Skip to main content

Tag: agricultural research

Decades of on-station conservation agriculture trials reveal key farming insights for Zambia’s changing climate

Aerial view of one of the long-term, on-station trials on conservation agriculture, CIMMYT (Photo: CIMMYT).

Long-term research rarely offers quick fixes. More often, it is a patient pursuit, marked by seasons of uncertainty, occasional setbacks, and gradual, hard-won insights. Yet, when carefully managed, its outcomes can redefine farming systems and adaptation strategies to long-term climate trends.  

This is the story of CIMMYT‘s persistence, working alongside Zambia’s Ministry of Agriculture to maintain some of Southern Africa’s most critical long-term Conservation Agriculture (CA) experiments for over two decades. 

Scattered across Zambia’s contrasting agro-ecological zones, from the high rainfall Northern province to the drought-prone Southern Province, and the tropical savanna climate in the Eastern province, the Misamfu Research Station, Monze Farmer Training Centre, and Msekera Research Station have hosted these long-term trials, with Monze being established in 2005, Msekera in 2011, and Misamfu in 2016. Through searing droughts, erratic rainfall, floods, pest outbreaks and changing policy landscapes, these stations have systematically tested CA principles over multiple seasons, focusing on crop productivity, economic viability, and soil health, pest and disease dynamics, soil moisture and climate resilience among other aspects, to adapt CA to local farming conditions. More importantly, they have adapted these principles to Zambia’s diverse socio-economic realities and contexts. 

 

Testing CA under Zambia’s climate gradients

At the core of these trials is a simple, but essential question: “Can CA systems be adapted to Zambia’s smallholder farmer conditions to improve productivity, soil health, and resilience under climate variability?” 

Each research station offers a unique window into answering this question. For instance, Monze Farmer Training Centre located in Zambia’s Southern Province, hosts one of the oldest CA trials in the region. In addition, originally set up with eight main treatments and 32 trial plots, it has since expanded to 48 plots consisting of 12 treatments, testing CA under no-tillage against conventional plough-based systems with maize, cotton and sun hemp rotations of varying sequences. The plots have accumulated invaluable data, owing to the detailed and precise monitoring of yields, soil moisture, infiltration rates, pest and disease dynamics, soil quality indicators, and soil organic matter, year after year. 

Christian Thierfelder, CIMMYT’s Principal Cropping Systems Agronomist and founder of all long-term experiments reflects, “When we started, CA was a hot topic in Zambia. We wanted to know its benefits if you persist with these systems under Zambia’s conditions, not just for three or five years, but over decades”. 

Two decades later, key findings from these trials reveal that rotations that include cotton and/or sun hemp consistently outperform others in maize yields due to the nitrogen-fixing and soil-improving effects of the legume and deep-rooting cotton. CA plots, especially those combining minimum tillage, residue retention, and rotations, also demonstrate better soil moisture retention and infiltration, even in drought years. In fact, one striking observation has been that during intense rainfall events, water infiltration under CA plots is dramatically higher than under conventional systems, reducing flooding, erosion, and surface run-off. CA plots absorb and retain more moisture, a significant advantage as rainfall patterns become more erratic. 

However, the trials have also revealed complex trade-offs that researchers alike must accommodate. For example, while the maize-cotton-sun hemp rotation delivers exceptional yields, its economic viability hinges on market dynamics. When sun hemp seed and cotton commanded reasonable prices in the past, the system was highly profitable; in its absence, farmers risk sacrificing income for soil benefits alone. Another surprising insight comes from long-term soil organic carbon (SOC) trends. While CA systems reduce erosion and improve infiltration, the anticipated build-up of SOC has remained elusive, except at one long-term trial site outside Zambia at the Chitedze Research Station in Malawi. Thierfelder notes, “Declining rainfall, declining biomass, and declining soil carbon levels are interconnected. CA alone may not reverse these trends unless combined with complementary practices like manure application or agroforestry species.” 

A snapshot of different trials being implemented at Monze FTC and Misamfu Research station, CIMMYT (Photo: CIMMYT).

Adapting CA for high-rainfall areas

Misamfu Research Station, in Zambia’s wetter Northern Province, has wrestled with another challenge: CA’s performance under high-rainfall conditions. Since 2016, Misamfu has hosted the long-term CA systems trial. Originally designed to conserve moisture, CA systems, especially when planted on the flat, struggle with too much moisture, leading to waterlogging, and here, not drought, is the problem. CA plots without drainage interventions have underperformed in very wet years. Yet, new innovations are emerging. Permanent raised-beds and permanent ridges, two promising CA systems developed under irrigated systems, are showing promise by improving drainage while retaining CA’s soil health benefits. 

 “In relatively dry years, CA systems shine,” explains Thierfelder, “but under waterlogged conditions, we now know that permanent raised beds or ridges could be the missing link.” “Over the long-term, CA systems planted on the flat are capable of buffering high rainfall effects, probably due to improved infiltration”, remarked Blessing Mhlanga, CIMMYT’s Cropping Systems Agronomist.  

Capturing cumulative effects over time

Since 2011, the CA long-term experiment at Msekera Research Station in Eastern Zambia has revealed how CA performs beyond short-term seasonal gains. Unlike seasonal experiments, these trials capture the gradual, cumulative effects of CA on soil health, water use, weed and pest dynamics, and crop yields under real-world conditions. With ten treatments, including conventional tillage, ridge and furrow systems, and CA practices- such as direct seeding, residue retention, and crop rotations, the trials provide critical evidence. So far, results from Msekera show that no-tillage systems with crop residue retention, especially when combined with crop rotations, significantly improve soil moisture retention and structure, leading to more stable crop production over time. 

Why long-term matters

Long-term trials are essential to fully understand the benefits and limitations of CA across a full spectrum of climate conditions. Such trials require consistent donor support, strong partnerships with research station managers, and effective field management. Unlike short-term experiments, long-term trials capture the cumulative effects of CA practices across diverse seasons, including droughts and floods.  

These trials also show that CA is not a one-size-fits-all solution — its success hinges on continuous application over time. Since to date, rainfall patterns cannot be predicted precisely, deciding to adopt CA only in dry years is ineffective. Instead, long-term trials reveal how CA builds resilience and improves productivity year after year. 

This body of work is more than just a collection of experiments. It is a living archive, many years of climate, crop, and soil interactions, yielding insights impossible to capture through short-term trials. “We learned, for example, that infiltration rates under CA improved noticeably within just two years,” says Thierfelder. “But understanding yield trends, soil fertility dynamics or the role of rotations takes decades.” Moreover, these trials have shown that CA is not a one-size-fits-all solution. Its benefits are context-specific, often requiring adaptive management depending on rainfall, soil type, and market conditions. 

From plots to farmers’ fields

The value of this long-term work extends beyond research stations. Field days and exposure visits have allowed farmers and extension officers to engage directly with these trials, drawing lessons for their own fields. In some regions, farmers are already adapting lessons, adopting rotations, maintaining residues, experimenting with raised beds and permanent ridges, and tailoring CA to their realities. Importantly, the trials continue to evolve. While core treatments remain unchanged to preserve data integrity, small innovations, such as integrating manure or testing alternative rotations, are helping to sharpen recommendations for the next generation of CA practitioners. 

An aerial view of a mother trial implementer in Zambia, SIFAZ (Photo: CIMMYT).

The road ahead

As climate variability intensifies, the value of long-term research becomes even more critical. These trials offer answers to one of agriculture’s most urgent questions: How can CA be fine-tuned to deliver resilience and productivity? This is not just a scientific quest; it is about securing the future of Zambia’s smallholders, helping them navigate a more uncertain climate future, and ensuring their fields remain productive for the next generations. 

Sugar Signalling Breakthrough Could Increase Wheat Yields by Up to 12%

Extensive multi-year field trials conducted by CIMMYT in Mexico played a pivotal role in validating the efficacy of the Trehalose 6-phosphate (T6P) spray treatment, confirming its potential to boost wheat yields by up to 12%. Despite challenges posed by fluctuating rainfall—an increasingly common constraint under climate change—CIMMYT’s trial plots consistently outperformed untreated controls across four consecutive crop cycles. These results underscore CIMMYT’s leadership in translating laboratory innovations into resilient, field-ready solutions that enhance food security while advancing sustainable agrifood systems in diverse agroecological conditions.

Read the full story.

CIMMYT and IICA Partner to Strengthen Agricultural Innovation and Economic Growth in the Americas

Nairobi, 2025 – The Inter-American Institute for Cooperation on Agriculture (IICA) and CIMMYT have signed a Memorandum of Understanding (MoU) to enhance agricultural research, innovation, and trade across the Americas. 

This strategic partnership aims to advance productivity, resilience, and economic opportunities for farmers by leveraging science, technology, and strong international collaboration. The MoU focuses on key areas such as innovation and bioeconomy, trade and regional integration, climate-resilient agriculture, family farming, agrifood digitalization, and agricultural health and safety. 

Dr. Bram Govaerts, Director General of CIMMYT, highlighted the importance of innovation and market-driven solutions: “Partnerships like CIMMYT–IICA turn science into scale. Together, we’re accelerating innovation, supporting farmers, and strengthening food systems across the Americas—because global challenges demand connected solutions.” 

Dr. Manuel Otero, Director General of IICA, added: “This collaboration reflects our shared commitment to strengthening agricultural resilience, enhancing food security, and promoting economic growth in rural areas. With the increasing global demand for transforming food systems, IICA views this partnership as another testimony to its commitment to ensuring that farmers and agribusinesses across the Americas benefit from science, innovation and responsible resource management .” 

Through this agreement, CIMMYT and IICA will implement joint research initiatives, promote knowledge exchange, and support innovation-driven solutions that empower farmers, enhance supply chains, and expand market opportunities. 

For more information, visit iica.int and cimmyt.org 

CIMMYT donates agricultural implements to Gwebi

CIMMYT has strengthened agricultural research and breeding programs in Zimbabwe by donating machinery to Gwebi College of Agriculture to modernize breeding efforts and enhance genetic gains. This support equips breeding stations with advanced tools, reduces field labor, and expands research opportunities, including for women in technical roles. By fostering research partnerships and developing high-yield, climate-resilient maize varieties, CIMMYT is driving innovation to combat pests, diseases, and climate challenges, ultimately improving smallholder farmers’ productivity and supporting Zimbabwe’s goal of increasing maize yields.

Read the full story.

Time Running Out to Avert Food Catastrophe, but There Is Hope

Time is of the essence, but we are not making the most of it in the fight against hunger. In 2015, world leaders agreed to set ambitious targets for addressing humanity’s most pressing concerns, which shaped the 2030 Agenda and became widely known as the Sustainable Development Goals (SDGs). We are only five years from 2030, but SDG 2 Zero Hunger has completely slipped through our fingers. In 2023, there were between 713 million and 757 million undernourished people in the world. The latest estimates point to an uncomfortable truth: hunger is on the rise, and we will not meet SDG 2 by the end of this decade.

The outlook is so bleak that 153 Nobel and World Food Prize recipients signed an open letter published on Jan. 14 calling on political and business leaders worldwide to seriously fund “moonshot” efforts to change our current trajectory and meet the food requirements of a global population of 9.7 billion people by 2050. The renowned signatories are sounding the alarm at the dawn of 2025 because it takes decades to reap the rewards of agricultural research and development programs, but also because yields of staple crops are stagnating or even declining around the world at a time when food production should increase between 50% to 70% over the next two decades to meet expected demand.

Joint 2024 World Food Prize Laureate and former U.S. Envoy for Global Food Security Cary Fowler coordinated the global appeal, which was discussed during a hearing with the US Senate Committee on Agriculture in Washington, D.C. The open letter published afterward listed the most promising scientific breakthroughs that should be prioritized to sustainably increase food production, including “improving photosynthesis in staple crops such as wheat and rice to optimize growth; developing cereals that can source nitrogen biologically and grow without fertilizer; as well as boosting research into hardy, nutrition-rich indigenous crops that have been largely overlooked for improvements.”

The good news is that we already have the platform of cutting-edge science to develop and scale up these innovations where they are most needed in Mexico and in nearly 90 countries where CIMMYT works with the support of an unrivalled network of international donors and local partners.

Increasing Wheat’s Ability to Capture, Use Sunlight

Varieties of wheat plants differ in their capacity to use sunlight to produce grain. The main goal of breeders is to increase wheat’s yield potential to harvest more grain sustainably and from the same area of arable land. At present, current breeding can increase wheat’s average yield potential by 1% annually, but it would be necessary to achieve average yield increases of at least 1.7% year after year to meet the expected demand by 2050. Research is focusing on photosynthesis in wheat spikes to boost yield potential. Spike photosynthesis adds on average 30% to grain yield of elite wheat lines developed at CIMMYT, but these gains can go as high as 60% in wheat’s wild relatives and landraces. The strategy is to tap into this underutilized potential to boost yields of modern wheat varieties that are also better adapted to a warming and drier world, and resistant to known and new pests and diseases. We wish to accelerate this research and are seeking a US$100 million investment in the platform.

Boosting Nitrogen Use Efficiency in Wheat

Wheat is the world’s largest nitrogen fertilizer consumer, which contributes significantly to greenhouse gas emissions and soil degradation. Groundbreaking research led by CIMMYT is increasing wheat’s ability to use nitrogen more efficiently, thereby reducing its dependency on nitrogen fertilizer by between 15% to 20%, depending on regional farming systems. Increased nitrogen use efficiency has been achieved after successfully transferring a natural ability to inhibit biological nitrification from wheat’s wild relatives to modern wheat varieties. Biological nitrification inhibition (BNI) is a natural process that provides wheat plants with a more sustained source of nitrogen available in the soil, thereby increasing their nitrogen use efficiency. BNI wheat is a game-changing innovation that will contribute to significantly reducing agriculture’s nitrogen footprint sustainably without compromising yields or grain quality. While the BNI research platform has received its first investment for wheat, an additional investment of US$30 million per crop would expand the platform to maize, millet, and sorghum.

Improving and Scaling Up ‘Opportunity Crops’

CIMMYT recently partnered with the United Nations Food and Agriculture Organization (FAO) to advance the global Vision for Adapted Crops and Soils (VACS) endorsed by the G7, which aims to sustainably increase the production of diverse, nutritious, and climate-adapted indigenous and traditional food crops grown on healthy soils. We have identified seven “opportunity crops,” including pearl millet, finger millet, pigeon pea, cowpea, mung bean, and amaranth, that can be grown sustainably and significantly improve nutrition and food security in sub-Saharan Africa. At present, the VACS partner network is working hard to develop new varieties of these opportunity crops and to build pathways for African farmers to access improved seeds and markets for their produce. The soil component of the VACS movement is underfunded, so we are looking for a US$500 million investment to launch a strong VACS Soils initiative.

A Parting Shot

Improved photosynthesis and increased nitrogen use efficiency in wheat, and nutrient-dense indigenous crops are exciting “moonshot” efforts already building resilient food systems that may help humanity avert a global food catastrophe in two decades’ time. But political will and available funding for agricultural research and development will ultimately determine if these and many more urgently needed scientific breakthroughs will reach their full potential in the fight against hunger in a more food insecure and unstable world.

Bram Govaerts is CIMMYT’s director general. He is an international authority in maize, wheat and associated cropping systems who works for a successful transformation of small-scale farming in Africa, Asia and Latin America. Govaerts advises public, private and social organizations worldwide and is an active member of research groups and associations, including the American Society of Agronomy and Cornell University’s Andrew D. White Professors-at-Large Program.

Read the original article