Skip to main content

Tag: animal feed

Scaling fodder innovations to improve livestock productivity in Zimbabwe’s semi-arid regions

Gogo Consilia Nyamunda in her pigeon pea field (CIMMYT)

When she first ventured into growing pigeon peas as a baby trial host farmer, Gogo Consilia Nyamunda doubted that intercropping them with maize would bring any benefits, especially given the weather had not been lenient over the past few years in Buhera district, in eastern Zimbabwe. “This year has been the hardest. I’ve never experienced such drought and heat stress, but it’s not just me—it’s affecting the entire country,” says Gogo Consilia. Yet, her production turned out to be better than that of farmers growing only maize, a popular crop in Southern Africa. Encouraged by the results, she expanded her efforts, dedicating half a hectare to pigeon peas. “From just 0.2 hectares of pigeon peas, I still managed to harvest 10 kilograms in these extremely dry conditions. It’s not just for feeding my chickens—other farmers are now interested in the seeds as well,” she explains.

Gogo Consilia Nyamunda is one of twelve farmers experiencing new feed production practices as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project, rolled out since 2020 by the International Livestock Research Institute (ILRI) in partnership with CIMMYT, the French Agricultural Research Center for International Development (CIRAD), and the University of Zimbabwe (UZ).

In the face of a changing climate, building the resilience of local farmers is crucial to safeguarding both their meal baskets and livestock feed. In this context, LIPS Zimbabwe has emerged as a strategic initiative, deeply rooted in farmer-driven trials to scale fodder production while maximizing the potential of mechanization for smallholder farmers in Buhera. By integrating improved agronomic practices with scalable fodder production, LIPS Zimbabwe is helping farmers withstand the challenges posed by climate change.

Empowering local farmers through fodder production

In the same district, Shirley Makoni also began as a baby trial farmer, intercropping maize with jack bean, a leguminous crop resilient to drought. Her case highlights the importance of diversifying crops and adapting to the realities of climate change: despite initial skepticism, Shirley found that jack beans not only survived the drought but also provided valuable feed for her cows. “I didn’t think anything would come out of it, but the cows love the leaves and seeds. They’ve gained weight, and the crop has been easy to manage,” she shares. While her maize and other crops failed due to the severe weather, jack bean proved to be a reliable source of feed, allowing her to bale the leaves and even share the harvest with others.

Shirley Makoni proudly holds her jack bean hay bale (CIMMYT)

One of the key strategies employed by LIPS Zimbabwe is the promotion of resilient fodder crops that can thrive under harsh climatic, semi-arid conditions where potential evapotranspiration far exceeds seasonal rainfall, which is often below 600 mm. This approach not only ensures a reliable source of feed for livestock but also contributes to the overall resilience of farming systems. The success story of farmers like Gogo Consilia Nyamunda highlights the transformative impact of these efforts.

“The idea of testing new innovations has paid off. Despite the poor sandy soils in Buhera, these fodder crops (jack bean and pigeon pea) have done well!” says Isaiah Nyagumbo, a Systems Agronomist leading the CIMMYT component of the LIPS-Zim project. “This means we now have a more diverse range of leguminous fodder crop species that can be grown in these semi-arid conditions, apart from the more common ones such as mucuna, lablab, and cowpeas.”

Some preliminary laboratory results also suggest that jack bean contains much higher crude protein than popular fodder legumes like mucuna. Jack bean could thus offer a new resilient feed option for farmers in these drought-prone regions and can be grown as an intercrop or in rotation with cereals.

Transforming fodder production through mechanization

Tying the LIPS Zimbabwe project together is the introduction of the mechanization component, from planting to processing the fodder crops, which is crucial for increasing the scale of fodder production in Zimbabwe’s semi-arid regions. By processing forage legumes such as jack bean, lablab, pigeon pea, mucuna, and cowpea, farmers can ensure a steady supply of nutritious feed for their livestock, even in the face of unpredictable weather patterns.

Local farmers in Buhera have been equipped with machinery such as a chopper grinder, hay balers, planters, and tractors, and trained to use and maintain the equipment. “Among the machinery at hand, the hay baler has been a great win for me, especially for the cows,” says Gandani Nhachi. “Last season, I made 27 bales of fodder, which has been vital for my herd. I’ve also grown my goat herd from 16 last year to 35 this year,” he proudly shares.

Building resilience for the future

As climate change continues to challenge farmers, initiatives like LIPS Zimbabwe are essential for building resilience. By combining traditional knowledge with modern practices, scaling fodder production, and embracing mechanization, farmers in Buhera are better equipped to protect their livelihoods and ensure food security. As Gandani puts it, “Climate change is inevitable, but with the right practices, we can still thrive. When I give my goats food, they multiply. Even if one side fails, all hope is not lost.”

LIPS-Zimbabwe empowers farmers through innovative intercropping trials

Since 2021, CIMMYT, in partnership with the International Livestock Research Institute (ILRI), the French Agricultural Research Centre for International Development (CIRAD), and the University of Zimbabwe’s Department of Veterinary, has been working in rural communities of Zimbabwe, as part of the Livestock Production Systems in Zimbabwe (LIPS-Zim) project. The activity is led by Zimbabwe’s Department of Research and Specialist Services and is at the forefront of introducing new agricultural innovations to local farmers.

One of their most impactful initiatives has been the intercropping trials involving maize and various legumes including jack bean, mucuna, lablab, and pigeon pea. This groundbreaking approach has not only transformed the lives of farmers but has also had a positive impact on the overall health of livestock.

Various leguminous fodder crops have been promoted widely as sources of high-quality protein feed in mixed crop-livestock systems of Zimbabwe. However, to diversify and increase the options for the drier regions, the LIPS-Zim project is testing new leguminous crops such as jack bean and pigeon pea, which are well-adapted to dry conditions.

Intercropping trials with jack bean and maize (Photo: CIMMYT)

Netsai Musekiwa, a farmer in the town of Mutoko, has been part of the LIPS-Zim project for the past two seasons, and is currently conducting intercrop trials with jack bean. “Since I started intercropping maize with jack bean, I have been amazed by the results and will continue on this path. The jack bean plants have shown strong tolerance to prolonged dry spells and heat stress,” she said. “Next season, I plan to extend my plot to harvest more jack bean.” These words of encouragement on intercropping maize with jack bean have also been largely echoed by many other farmers in Mutoko and Buhera during the feedback meetings held in October 2023.

What is intercropping and how beneficial is it to farmers?

Intercropping is an agricultural practice of growing two or more crops together on the same field simultaneously to maximize land use and enhance productivity. As different crops have different growth patterns and nutrient requirements, intercropping can help optimize resource utilization and boost overall crop output.

In addition, intercropping reduces the risk of climate induced crop failure as well as minimizing pest damage, enhances soil fertility by diversifying the root system, and can provide additional income streams to farmers.

The science behind jack bean and pigeon pea

Jack bean (canavalia ensiformis) and pigeon pea (cajanus cajan) are leguminous crops valued for their nitrogen-fixing abilities which aides in improving soil fertility. Both jack bean and pigeon pea have deep root systems, making them ideal candidates for the dry semi-arid conditions in Zimbabwe.

Pigeon pea is known for its drought-tolerance and produces edible seeds used in various culinary dishes and is a source of both food and feed. Jack bean is used as a forage crop for livestock, providing nutritious feed.

“Jack bean seeds contain a toxic compound called canavanine, which can be harmful when consumed in large quantities or not properly processed. To make jack beans safe for consumption, it must be boiled, soaked, or fermented,” said Isaiah Nyagumbo, cropping systems agronomist at CIMMYT. “We have introduced many farmers to the best practices for handling jack beans and have opened up new possibilities for its utilization in sustainable farming practices.”

While some farmers were intercropping with jack bean, others explored pigeon pea as an alternative. “I liked the intercropping of maize and pigeon pea on my plot. I am assured of getting nutritious food both for my family and livestock. After harvesting, I usually take the branches, then put them in the shade and dry them to retain the nutritional value. I occasionally give some to my goats during the dry season when feed from natural pastures is scarce, and my goat herd has risen to 12 goats,” said Fungai Kativu, a farmer in Mutoko.

Building capacity of local farmers

To narrow the knowledge gap and highlight the potential of such feed options, LIPS-Zim has also been spearheading the establishment of community level learning centers. These centers are a knowledge hub to local farmers, providing practical knowledge, facilitating the sharing of different perspectives while nurturing working as groups with a common vision. This “farmer learns by seeing” approach has been a success in the community.

Through this initiative, farmers have not only witnessed increased productivity but have also gained the necessary skills and knowledge to adapt to the changing agricultural landscape. “Intercropping leguminous crops with maize has shown great potential in improving food security and livestock feed production in Zimbabwe’s farming communities, especially in areas prone to heat and drought,” said Nyagumbo.

Farmers in Buhera gear up for climate-smart agriculture

Isaiah Nyagumbo engages extension officers and host farmers on the water harvesting technologies under trial in Buhera district, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

As climate change effects intensify, new innovations that enable smallholder farmers to adapt are no longer an option but a necessity. Significant parts of Zimbabwe are semi-arid, receiving less than 600mm of rainfall per year. Smallholder farming communities in districts such as Buhera have embraced feed production and water conservation innovations deployed by the International Maize and Wheat Improvement Center (CIMMYT) as part of the Livestock Production Systems in Zimbabwe project (LIPS-Zim). The project, funded by the European Union and led by the International Livestock Research Institute (ILRI) and CIMMYT, champions the crop-related aspects of interventions and aims to increase livestock productivity in Zimbabwe’s semi-arid regions. The project specifically aims to promote increased adoption of climate-relevant innovations in livestock-based production systems and improved surveillance and control of livestock diseases. While focused on livestock, the project is based on the premise that the performance of the livestock sector depends heavily on crop husbandry. By the same token, the livestock sector has bi-products that directly impact the productivity of crops.

Zimbabwe is a country that is well suited to mixed farming systems. Most smallholder farmers have treated livestock and crop production as mutually exclusive, but the two enterprises can have a significant complementary effect on each other.

CIMMYT Cropping Systems Agronomist Isaiah Nyagumbo is leading the development of crop husbandry innovations aimed at increasing feed production that are poised to benefit smallholder farmers’ crop productivity and enhance the conditioning of livestock, especially cattle.

Despite extension recommendations for farmers not to grow maize in these regions, studies show that 60% of the arable land is still occupied by maize. This is due to maize’s popularity among farmers thanks to its diverse uses.

One solution is to support farmers with the most appropriate cultivars and most effective production technologies to help them be more resilient to climate change induced challenges. To contribute towards LIPS-Zim’s objective for increased feed production, CIMMYT scientists are testing and demonstrating the use of drought tolerant and nutritious maize varieties along with a wide range of leguminous species such as mucuna, dolichos lab-lab and cowpea, which are grown mostly as intercrops. Efforts are also being made to develop innovative water conservation options through reduced or no-till planting basins and tied ridging systems reinforced with different mulching options including conventional organic and synthetic artificial mulches. These are then being compared to traditional conventional mouldboard ploughing systems.

The Nyeketes, proud hosts of the CIMMYT water harvesting technology trial, in Buhera, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

So far, the results are exciting and helping farmers to see the productivity gains from applying different technologies. Mr. and Mrs. Nyekete, smallholder farmers who volunteered to work with CIMMYT on these innovations, are optimistic about widespread adoption once the trials are concluded as the technologies can suit different levels of investment by farmers.

“We have a lot of farmers visiting us as they observe a diversity of technologies on our plot. The artificial mulch concept is one which is very new, and farmers are curious as to how it works. They can observe for themselves that, especially when used with tied ridges, it is very effective in retaining moisture,” said Mr and Mrs Nyekete.

“The same applies to organic mulch. Government extension workers have, over the years, been encouraging us to plant our maize under the Pfumvudza conservation agriculture model, and in it is the use of organic materials as mulch. The level of compliance in areas such as Buhera has been low, where people practice Pfumvudza without fully applying all the principles, especially soil cover. The water conservation trials are providing evidence that when one dedicates themselves to mulching their crop, whether using organic or synthetic mulches, the maize productivity is comparatively higher. As you can see, the maize plots with these water harvesting technologies are showing high vegetative growth in comparison to conventionally planted maize.”

Over the years, there has been a slow adoption of new innovations emanating from scientific research usually conducted on research stations. The use of on-farm research trials and demonstrations helps smallholder farmers to participate in the research process and co-create technologies, which shortens the adoption period and stimulates adoption at scale. This approach enables more farmers, who are not hosts, to benefit from the technologies showcased in the trials and to observe and learn from the trials. As the saying goes, “seeing is believing” and farmers can choose the options most relevant to their own circumstances.  As such, farmers can conclude for themselves which technologies bear results compelling enough for them to adopt.

Despite the artificial mulching technology demonstrating impressive results so far, Nyagumbo cautions that before the technology can be promoted at scale, more research, as well as proof of concept for these systems are needed.

“Firstly, we see that the quality of the material used has a big bearing on the ability to reduce evaporation from the soil. Secondly, some farmers have observed germination challenges due to the synthetic materials creating an attractive habitat for rodents that eat the maize seed before it germinates. Thirdly, the returns from such investments need to be justified by highly attractive economic returns arising from high yields that will also enable farmers to intensify their production systems by producing their food needs from much smaller areas. Further studies and analyses therefore need to be conducted,” said Nyagumbo.

“Furthermore, so far the idea of tied ridging combined with organic mulches also seems to offer a highly attractive option for farmers that will contribute to increased feed productivity from the enhanced grain and crop residues, since increased biomass output also means increased livestock feed availability.”

While breeding excellence is proving to be an effective method for responding to climate change through improved seed varieties and high-performance livestock breeds, new crop and livestock production technologies are required to complement the genetic gains from breeding. The crop production technologies being showcased in in Buhera along with drought tolerant and nutritious maize varieties and legumes, promise to be transformative for semi-arid regions for both crop and livestock systems.

From seed to feed

In 2022, more than 2,000 households participated in CIMMYT’s Maize Commercial Model program, doubling the number of farmers and area of maize produced compared to data from 2021. (Photo: Aayush Niroula/CIMMYT)

Experts at the International Maize and Wheat Improvement Center (CIMMYT) are working with partners to drive self-sufficiency in poultry feed and achieve more sustainable maize systems in Nepal thanks to the Nepal Seed and Fertilizer (NSAF) project.

About 3,000 metric tons (t) of poultry feed is used in Nepal every day, with maize making up about half of feed ingredients. The Feed Association of Nepal estimates that more than 80% of maize for animal feed requirements are met through imports, which costs around $100 million a year. Maize imports are estimated to exceed $130 million in 2022.

Through the NSAF project — a project which facilitates sustainable increases in Nepal’s national crop productivity, income and household-level food and nutrition security across 20 districts — CIMMYT scientists have been supporting public private partnerships to increase commercial maize production and strengthen the “seed to feed” chain in the country.

In the Terai region, huge swaths of land lie fallow in the spring season. Experts estimate that enough maize grain could be produced on this land to substitute about 40% of maize imports to the country. Increasing spring maize production in these fallow lands has been one of the goals of the NSAF team, as well as improving coordination between public and private sectors. To do this, the team have designed a multi-stakeholder engagement initiative to strengthen the seed to feed chain.

In December 2020, CIMMYT experts began the initiative to scale up the use of new maize hybrid varieties and improved agronomic practices. In the spring of 2022, CIMMYT researchers partnered with public and private organizations in Banke, Bardiya and Kailali to help commercialize hybrid maize production and strengthen maize value chain coordination in the region. Partners included integrated agriculture and livestock development offices in Bardiya, agriculture knowledge centers in Banke and Kailali, local governments, farmer cooperatives, seed companies, agro-dealers and feed mills.

Working with these partners, CIMMYT scientists also advanced efforts to improve the capacity of actors to increase efficiency in supply chains, production and marketing, provide local employment and strengthen the market for domestically produced maize for poultry feed.

As of September 2022, the following milestones have been achieved:

  • Provincial governments have established multi-stakeholder maize commercial networks at sites where maize actors and stakeholders participate to coordinate commercial maize production, access to support services and to link farmers and grain buyers.
  • In 2022, more than 2,000 households from 19 local government units produced maize on 547 ha in Banke, Bardiya and Kailali. The total maize production increased from 1390t in 2021 to 3,232t in 2022. This was an increase of 61% in the number of farmers and 52% in area. The value of maize sold also tripled from USD 306,900 in 2021 to USD 915,700 in 2022.
  • The farm gate price of maize by 22% and the Government of Nepal invested $2.37 million to support access to quality seed, agriculture machinery and irrigation facilities.
  • Farmers sold 500t maize grains to feed mills in 2022, a huge jump from only 30t in 2021.
  • In partnership with the Government of Nepal, CIMMYT researchers organized training programs for farmers in maize commercial network sites on production, post-harvest, exposure visits and marketing to prepare them to produce maize as per buyers’ requirements. They also guided farmers on how to access credit, crop insurance, and digital advisory services to further improve their production and marketing.
Maize constitutes about half of all poultry feed products in Nepal and maize imports for feed are estimated to be worth around $130 million in 2022. (Photo: Aayush Niroula/CIMMYT)

Next steps

CIMMYT scientists plan to double the number of districts under the maize commercialization model from three to six in 2023. The Department of Agriculture under the Ministry of Agriculture and Livestock Development, and the local and provincial governments are keen to scale out the model to several maize production regions of Nepal.

In a joint assessment with the Government of Nepal and private sector partners, CIMMYT scientists identified a number of key areas for further development. These include supporting farmers to access high yielding, short duration and stress tolerant maize varieties, as well as best management practices for improving maize production. Other priorities include developing models for contractual arrangements between farmers groups and feed mills, encouraging public and private sector investment in village-level warehouses with drying facilities. Finally, CIMMYT and partners are eager to introduce incentives such as subsidies on grain produced and sold by farmers through cooperatives, develop national maize quality standards and update the 1976 Feed Act.

Going forward, CIMMYT’s research on public private partnership for commercial maize production will focus on drivers of uptake of technology and institutional innovations, the role of aggregation models and contractual arrangements in maize market system coordination and impact assessment on farmers benefits.

New publications: Scientists find genomic regions associated with better quality stover traits in maize for animal feed

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the International Livestock Research Institute (ILRI) have identified new genomic regions associated with maize stover quality, an important by-product of maize which can be used in animal feed.

The results of the study, published this month in Nature Scientific Reports, will allow maize breeders to select for stover quality traits more quickly and cost-effectively, and to develop new dual purpose maize varieties without sacrificing grain yield.

The researchers screened diverse Asia-adapted CIMMYT maize lines from breeders’ working germplasm for animal feed quality traits. They then used these as a reference set to predict the breeding values of over a thousand doubled haploid lines derived from abiotic stress breeding programs based on genetic information. Based on these breeding values, the scientists further selected 100 of these double haploid lines and validated the performance of stover quality traits through field-based phenotyping.

The results demonstrate the feasibility of incorporating genomic prediction as a tool to improve stover traits, circumventing the need for field or lab-based phenotyping. The findings significantly reduce the need for additional testing resources — a major hindrance in breeding dual-purpose maize varieties.

Interestingly, the researchers found that increased animal feed quality in maize stover had no impact on grain yield, a concern raised by scientists in the past.

“The main purpose of this study and overall purpose of this CIMMYT and ILRI collaboration was to optimize the potential of maize crops for farm families, increase income, improve livelihoods and sustainably manage the crop livestock system, within limited resources,” said P.H. Zaidi, a maize physiologist at CIMMYT and co-author of the study.

“More than 70% of the farmers in the tropics are smallholders so they don’t have a lot of land to grow crops for grain purposes and separate stover for animal feed, so this is a very sustainable model if they grow dual purpose maize.”

By growing maize simultaneously for both human consumption and animal feed, farmers can get the most out of their crops and conserve natural resources like land and water.

A farmer works in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. (Photo: M. DeFreese/CIMMYT)
A farmer works in a maize field close to the Pusa site of the Borlaug Institute for South Asia (BISA), in the Indian state of Bihar. (Photo: M. DeFreese/CIMMYT)

Fodder for thought

The findings from this study also validate the use of genomic prediction as an important breeding tool to accelerate the development and improvement of dual-purpose maize varieties, according to CIMMYT Maize Breeder and first author of the study, M.T. Vinayan.

With the demand for animal feed increasing around the world, crop scientists and breeders have been exploring more efficient ways to improve animal feed quality in cereals without compromising grain yields for human consumption.

“Not all maize varieties have good stover quality, which is what we realized when we started working on this project. However, we discovered that there are a few which offer just as good quality as sorghum stover — a major source of livestock fodder particularly in countries such as India,” said Zaidi.

The publication of the study is a fitting tribute to the late Michael Blummel, who was a principal scientist and deputy program leader in the feed and forage development program at ILRI and co-author of this study.

“A couple of years back Dr Blummel relocated from the Hyderabad office at ILRI to its headquarters at Addis Ababa, but he used to frequently visit Hyderabad, and without fail met with us on each visit to discuss updates, especially about dual-purpose maize work. He was very passionate about dual-purpose maize research with a strong belief that the additional income from maize stover at no additional cost will significantly improve the income of maize farmers,” Zaidi said. “Michael was following this publication very closely because it was the first of its kind in terms of molecular breeding for dual purpose maize. He would have been very excited to see this published.”

Read the full article:
Genome wide association study and genomic prediction for stover quality traits in tropical maize (Zea mays L.)

Cover photo: Dairy cattle eats processed maize stover in India. (Photo: P.H. Zaidi/CIMMYT)