Skip to main content

Tag: agronomy

Tangible agricultural solutions shine at first online AGRF

For ten years now, the African Green Revolution Forum (AGRF) has been an unmissable event. Every September, the premier forum for African agriculture has brought people together to share experiences about transforming agriculture, raising productivity for farmers and increasing incomes.

The theme of the 2020 summit — Feed the Cities, Grow the Continent: Leveraging Urban Food Markets to Achieve Sustainable Food Systems in Africa — was a call to action to rethink our food systems to make them more resilient and deliver better nourishment and prosperity for all.

This year, the summit went virtual. Delegates could not mingle, visit booths and network over lunch, but attendance reached new heights. Over 10,400 delegates from 113 countries participated in this edition of the AGRF, compared to 2,300 delegates last year.

As in the previous years, CGIAR centers, including the International Maize and Wheat Improvement Center (CIMMYT), maintained an active presence among speakers and attendees.

With over 50 projects and hundreds of staff based across nine countries, Africa holds a significant position in CIMMYT’s research agenda. CIMMYT’s work in Africa helps farmers access new maize and wheat system-based technologies, information and markets, raising incomes and enhancing crop resilience to drought and climate change. CIMMYT sets priorities in consultation with ministries of agriculture, seed companies, farming communities and other stakeholders in the maize and wheat value chains.

Striving for excellence

CGIAR leveraged AGRF 2020’s highly diversified and international audience to launch the Excellence in Agronomy 2030 initiative (EiA 2030) on September 7, 2020. EiA’s impressive group of experts plans to hit the ground running in 2020 and work toward speeding up progress in tailoring and delivering nutrients and other agronomic solutions to smallholder farmers in Africa and other regions.

“Across agricultural production systems, low crop yields and inadequate incomes from agriculture are the rule rather than the exception,” said Martin Kropff, Director General of CIMMYT and Chair of One CGIAR Transition Advisory Group (TAG) 2 on Research. “At the same time, the ‘asks’ of agriculture have evolved beyond food security. They now include a broader range of Sustainable Development Goals, such as sustainable land management, climate change mitigation, provision of heathy diets, and inclusive economic growth. None of these goals will be achieved without the large-scale adoption of improved and adapted agronomic practices. To this end, we have initiated the creation of a CGIAR-wide EiA 2030 initiative aiming at reducing yield and efficiency gaps for major crops at scale.”

EiA 2030 is funded by the Bill & Melinda Gates Foundation, supported by the Big Data Platform and co-created by AfricaRice, CIAT, CIMMYT, CIP, ICARDA, ICRAF, ICRISAT, IITA and IRRI.

Martin Kropff (first row, fourth from left), Bram Govaerts (second row, first from left) and Lennart Woltering (second row, third from left) spoke at the "Scaling and Food Systems Transformation in the PLUS-COVID-19 era" panel.
Martin Kropff (first row, fourth from left), Bram Govaerts (second row, first from left) and Lennart Woltering (second row, third from left) spoke at the “Scaling and Food Systems Transformation in the PLUS-COVID-19 era” panel.

Scaling agriculture beyond numbers

On September 7, 2020, a group of experts, including Lennart Woltering, Scaling Catalyst at CIMMYT and chair of the Agriculture and Rural Development (ARD) working group of the Community of Practice on Scaling, gathered to explore how organizations are supporting scaling food systems in a post-COVID-19 world.

As Martin Kropff mentioned in a video address, One CGIAR aims to deliver on its commitments by building on its experience with pioneering integrated development projects, such as CSISA, CIALCA and AVISA. “One CGIAR plans to be actively involved and help partners to scale by delivering on five One CGIAR impact areas at the regional level. How? By taking integrated regional programs from strategic planning to tactical implementation in three steps: strategic multi-stakeholder demand-driven planning process, tactical plan development based on the integration of production and demand, and implementation of multi-stakeholder innovation hubs. An integrated regional approach will deliver at scale,” Kropff said.

“CIMMYT has developed different scenarios regarding what agri-food systems will look like in 2025 with the COVID-19 shock. Whatever may unfold, integrated systems are key,” highlighted Bram Govaerts, Director of the Integrated Development Program and one of CIMMYT’s interim Deputy Directors General for Research, during the session.

“Diversity and proactive mindsets present at the #AGRF2020 High-Level Ministerial Roundtable. An example of how we can shape the future, listening to what’s needed, investing in agriculture and making resilient food systems to resist the impact of #COVID19 #AgricultureContinues,” tweeted Bram Govaerts (first row, second from left) along with a screenshot of his Zoom meeting screen.
“Diversity and proactive mindsets present at the #AGRF2020 High-Level Ministerial Roundtable. An example of how we can shape the future, listening to what’s needed, investing in agriculture and making resilient food systems to resist the impact of #COVID19 #AgricultureContinues,” tweeted Bram Govaerts (first row, second from left) along with a screenshot of his Zoom meeting screen.

Putting healthy diets on the roundtable

Later in the week, CIMMYT experts took part in two key events for the development of Africa’s agriculture. Govaerts stepped in for Kropff during the High-Level Ministerial Roundtable, where regional leaders and partners discussed reaching agricultural self-sufficiency to increase the region’s resilience toward shocks such as the ongoing pandemic.

At the Advancing Gender and Nutrition policy forum, Natalia Palacios, Maize Quality Specialist, spoke about engaging nutritionally vulnerable urban consumers. Palacios echoed the other speakers’ calls for transforming agri-food systems and pointed out that cereals and effective public-private partnerships are the backbone of nutritionally vulnerable and poor urban customers’ diets.

According to the Food and Agriculture Organization of the UN, in 30 years, the population of Africa is projected to double to a number as high as 2.7 billion, from 1.34 billion in 2020. Considering only the projected population, by 2050 Africa will have to supply 112.4 to 133.1 million tons of wheat and 106.5 to 126.1 million tons of maize to ensure food security of the burgeoning population. “We are living in a very challenging time because we need to provide affordable, nutritious diets — within planetary boundaries,” Palacios said.

Cover photo: Over 10,400 delegates from 113 countries participated in the 2020 edition of the African Green Revolution Forum. (Photo: AGRA)

Excellence in Agronomy 2030 initiative to launch at African Green Revolution Forum

Nine CGIAR centers, supported by the Big Data Platform, will launch the Excellence in Agronomy 2030 initiative on September 7, 2020, during this year’s African Green Revolution Forum (AGRF) online summit.

The Excellence in Agronomy 2030 (EiA 2030) initiative will assist millions of smallholder farmers to intensify their production systems while preserving key ecosystem services under the threat of climate change. This initiative, co-created with various scaling partners, represents the collective resolve of CGIAR’s agronomy programs to transform the world’s food systems through demand- and data-driven agronomy research for development.

EiA 2030 will combine big data analytics, new sensing technologies, geospatial decision tools and farming systems research to improve spatially explicit agronomic recommendations in response to demand from scaling partners. Our science will integrate the principles of Sustainable Intensification and be informed by climate change considerations, behavioral economics, and scaling pathways at the national and regional levels.

A two-year Incubation Phase of EiA 2030 is funded by the Bill & Melinda Gates Foundation. The project will demonstrate the added value of demand-driven R&D, supported by novel data and analytics and increased cooperation among centers, in support of a One CGIAR agronomy initiative aiming at the sustainable intensification of farming systems.

Speaking on the upcoming launch, the IITA R4D Director for Natural Resource Management, Bernard Vanlauwe, who facilitates the implementation of the Incubation Phase, said that “EiA 2030 is premised on demand-driven agronomic solutions to develop recommendations that match the needs and objectives of the end users.”

Christian Witt, Senior Program Officer from the Bill & Melinda Gates Foundation, lauded the initiative as a cornerstone for One CGIAR. “It is ingenious to have a platform like EiA 2030 that looks at solutions that have worked in different settings on other crops and whether they can be applied in a different setting and on different crops,” Witt said.

Martin Kropff, Director General of the International Maize and Wheat Improvement Center (CIMMYT), spoke about the initiative’s goals of becoming the leading platform for next-generation agronomy in the Global South, not only responding to the demand of the public and private sectors, but also increasing efficiencies in the development and delivery of solutions through increased collaboration, cooperation and cross-learning between CGIAR centers and within the broader agronomy R&D ecosystem, including agroecological approaches.

At the EiA 2030 launch, representatives from partner organizations and CGIAR centers will give presentations on different aspects of the project.

CGIAR centers that are involved in EiA include AfricaRice, the International Center for Tropical Agriculture (CIAT), the International Maize and Wheat Improvement Center (CIMMYT), the International Potato Center (CIP), the International Center for Agricultural Research in the Dry Areas (ICARDA), World Agroforestry Center (ICRAF), the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), the International Institute of Tropical Agriculture (IITA), and the International Rice Research Institute (IRRI).

Launch details:

  • Date: September 7, 2020
  • Venue: Virtual; online
  • Time: 3 pm, Central Africa Time (CAT)
  • Link: To be provided before the event.

Register for AGRF here.

For more information contact Bernard Vanlauwe, b.vanlauwe@cgiar.org, or David Ngome, d.ngome@cgiar.org

Follow EiA on Facebook, Twitter and LinkedIn for updates and information.

Study calls for better understanding of fertilizer prices faced by African smallholder farmers

A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro's Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)
A farm worker applies fertilizer in a field of Staha maize for seed production at Suba Agro’s Mbezi farm in Tanzania. (Photo: Peter Lowe/CIMMYT)

Crop yields in sub-Saharan Africa are generally low. This is in large part because of low fertilizer use. A recent study of six countries in sub-Saharan Africa showed that just 35% of farmers applied fertilizer. Some possible reasons for this could be that farmers may be unaware of the efficacy of fertilizer use; or have degraded soils that do not respond to fertilizer; they may not have the cash to purchase it; or because unpredictable rainfall makes such investments risky. It may also be because local fertilizer prices make their use insufficiently profitable for many farmers.

To better understand the potential fertilizer demand in a particular location, it is important to know how crops respond to fertilizer under local conditions, but it is critical to understand crop responses in terms of economic returns. This requires information about local market prices of fertilizers and other inputs, as well as the prices that a farmer could receive from selling the crop.

While national-level fertilizer prices may be available, it is necessary to consider the extent to which prices vary within countries, reflecting transportation costs and other factors. In the absence of such data, analysis of household-level behaviors requires assumptions about the prices smallholder farmers face — assumptions which may not be valid. For example, evaluations of the returns to production technologies settings have often assumed spatially invariant input and output prices or, in other words, that all farmers in a country face the same set of prices. This is at odds with what we know about economic remoteness and the highly variable market access conditions under which African smallholders operate.

An obstacle to using empirical data on sub-national disparities in fertilizer prices is the scarcity of such data. A new study focused on the spatial discrepancies in fertilizer prices. The study compiled local market urea price in eighteen countries in sub-Saharan Africa for the period between 2010-2018 and used spatial interpolation models — using points with known values to approximate values at other unknown points — to predict local prices at locations for which no empirical data was available. It was conducted by scientists at University of California, Davis, the International Maize and Wheat Improvement Center (CIMMYT) and the International Food Policy Research Institute (IFPRI). The authors note that this is the first major attempt to systematically describe the spatial variability of fertilizer prices within the target countries and test the ability to estimate the price at unsampled locations.

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in eight East African countries.

“Our study uncovers considerable spatial variation in fertilizer prices within African countries and gives a much more accurate representation of the economic realities faced by African smallholders than the picture suggested by using national average prices,” said Camila Bonilla Cedrez, PhD Candidate at University of California, Davis. “We show that in many countries, this variation can be predicted for unsampled locations by fitting models of prices as a function of longitude, latitude, and additional predictor variables that capture aspects of market access, demand, and environmental conditions.”

Urea prices were generally found to be more expensive in remote areas or away from large urban centers, ports of entry or blending facilities. There were some exceptions, though. In Benin, Ghana and Nigeria, prices went down when moving away from the coast, with the possible explanation being market prices in areas with higher demand are lower. In other locations, imports of fertilizer from neighboring countries with lower prices may be affecting prices in another country or region, much like political influence. Politically, well-connected villages can receive more input subsidies compared to the less connected ones.

“The performance of our price estimation methods and the simplicity of our approach suggest that large scale price mapping for rural areas is a cost-effective way to provide more useful price information for guiding policy, targeting interventions, and for enabling more realistic applied microeconomic research. For example, local price estimates could be incorporated into household-survey-based analysis of fertilizer adoption,” explained Jordan Chamberlin, CIMMYT spatial economist. “In addition, such predictive ‘price maps’ can be incorporated into targeting and planning frameworks for agricultural investments. For example, to target technology promotion efforts to the areas where those technologies are most likely to be profitable.”

Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.
Predicted relative urea price (local price divided by the observed median national price) for areas with crop land in nine West African countries.

“The evidence we have compiled in this paper suggests that, while investments in more comprehensive and spatially representative price data collection would be very useful, we may utilize spatial price prediction models to extend the value of existing data to better reflect local price variation through interpolation,” explained Robert J. Hijmans, professor at University of California, Davis. “Even if imperfect, such estimates almost certainly better reflect farmers’ economic realities than assumptions of spatially constant prices within a given country. We propose that spatial price estimation methods such as the ones we employ here serve for better approximating heterogeneous economic market landscapes.”

This study has illustrated new ways for incorporating spatial variation in prices into efforts to understand the profitability of agricultural technologies across rural areas in sub-Saharan Africa.  The authors suggest that an important avenue for future empirical work would be to evaluate the extent to which the subnational price variation documented is a useful explanatory factor for observed variation in smallholder fertilizer use in sub-Saharan Africa, after controlling for local agronomic responses and output prices. One way to do that may be to integrate input and output price predictions into spatial crop models, and then evaluate the degree to which modeled fertilizer use profitability predicts observed fertilizer use rates across different locations.

Read the full study:
Spatial variation in fertilizer prices in Sub-Saharan Africa

Do smallholders get the right seed and inputs from their agrodealer?

Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)
Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)

Many Tanzanian smallholder farmers fail to produce even 1 ton of maize grain per hectare. To improve crop yields, a farmer needs the right seeds and complementary inputs, including inorganic fertilizer. The “right” inputs will depend upon what his or her geographical location and farming system are. How many farmers have access to such inputs and advice? What is the distribution of agrodealers in rural areas? What do they stock, and at what prices?

The International Maize and Wheat Improvement Center (CIMMYT) recently carried out a survey of agrodealers in Uganda and Tanzania to answer such questions related to the last-mile delivery of seeds and other agronomic inputs.

This is a joint initiative from two projects — Taking Maize Agronomy to Scale in Africa (TAMASA) and Strengthening product profile-based maize breeding and varietal turnover in Eastern and Southern Africa — funded by the Bill & Melinda Gates Foundation and USAID.

For the study, CIMMYT teams interviewed 233 agrodealers in Uganda and 299 agrodealers in Tanzania. The survey started in September 2019, just before the main maize planting season, and covered five districts in each country, in both easy-to-reach and remote areas.

The study focuses particularly on two types of agricultural inputs: maize seeds — similar to an earlier survey done this year in Kenya — and fertilizer.

Are agrodealers catalyzers of varietal turnover?

For maize seed, researchers looked at which varieties are available at the agrodealer and how do they decide on what to stock.

Agrodealers were also asked to report the key selling attribute of the different varieties they had in store whether it was yield, drought tolerance, maturity level or another marketing characteristic like pricing or packaging. Such information will give some better insights for CIMMYT’s maize breeding team about perceived differences along the seed value chain on key attributes and product profiles.

For example, a new variety in Uganda that was tolerant to maize lethal necrosis (MLN), was mainly promoted as a double cobber and not as MLN tolerant. And unlike in Uganda, there was no “cheap variety” option available in Tanzania, according to the agrodealers interviewed for the study, although high seed prices were often mentioned as the main barrier for seed purchases.

Better understanding how retailers select their varieties could help improve varietal turnover, a key indicator of how fast CIMMYT’s research reaches out farmers.

Besides their own role, it is also interesting to see how agrodealers perceive external challenges to influence farmer adoption of improved varieties. In Uganda, agrodealers saw counterfeit seed and government free seed distributions to farmers as the main challenges for their business, issues that were not frequently mentioned in Tanzania.

Understanding input market characteristics

Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)
Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)

The use of fertilizer is very low in sub-Saharan Africa, around 8-12 kg per hectare, twenty times less than Western standards. Fertilizer access and affordability have been cited as key factors in the low rates of uptake.

The study may shed some new light on this, as it looks at what types of fertilizer is available to farmers at agrodealer shops, and what drives sale and prices. Researchers will examine whether there is a competition effect and how transport costs or subsidies impede the growth of the fertilizer market.

Georeferencing of interviewed agrodealers and farmer population mapping will help reveal the degree to which agrodealers are concentrated in particular areas, leaving other areas with relatively little local access to inputs. Project researchers will investigate how marketing conditions vary across such situation, examining, for instance, how input pricing strategies, selection and quality varies spatially. The team will also use data collected on fertilizer prices to further refine regional fertilizer profitability maps.

Such mapping exercises could help improve the relevance of extension advice. As an example, to tackle acid soils or phosphorus deficiency, could farmers find the recommended input, lime or appropriate P fertilizer at the right time and right price, so that it is profitable for them?

The detailed results of the study are expected in early 2020 to guide agronomic investments and policies for more functional input markets that drive a much-needed sustainable intensification of African smallholder agriculture.

New tools guide interventions against acid soils in Africa using lime

Researchers visit maize fields in Ethiopia's Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)
Researchers visit maize fields in Ethiopia’s Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)

One major reason why maize productivity in sub-Saharan Africa is very low is poor soil health. Soil acidity is often mentioned because of its impact on crop yields and the extent of acid soils in the region. A recent soil mapping exercise, conducted by the Ethiopian Soil Information System (EthioSIS) under the administration of the Ethiopian Agricultural Transformation Agency (ATA), estimated that 43% of arable lands were affected by acid soils and that 3.6 million people, about 10% of the total rural population, live in areas with acidic soils.

Very acid soils — those with a pH below 5.5, roughly one hundred times more acidic than neutral soils — are associated with certain toxicities, like aluminum and iron excess, and some nutrient deficiencies. Soil acidity pushes soil nutrients out of reach of the plant, leading to stunting of root system and plant. As a result, the plant becomes also less tolerant to drought.

Soil acidification depends on soil nature, agroecology and farming systems. It happens through natural leaching of CO2 after rainfall and excess application of nitrogenous fertilizer or organic matter, for instance.

As a result, soil acidity significantly affects maize yields. In Ethiopia, studies have revealed substantial impacts on crop productivity related to acid soils and the importance of acid soil management for Ethiopia’s food security. The Ethiopian Institute of Agricultural Research (EIAR) estimated that soil acidity on wheat production alone costed the country over 9 billion Ethiopian Birr, about $300 million per year.

Acidic soils in the limelight

Preliminary analysis led by the International Food Policy Research Institute (IFPRI) suggests that yields of major cereal crops, such as wheat and barley, could increase by 20 to 40% with the application of lime in acidic areas of the country.

While these preliminary results are significant, we need to know more about local farmers’ experience with acidic soil and their mitigation strategies. Such impact assessments are however typically determined at either the national or experimental plot level and do not map where mitigating against acid soils would be the most profitable.

To improve acid soils, farmers may apply lime on their fields to raise the pH, a practice known as liming. How much lime to apply will depend on the crop, soil type but also on the quality of lime available. Liming has multiple beneficial effects like improving nitrogen fixation of legume nodules, boosting yields of legume crops.

But liming has a cost. It can quickly become a very bulky affair as we need to apply 3 to 4 tons per hectare for sandy soils and up to 8 tons per hectare for clay and humifere soils.

Furthermore, existing lime markets are quite limited or even non-existent in many areas, even those where acidic soils are prevalent. Developing supply chains from scratch is difficult and costly. Understanding the costs and potential returns to such investments is important. There are many questions to ask at different levels, from the farm and farming system to the lime supply chain. What are the available lime sources — calcitic, dolomite or blend — and lime quality? Where are the lime processing units and how could you assess the transport cost to the farms? What could be the crop yield response depending on the lime application?

User-friendly and scalable dashboard

IFPRI, in collaboration with EIAR, the International Maize and Wheat Improvement Center (CIMMYT) and the German aid agency GIZ, developed a pilot in Ethiopia’s Amhara region to help better target lime interventions for a greater impact. Amhara region was chosen because of the importance of acid soils, and access to extensive soil data.

Combination of several spatial datasets on soil quality, agroecological, weather, long-term agronomic trials and crop modelling tools enabled to generate at scale, georeferenced estimates of crop yield responses for different lime applications. Calibration of this spatial model for wheat estimated a yield increase of approximately 30% increasing the pH from 5.5 to 6.5, which is relatively consistent with general research data and expert opinion.

Mapped estimates of the grain prices and the delivered costs of lime, based on the location of the lime crushers in the region and transport costs, enables then to map out the spatial profitability of lime operations.

Initial calculations revealed a great variability of lime costs at the farmgate, with transportation representing at least half of total lime costs. It showed also that farmers often do not use the most cost-effective combination of inputs to tackle soil acidity.

Another possible application is to determine maize growing areas where lime benefits outweigh the costs, which would be ideal sites for demonstrating to farmers the positive impact lime applications could have to their livelihoods.

This Amhara lime dashboard prototype demonstrated its scalability. A national dashboard is currently being developed, which includes lime sources GPS location, grain prices and district-level soil quality mapping. This approach is tested also in Tanzania.

CIMMYT and its partners plan to package such tool in a user-friendly open-access web version that can be rapidly updated and customized depending on the area of intervention, for instance integrating a new lime source, and applied for different crops, and across the Eastern African region. Such dashboards will help development organizations and government make better informed decisions regarding lime investments.