS program, presented key milestones achieved in southern and eastern Africa on expanded seed systems, market access, and mechanization technologies. Snapp also highlighted important CIMMYT-led initiatives like the CGIAR Plant Health Initiative and the Cereal Systems Initiative for South Asia (CSISA) which have had a positive impact on smallholders in part because of partnerships with government agencies and other CGIAR Research Centers.

Elouafi and Govaerts visited the ancient city of Teotihuacán to learn about the cultural significance of maize to the history and agricultural practices of the Americas. She received a guided tour by chef Carlos Cedillo, operational director of La Gruta, a local restaurant dedicated to understanding and promoting the production and consumption of native maize varieties in the Valley of Mexico. CIMMYT has collaborated with La Gruta through capacity building initiatives by CIMMYT specialists for technicians and farmers.

Elouafi joins CIMMYT staff for a meet and greet coffee session. (Photo: CIMMYT)

Elouafi joined CIMMYT staff in a meet and greet session on 21 December, where staff expressed the strides being made by CIMMYT’s leadership team to foster a more inclusive workplace. “This moment of coming together with the staff that make CIMMYT a great place to work and who position the Center as a significant actor in agricultural development will be a highlight of my visit,” said Elouafi.

A Mexican farm research program gains praise and interest for use abroad

Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known asMasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Tlaltizapan Experimental Station in Morelos, Mexico is used through the winter for drought and heat trials and through the summer for yield-trials and biofortification. (Photo: Alfonso Cortés/CIMMYT)

As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.

The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.

MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.

State-level partners sign on to MasAgro

Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.

MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)

CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.

An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.

Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.

Acclaim and interest abroad for MasAgro

MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:

Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
  • The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
  • The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
  • The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
  • During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
  • Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgro’s farmer outreach component.
  • MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.

Moving out and beyond

In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.

Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.

Farmer Marilu Meza Morales harvests her maize in Comitán, Mexico. (Photo: Peter Lowe/CIMMYT)

As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.

“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.

The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “…is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”

What’s the link between two-wheel tractors and elephants?

CIMMYT principal scientist Frédéric Baudron has two main research interests: making mechanization appropriate to smallholders and biodiversity conservation.

Wondering how these two intersect, a colleague of Baudron once asked him what the link was between an elephant and a tractor?

Now, in the recent report, “Addressing agricultural labour issues is key to biodiversity-smart farming research,” published in Biological Conservation, Baudron and other contributors have answered that question, examining trade-offs between labor and biodiversity conceptually, as well as in the specific context of Indonesia and Ethiopia.

This research continues work CIMMYT has done on the relationship between agriculture and biodiversity, including Commodity crops in biodiversity-rich production landscapes: Friends or foes? The example of cotton in the Mid Zambezi Valley, Zimbabwe and Sparing or sharing land? Views from agricultural scientists

Innovations in agricultural technology have led to undeniable achievements in reducing the physical labor needed to extract food from fields. Farm mechanization and technologies such as herbicides have increased productivity, but also became on the other hand major threats to biological diversity.

Adopting technologies that improve the productivity of labor benefits farmers in multiple ways, including a reduction of economic poverty, time poverty (i.e., lack of discretionary time, reducing labor drudgery), and child labor. Conversely, technologies that promote biodiversity often increase the burden of labor, leading to limited adoption by farmers. Therefore, there is a need to develop biodiversity-smart agricultural development strategies, which address biodiversity conservation goals and socio-economic goals, specifically raising land and labor productivity. This is especially true in the Global South, where population growth is rapid and much of the world’s remaining biodiversity is located.

“Without accounting for labor issues biodiversity conservation efforts will not be successful or sustainable,” said Baudron. “Because of this, we wanted to examine what biodiversity-smart agriculture might look like from a labor point of view.”

Research has quantified that farming families in Africa who use tractors expended an average of 640 labor hours per hectare in maize cultivation. In contrast, farmers not using tractors spent over 1100 hours for the same yield.

Practicing tractor operation at Toluca experiment station (Photo: X. Fonseca/CIMMYT)

Trade-offs

While that is a clear win for reducing the heavy physical toil of farming, there are potential negative effects on biodiversity. In many countries in the Global North, the rise of tractors and other big machinery has led to larger and more rectangular fields and the removal of farm trees and hedgerows, all of which is associated with lower biodiversity. The same is now happening in parts of the Global South.

“A trade-off implies that one goal can only be achieved at the expense of another goal,” said Baudron. “It is not always a conscious choice; however, as farmers often adopt labor-saving techniques without considering the effects on biodiversity, simply because they lack options, and sometimes the necessary context.”

In Indonesia, the transition from harvesting rubber to producing palm oil has reduced the amount of physical labor, but biological diversity has decreased. However, innovations such as reducing fertilizer usage to avoid nutrient leaching into soil have been possible without compromising yield, and with the benefit of lower costs to farmers.

In Ethiopia, labor-saving technologies like the use of small-scale combine harvesters have been compatible with high biodiversity.

“I tell my colleagues a two-wheel tractor that allows mechanization with little negative environmental consequence (compatible with a mosaic of small, fragmented fields, with on-farm scattered trees, etc.) contributes to a landscape that works for people and biodiversity, including elephants,” said Baudron.

Crop Trust leadership visits CIMMYT

Maize under conservation agriculture (CA) in Malawi (Photo: T. Samson/CIMMYT)

With many stresses facing agricultural food systems, including climate change, disease epidemics, growing populations, there is not one solution that will answer all the challenges. However, a foundational part of any attempt to strengthen food systems is the effort to conserve crop diversity. Maintaining a robust set of plant varieties serves as a building block for developing favorable traits, like increased yield, increased disease resistance, and drought tolerance, among others.

Dedicated to conserving crop diversity, the Crop Trust is a non-profit international organization with the mission of making that diversity available for use globally, forever, for the benefit of everyone.

On April 3, 2023, Crop Trust’s Executive Director, Stefan Schmitz, and Director of Programs, Sarada Krishnan, visited the International Maize and Wheat Improvement Center (CIMMYT) for the first time to examine CIMMYT’s maize and wheat genebanks, with the goal of establishing a set of standards for genebanks around the world. The parties also discussed future collaborations between the two institutions that will be best amplify each organization’s strengths.

A key part of the Crop Trust’s mission is support for collections of unique and valuable plant genetic resources for food and agriculture held in genebanks.

“CIMMYT is — and has been — one of the key partners in making sure crop diversity is safe and available for all of humanity,” said Schmitz. “Their maize and wheat genebanks serve a crucial role in assuring crop diversity, especially in Latin America.”

Maize seed samples, CIMMYT germplasm bank (Photo: Xochiquetzal Fonseca/CIMMYT)

CIMMYT manages the most diverse maize and wheat collections. CIMMYT’s germplasm bank, also known as a seed bank, is at the center of CIMMYT’s crop-breeding research. This remarkable, living catalog of genetic diversity comprises over 28,000 unique seed collections of maize and 123,000 of wheat.

“CIMMYT is honored to host the Crop Trust as any global solution requires global collaboration,” said CIMMYT Director General, Bram Govaerts.

Advances in genebank management

Representatives of the Crop Trust were eager to learn more about CIMMYT’s efforts in Digital sequence information (DSI). CIMMYT is using DSI to analyze structure, redundancies, and gaps within its own genebank and is now working to bring DSI tools to national genebanks in Latin America.

This visit builds on ongoing work, such as the third workshop of the Community of Practice for Latin America and the Caribbean on the use of genomic and digital tools for the conservation and use of Genetic Resources for Food and Agriculture (GRAA) held in November 2022.

Among CIMMYT led initiatives, the Mining Useful Alleles for Climate Change Adaptation from the CGIAR Genebanks project, is expanding the use of biodiversity held in the world’s genebanks to develop new climate-smart crop varieties for millions of small-scale farmers worldwide.

The doomsday vault

In 2020, CIMMYT was the largest contributor to the Svalbard Global Seed Vault, providing 173,779 maize and wheat accessions from 131 countries.

The Seed Vault, managed by the Crop Trust, is a repository collection holding duplicates of seeds from over 1,700 genebanks around the world.

CIMMYT’s most recent donation to the Seed Vault was in October 2022.

Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)

“All CIMMYT staff we met were passionate about their work and welcomed us kindly, generously sharing their knowledge and time with us. We look forward to continuing our collaboration, to strengthen it, and make sure that the crop collections held at the CIMMYT genebank are safe and available, forever,” said Schmitz.

Farmers in Zimbabwe embrace agroecology

Smallholder farmers display a range of small and large grains at the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Smallholder farmers in resource-poor communities of Zimbabwe and much of the Global South have been experiencing low crop productivity due to many factors, including inappropriate seeds and seed varieties, labor shortages, loss of agro-biodiversity, insufficient inputs, degrading soils, and recurrent droughts. These threats are now amplified by climate change.

This has resulted in broken food systems rendering food and nutrition insecurity commonplace. The One CGIAR initiative, Transformational Agroecology Across Food, Land, and Water Systems, led by the International Maize and Wheat Improvement Center (CIMMYT) in Zimbabwe, is designed to bring agroecological advances to smallholder famers in an effort to strengthen local food systems.

Smallholder farmers in the Mbire and Murehwa Districts of Zimbabwe were introduced to innovative agroecology interventions, premised on harnessing nature’s goods and services while minimizing adverse environmental impacts and improving farmer-consumer connectivity, knowledge co-creation, and inclusive relationships among food system actors.

Smallholder farmers register for the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove)

Farmer to farmer collaboration at seed fairs

In response to challenges related to lack of appropriate seeds and eroding agrobiodiversity and, as a way to transition prevailing food systems to more sustainable ones, farmers were invited to take part in seed fairs. The seed fair’s objective was to enable smallholder farmers to access improved and locally adapted seeds of food crops originating from the private sector and fellow farmers. In addition, the seed fairs provided a platform for learning about agroecological practices. Farmers were also given a chance to see different machinery that could aid in land, food, and feed preparation, and address their labor shortage challenges.

At the opening of the seed fair in Mbire, Dorcas Matangi, CIMMYT research associate, acknowledged that smallholder farmers operate in challenging and complex ecological, social, and economic systems and there is a need for interventions that address the natural resource base without ignoring the social and economic dynamics within communities.

“The communal culture of sharing and trading between community members can be capitalized on for a collective benefit, said Matangi. “One such case is through events such as seed fairs where we encourage farmers to showcase and sell seeds they know perform very well.”

She further explained to the participating farmers how increasing their crop diversity and using practices such as conservation agriculture techniques benefit the environment and improves food security and nutrition.

“I am grateful for these efforts,” said Grace Musandaira, supervisor of the Agriculture Advisory and Rural Development Service. “Our region is arid, and as such, it is very difficult for our farmers to achieve significant yields to assure them there is enough food for the year. In addition, the knowledge provision relating to preserving and improving agrobiodiversity through agroecological practices is set to improve rural livelihoods.”

Senzeni Nyagonye, a farmer in Mbire, said “This initiative is teaching and exposing us to so many new concepts such as conservation agriculture with mechanization. If we can apply conservation agriculture with the seeds we bought at this seed fair, we are optimistic about a great harvest.”

A total of 1,058 farmers attended two seed fairs in Mbire and Murehwa. Farmers had the opportunity to access a variety of crop seeds ranging from maize, to sorghum, millets, groundnuts, bambara groundnuts, and sunflowers. More than 200 farmers exhibited local seeds that were available for sale or exchange. Private seed companies also showcased and sold certified drought-tolerant maize, sorghum, bean and cowpea varieties.

“The seed fairs in Mbire and Murehwa were very successful”, said Matangi. “And we feel these efforts will serve as a useful case study to guide a national scale-up.”

Regenerative agriculture in Mexico: the case of Bimbo

Grupo Bimbo has two pilots with the International Maize and Wheat Improvement Center (CIMMYT) in the Mexican states of Sonora, Sinaloa and Jalisco to embed sustainable practices.

Through regenerative agriculture, an approach which aims to improve soil health and protect water resources and biodiversity, Grupo Bimbo has set the goal of ensuring that 200,000 hectares of wheat are cultivated with regenerative agriculture practices by 2030, ensuring that by 2050 100% of its key ingredients will be produced with this type of practices.

Read more: Regenerative agriculture in Mexico: the case of Bimbo

Scientists step up wheat landrace conservation efforts in Afghanistan, Turkey and other countries in the region

Farmers gather in a landrace field. Photo: Raqib Lodin/CIMMYT

For thousands of years, farmers in Afghanistan, Turkey and other countries in the region, have been breeding wheat, working closely with the environment to develop traditional wheat varieties known as landraces. Untouched by scientific breeding, landraces were uniquely adapted to their environment and highly nutritious.

As agriculture became more modernised and intensified, it threatened to push these traditional landraces into extinction, resulting in the loss of valuable genetic diversity. Institutions around the world decided to act, forming germplasm collections known as genebanks to safely house these landraces.

In 2009, a team of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), the UN Food and Agriculture Organization (FAO), and national partners set off on a five-year expedition across Central Asia to collect as many landraces as they could find. The project, led by FAO Cereal Breeder and former CIMMYT Principal Scientist Alexey Morgunov, was made possible by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.

The project had two main missions. The first is to preserve landrace cultivation in three countries, Afghanistan, Turkey and other countries in the region by selecting, purifying, and multiplying the landraces and giving them back to farmers. The second is to scientifically evaluate, characterize and use these landrace varieties in ongoing breeding programmes, exchange the information between the countries, and to deposit the seeds in genebanks to safely preserve them for future generations.

The latest results from the project were published in July in the journal Crops. The study, authored by a team of experts from CIMMYT, ICARDA, FAO, and research institutes in Afghanistan, Turkey and other countries in the region, compared the diversity, performance, and adaptation of the collected wheat landraces with modern varieties grown in the regions using a series of field experiments and cutting-edge genomic tools.

“Landraces are very useful from a breeding perspective because they have been cultivated by farmers over thousands of years and are well adapted to climate change, have strong resistance to abiotic stresses and have very good nutritional quality,” said Rajiv Sharma, a CIMMYT senior scientist and co-author of the paper.

“We were interested in seeing how well landraces adapt to certain environments, how they perform agronomically, and whether they are more diverse than modern varieties grown in these regions – as well as give their improved versions back to farmers before they are lost.”

The experiments, which were carried out in 2018 and 2019 in Turkey, and 2019 in Afghanistan, and other countries in the region revealed several physical characteristics in landraces which are no longer present in modern varieties. For example, the team found striking differences in spike and grain colors with landraces more likely to have red spikes and white grains, and modern varieties tending to have white spikes and red grains. This may have adaptive values for high altitudes and dry conditions.

A surprising finding from the study, however, was that landraces were not more genetically diverse than modern landraces.

“Many people thought that when we went from cultivating landraces to modern varieties, we lost a lot of diversity but genetically speaking, that’s not true. When you look at the genomic profile, modern varieties are just as diverse as landraces, maybe even a little bit more so,” said Sharma.

When the team compared landraces and modern varieties on crop performance, the results were mixed with modern wheat varieties outyielding landraces in half of the environments tested. However, they found that the highest yielding landraces were just as good as the best modern varieties – a reassuring finding for farmers concerned about the productivity of their crops.

A new breeding paradigm  

The results of the study have important implications for landrace conservation efforts in farmers’ fields and in future breeding strategies. While crossing wheat landraces with modern varieties to develop improved modern varieties is not new, the authors proposed a novel alternative breeding strategy to encourage the continued cultivation of landraces: improving landraces by crossing them with other landraces.

“In order to maintain landraces, we have to make them competitive and satisfy farmers’ needs and requirements. One option is that we breed landraces,” said Sharma.

“For example, you might have a landrace that is very-high yielding but susceptible to disease. By crossing this variety with another landrace with disease-resistant traits you can develop a new landrace better suited to the farmer and the environment. This approach maintains all the features of landraces – we are simply accelerating the evolution process for farmers to replace the very fast disappearance of these traditional varieties.”

This approach has already been used by crop scientists at the University of California, Davis who has successfully developed and registered “heirloom-like varieties” of dry beans. The varieties trace about 98% of their ancestry to landraces but are resistant to the common mosaic virus.

Heirloom food products are becoming increasingly popular with health-conscious consumers who are willing to pay a higher price for the products, garnering even more interest in conserving traditional landraces.

One of the overarching aims of the project was to give wheat landraces back to farmers and let nature take its course. Throughout the mission, the team multiplied and returned landrace seed to over 1500 farmers in communities across Afghanistan, Turkey and other countries in the region. The team also supplied over 500 farmers with improved landrace seed between 2018 and 2019.

Despite the political turmoil facing these countries, particularly Afghanistan, farmers are still growing wheat and the project’s contribution to food security will continue.

These landraces will take their place once more in the farming landscape, ensuring on-farm wheat diversity and food security for future generations.

This research was conducted with the financial assistance of the European Union within the framework of the Benefit-Sharing Fund project “W2B-PR-41-TURKEY” of the FAO’s International Treaty on Plant Genetic Resources for Food and Agriculture.

Getting to win-win: Can people and nature flourish on an increasingly cultivated planet?

Our planet is facing a massive biodiversity crisis. Deeply entwined with our concurrent climate crisis, this crisis may well constitute the sixth mass extinction in Earth’s history. Increasing agricultural production, whether by intensification of extensification, is a major driver of biodiversity loss. Beyond humanity’s moral obligation to not drive other species to extinction, biodiversity loss is also associated with the erosion of critical processes that maintain the Earth system in the only state that can support life as we know it. It is also associated with the emergence of novel, zoonotic pathogens like the SARS-CoV-2 virus that is responsible for the current COVID-19 global pandemic.

Conservation ecologists have proposed two solutions to this challenge: sparing or sharing land. The former implies practicing a highly intensive form of agriculture on a smaller land area, thereby “sparing” a greater proportion of land for biodiversity. The latter implies a multifunctional approach that boosts the density of wild flora and fauna on agricultural land. Both have their weaknesses though: sparing often leads to agrochemical pollution of adjacent ecosystems, while sharing implies using more land for any production target.

In an article in Biological Conservation, agricultural scientists at the International Maize and Wheat Improvement Center (CIMMYT), argue that, while both land sharing and sparing are part of the solution, the current debate is too focused on trade-offs and tends to use crop yield as the sole metric of agricultural performance. By overlooking potential synergies between agriculture and biodiversity and ignoring metrics that may matter more to farmers than yield —for example, income, labor productivity, or resilience — the authors argue that the two approaches have had limited impact on the adoption by farmers of practices with proven benefits on both biodiversity and agricultural production.

Beyond the zero-sum game

At the heart of the debate around land sparing versus land sharing is a common assumption: there is a zero-sum relationship between wild species density and agricultural productivity per unit of land. Hence, the answer to the challenge of balancing biodiversity conservation with feeding a growing human population appears to entail some unpalatable trade-offs, no matter which side of the debate you side with. As the debate has largely been driven by conservation ecologists, proposed solutions often approach conserving biodiversity in ways that offer limited benefits, and often losses, to farmers.

On the land sparing side, the vision is to carve up rural landscapes almost as a planner would zone urban space: some areas would be zoned for highly intensive forms of agricultural production, largely devoid of wild species, while others would be zoned as biodiversity-rich areas. As the authors point out, however, such a strictly segregated view of land use is challenged by the natural migratory patterns of species, their need for diverse types of ecosystems over the course of the seasons or their lifecycles, and the high risk of pollution associated with intensive agriculture, such as run-off and leaching of agrochemicals, and pesticide drift.

Proponents of the land sharing view argue for a multifunctional approach to agricultural production that introduces a greater density of wild species onto agricultural land, thus integrating production and conservation into the same land units. This, however, inevitably diminishes agricultural productivity, as measured by yield.

This view, the article argues, overlooks the synergies between agriculture and biodiversity. Not only can biodiversity support agriculture through ecosystem services, but farmlands also support many species. For example, the patchiness created in the landscape by swidden agriculture or by grazing livestock supports more biodiversity than closed-canopy ecosystems, benefiting open-habitat species in particular. And except for rare forms of “controlled environment agriculture” such as hydroponics, all agricultural systems depend on the ecosystem services rendered by a multitude of organisms, from soil fertility maintenance to pollination and pest control.

Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)
Tzeltal farmers in Chiapas, Mexico. (Photo: Peter Lowe for CIMMYT)

“Agriculture is about flexibility and pragmatism,” said Frédéric Baudron, a system agronomist at CIMMYT and the lead author of the study. “Farmers need to be presented with a wider basket of solutions than the dichotomy of high-yielding and polluting agriculture versus low-input and low-yielding agriculture offered by land sharing/sparing. Virtually all production systems require both external inputs and ecosystem services. In addition, agricultural scientists have developed a variety of solutions, such as precision agriculture, to minimize the risk of pollution when using external inputs, and push-pull technology to harness ecosystem services for tangible productivity gains.

Similarly, an exclusive focus on yield as a measure of agricultural performance obscures ways in which greater biodiversity on agricultural land can support farmers’ livelihoods and economic wellbeing. The authors show, for example, that simplified landscapes in southern Ethiopia tend to have higher crop productivity. But more diverse landscape in the same area, while hosting more biodiversity, produce more fuelwood, support a higher livestock productivity, provide a greater dietary diversity, and are more resilient to environmental stresses and external economic shocks, all of which being highly valued by local people.

Imagining landscapes where biodiversity and people win

The land sharing versus sparing debate deserves enormous credit for bringing attention to the role of agriculture in biodiversity loss and for pushing the scientific community and policymakers to address the problem and think about how to balance agriculture and conservation. As the authors of this paper show, as researchers from a more diverse range of scientific disciplines join the debate, there is tremendous potential to move the conversation from a vision that pits agriculture against biodiversity and towards solutions that highlight the potential synergies between these activities.

“It is our hope that this paper will stimulate other agricultural scientists to contribute to the debate on how to feed a growing population while safeguarding biodiversity. This is possibly one of the biggest challenges of our rapidly changing agri-food systems. But we have the technologies and the analytics to face this challenge,” Baudron said.

Cover photo: Pilot farm in Yangambi, Democratic Republic of Congo. (Photo: Axel Fassio/CIFOR)