Hambulo Ngoma is a Development Economist with research interests spanning the development-environment nexus. He leads or co-leads socio-economic components of several projects in Southern Africa, mainly in Malawi, Tanzania, Zambia, and Zimbabwe. His current research is focused on adoption, scaling, and impact assessment, with special interest in nudging agricultural technology adoption.
He is formerly a Postdoctoral Associate of the Department of Agricultural, Food and Resources Economics of Michigan State University and a Research Fellow and Lead of the Climate Change and Natural Resource Management thematic area at the Indaba Agricultural Policy Research Institute (IAPRI) in Lusaka, Zambia.
He holds a PhD in Applied Economics from the School of Economics and Business, Norwegian University of Life Sciences, an MSc in Applied and Agricultural Economics from the University of Malawi and a BSc in Agricultural Economics from the University of Zambia.
Md. Zakaria Hasan is a field office coordinator with CIMMYTâs Sustainable Agrifood Systems (SAS) program in Bangladesh. He coordinates all the CIMMYT activities in the Faridpur region.
Hasan completed his undergraduate and masters degrees in Agricultural Science from Bangladesh Agricultural University. He started his career as a research associate in soil science at the Bangladesh Institute of Nuclear Agriculture (BINA), then joined the International Rice Research Institute (IRRI) as a researcher in agronomy.
Joining CIMMYT in 2012, Hasan’s main expertise is in agronomy, mechanized crop production, adaptive research, public and private sector engagement, and management of field activities.
Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)
With almost all CGIAR centers represented in Addis Ababa, Ethiopia is considered to be a hub for CGIAR research, and the organization has been a long-term partner to the Ethiopian government when it comes to agriculture. The partnership between CGIAR and the national partners is said to be an exemplary one, with CGIAR serving as the source of new technologies and innovations and national partners contextualizing these products within their own country context. This is believed to have brought impacts that serve the people on the ground.
A new report by CGIARâs Standing Panel on Impact Assessment (SPIA) indicates that CGIAR innovations have reached between 4.1 and 11 million Ethiopian households. The report â which assesses 52 agricultural innovations and 26 claims of policy influence â documents the reach of CGIAR-related agricultural innovations across the core domains of CGIAR research activity: animal agriculture; crop germplasm improvement; natural resource management; and policy research.
The study compiles comprehensive information on the past two decades of CGIAR research activities in Ethiopia. Using information from interviews with CGIAR research leaders, scientists, government officials, published studies and project documents, this âstocktakingâ exercise was used to identify the innovations which are potentially disseminated at scale. The study also employs novel data collection protocols and methods like visual aid protocols for identification of natural resource management innovations or DNA fingerprinting for crop variety identification for barley, maize and sorghum.
The study results show that although many innovations are being adopted by some farmers, only a few are reaching large numbers of households. The three innovations with the largest reach are soil and water conservation practices, improved maize varieties and crossbred poultry. The study also found out that there are synergies between innovations where households adopt two or more. For instance, a household which adopts CGIAR maize varieties is likely to also adopt recommended natural resource management practices.
This, according to the study, is the result of different categories of CGIAR research efforts â natural resource management and policy, crop breeding and livestock research, respectively. The scaling of these innovations can also be linked to supportive government policies, which in turn have been influenced by policy research, as indicated in the report.
A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)
CIMMYTâs footprint
The International Maize and Wheat Improvement Center (CIMMYT) has maintained a presence in Ethiopia for over 30 years and is committed to supporting long-term agricultural development in the country. As part of this effort, CIMMYT has contributed to an increase in maize and wheat production in Ethiopia, working with national partners to test and release improved varieties.
The maize breeding program started in 1988 through CIMMYT and EIAR collaboration and in 1993 BH-660 was released â the first hybrid maize variety derived from CIMMYT germplasm. According to the report, specific maize traits were researched through the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects, and since 2012 the Nutritious Maize for Ethiopia (NuME) project has aimed to develop varieties with higher protein content. Overall, 54 maize varieties have been released in Ethiopia since 1990, and 34 of these are thought to contain CIMMYT-related germplasm. It is also noted that, in the past 20 years ten drought-tolerant varieties and eight quality protein maize (QPM) varieties have been released.
In terms of geographical spread, the study highlights that improved maize varieties derived from CGIAR germplasm were highly adopted in the regions of Harar and Dire Dawa, which account for 81% of adopters overall. Adoption rates were also high in Tigray (79.3% of households), Amhara and the Southern Nations, Nationalities, and Peoples’ Region (63% of households), and Oromia (58.4% of households).
The other important crop in Ethiopia is wheat, which is grown by up to 4.8 million farmers in the country, according to the 2019 Central Statistics Authority (CSA) report. The SPIA document indicates that CGIAR innovations have played great role in the release and uptake of improved wheat varieties. The work of the CGIAR Research Program on Wheat (WHEAT), for instance, has resulted in the release of eight rust-resistant varieties derived from CIMMYT germplasm that are still under production. Of the 133 varieties released since 1974, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) played a role in developing at least 80.
The report concludes that agricultural research carried out by CGIAR scientists and their national partners generates many new ideas for innovations that might help address pressing policy concerns. CGIARâs contribution to Ethiopiaâs agricultural development is complex and wide-ranging, and while some aspects cannot be accurately captured by survey data, this new source of adoption and diffusion data helps identify the scale and scope of CGIARâs reach in Ethiopia.
The Standing Panel on Impact Assessment (SPIA) is an external, impartial panel of experts in impact assessment appointed by the System Council and accountable to it. SPIA is responsible for providing rigorous, evidence-based, and independent strategic advice to the broader CGIAR System on efficient and effective impact assessment methods and practices, including those measuring impacts beyond contributions to science and economic performance, and on innovative ways to improve knowledge and capacity on how research contributes to development outcomes
Maize post-harvest losses in smallholder farming systems in sub-Saharan Africa have been shown to result in significant costs at household and national level, making it difficult to move towards achievement of SDG2 â Zero Hunger.
Within smallholder farming systems, new grain storage technologies such as metal silos can help reduce these losses during storage. However, technologies are often introduced into systems with complex sets of relationships, which may differentially affect the ability of women and men to secure the expected benefits. This, in turn, can have a knock-on effect on adoption rates and expected outcomes.
A recent study by an international team of researchers investigated whether modern storage structures such as metal silos provide equal benefits to women and men farmers in sub-Saharan Africa, using a mixed methods approach to explore the relationships governing maize production and storage in Kenya, Malawi, Zambia and Zimbabwe, where 1717 metal silos have been introduced through the Effective Grain Storage Project (EGSP).
The authors used random sampling to carry out quantitative surveys on metal silo owners in Kenya (124 respondents) and Malawi (100 respondents). Qualitative surveys using purposive sampling were also conducted in all four countries covering 14 ethnic groups using focus group discussions (360 respondents), key informant interviews (62 respondents), and household case studies (62 respondents). âOur aim was to understand gendered post-harvest management and storage strategies in traditional systems and to map changes when metal silos were introduced,â explain the authors.
âWe hypothesized that existing gender norms might differentially influence womenâs ability to benefit from the introduction of metal silos and our findings seem to indicate that this is correct. In most instances when metal silos are introduced, ownership of the grain storage facility and any benefits attached to that ownership typically switch from women to men, or menâs existing control over stored maize is deepened.â
A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)
Their findings highlight that roles and responsibilities regarding the ownership and management of storage structures are strongly gendered. Though there are differences between ethnic groups and countries, overall men benefit more than women from the introduction of metal silos. Ownership of a grain storage facility and the benefits attached to this ownership can switch from women to men, with women having less scope for bargaining over their rights to use the stores for their own needs and the benefit of all household members.
Many of the women interviewed suggested that this compromised their ability to access sufficient maize because men might insist on taking any grain set aside to meet their personal needs. âWe did not measure how much grain is taken and whether food security is indeed negatively affected, but our research registers that women are concerned about this issue.â
The qualitative research explored whether ownership over the granary â and control over the maize stored within â changed when metal silos were purchased. In all four countries, cultural norms tend to result in men typically owning all large household assets such as land, water pumps, ox-ploughs and carts, etc. They generally make key decisions about how these assets are to be used as well. Furthermore, the income differential between women and men in male-headed households means that it is considerably more difficult for women than men to make a large purchase like a metal silo. âAs a consequence of these factors, we found men were more likely to own metal silos in each country.â
There is some differentiation between ethnic groups. In Zimbabwe, for example, Zezuru women who had previously owned and managed a dura â a traditional granary â lost control over maize grain reserves when metal silos were introduced. But for Korekore women nothing changed: men had always controlled traditional storage technologies and the maize within, and they continued to do so when metal silos were introduced. These examples highlight the fact that despite the cultural differences between ethnic groups, Zimbabwean women lost out across the board when metal silos were introduced, either through losing control over storage structures, or because male ownership was not challenged.
In light of these findings, the authors argue that understanding social context is key to designing and disseminating post-harvest technologies that meet the needs and preferences of both men and women farmers in various cultural contexts.
Their results make a strong case for ensuring that agricultural policy-makers prioritize the provision of equal access to improved technologies, as this is crucial not only for supporting women to meet their individual production goals, but also for ensuring that household-level food security needs are met.
Where agriculture relies heavily on manual labor, small-scale mechanization can reduce labor constraints and contribute to higher yields and food security. However, demand for and adoption of labor-saving machinery remains weak in many areas. Paradoxically, this includes areas where women face a particularly high labor burden.
âHow do we make sense of this?â asks Lone Badstue, a rural development sociologist at the International Maize and Wheat Improvement Center (CIMMYT). âWhat factors influence womenâs articulation of demand for and use of farm power mechanization?â
To answer this question, an international team of researchers analyzed data from four analytical dimensions â gender division of labor; gender norms; gendered access to and control over resources like land and income; and intra-household decision-making â to show how interactions between these influence womenâs demand for and use of mechanization.
âOverall, a combination of forces seems to work against womenâs demand articulation and adoption of labor-saving technologies,â says Badstue. Firstly, womenâs labor often goes unrecognized, and they are typically expected to work hard and not voice their concerns. Additionally, women generally lack access to and control over a range of resources, including land, income, and extension services.
This is exacerbated by the gendered division of labor, as womenâs time poverty negatively affects their access to resources and information. Furthermore, decision-making is primarily seen as menâs domain, and women are often excluded from discussions on the allocation of labor and other aspects of farm management. Crucially, many of these factors interlink across all four dimensions of the authorsâ analytical framework to shape womenâs demand for and adoption of labor-saving technologies.
A diagram outlines the links between different factors influencing gender dynamics in demand articulation and adoption of laborsaving technologies. (Graphic: Nancy Valtierra/CIMMYT)
Demand articulation and adoption of labor-saving technologies in the study sites are shown to be stimulated when women have control over resources, and where more permissive or inclusive norms influence gender relations. âWomenâs independent control over resources is a game changer,â explains Badstue. âAdoption of mechanized farm power is practically only observed when women have direct and sole control over land and on- or off-farm income. They rarely articulate demand or adopt mechanization through joint decision-making with male relatives.â
The study shows that independent decision-making by women on labor reduction or adoption of mechanization is often confronted with social disapproval and can come at the cost of losing social capital, both within the household and in the community. As such, the authors stress the importance of interventions which engage with these issues and call for the recognition of technological change as shaped by the complex interplay of gender norms, gendered access to and control over resources, and decision-making.
Wheat fields in the Arsi highlands, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)
A state-of-the-art study of plant DNA provides strong evidence that farmers in Ethiopia have widely adopted new, improved rust-resistant bread wheat varieties since 2014.
The results â published in Nature Scientific Reports â show that nearly half (47%) of the 4,000 plots sampled were growing varieties 10 years old or younger, and the majority (61%) of these were released after 2005.
Four of the top varieties sown were recently-released rust-resistant varieties developed through the breeding programs of the Ethiopian Institute for Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT).
Adoption studies provide a fundamental measure of the success and effectiveness of agricultural research and investment. However, obtaining accurate information on the diffusion of crop varieties remains a challenging endeavor.
DNA fingerprinting enables researchers to identify the variety present in samples or plots, based on a comprehensive reference library of the genotypes of known varieties. In Ethiopia, over 94% of plots could be matched with known varieties. This provides data that is vastly more accurate than traditional farmer-recall surveys.
This is the first nationally representative, large-scale wheat DNA fingerprinting study undertaken in Ethiopia. CIMMYT scientists led the study in partnership with EIAR, the Ethiopian Central Statistical Agency (CSA) and Diversity Array Technologies (DArT).
âWhen we compared DNA fingerprinting results with the results from a survey of farmersâ memory of the same plots, we saw that only 28% of farmers correctly named wheat varieties grown,â explained Dave Hodson, a principal scientist at CIMMYT and lead author of the study.
The resulting data helps national breeding programs adjust their seed production to meet demand, and national extension agents focus on areas that need better access to seed. It also helps scientists, policymakers, donors and organizations such as CIMMYT track their impact and prioritize funding, support, and the direction of future research.
âThese results validate years of international investment and national policies that have worked to promote, distribute and fast-track the release of wheat varieties with the traits that farmers have asked for â particularly resistance to crop-destroying wheat rust disease,â said Hodson.
Ethiopia is the largest wheat producer in sub-Saharan Africa. The Ethiopian government recently announced its goal to become self-sufficient in wheat, and increasing domestic wheat production is a national priority.
Widespread adoption of these improved varieties, demonstrated by DNA fingerprinting, has clearly had a positive impact on both economic returns and national wheat production gains. Initial estimates show that farmers gained an additional 225,500 tons of production â valued at $50 million â by using varieties released after 2005.
The study results validate investments in wheat improvement made by international donor agencies, notably the Bill & Melinda Gates Foundation, the Ethiopian government, the UK Foreign, Commonwealth and Development Office (FCDO, formerly DFID), the US Agency for International Development (USAID) and the World Bank. Their success in speeding up variety release and seed multiplication in Ethiopia is considered a model for other countries.
âThis is good news for Ethiopian farmers, who are seeing better incomes from higher yielding, disease-resistant wheat, and for the Ethiopian government, which has put a high national priority on increasing domestic wheat production and reducing dependence on imports,â said EIAR Deputy Director General Chilot Yirga.
The study also confirmed CGIARâs substantial contribution to national breeding efforts, with 90% of the area sampled containing varieties released by Ethiopian wheat breeding programs and derived from CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm. Varieties developed using germplasm received from CIMMYT covered 87% of the wheat area surveyed.
âThis research demonstrates that DNA fingerprinting can be applied at scale and is likely to transform future crop varietal adoption studies,â said Kindie Tesfaye, a senior scientist at CIMMYT and co-author of the study. âAdditional DNA fingerprinting studies are now also well advanced for maize in Ethiopia.â
This research is supported by the Bill and Melinda Gates Foundation and CGIAR Fund Donors. Financial support was provided through the âMainstreaming the use and application of DNA Fingerprinting in Ethiopia for tracking crop varietiesâ project funded by the Bill & Melinda Gates Foundation (Grant number OPP1118996).
Dave Hodson, International Maize and Wheat Improvement Center (CIMMYT), d.hodson@cgiar.org
ABOUT CIMMYT:
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org
Gokul P. Paudel is an agricultural economist working with CIMMYT’s Socioeconomics Program, based in Nepal. His research mostly focuses on technology adoption and impact assessment, scale-appropriate mechanization, climate change impacts and adaptations, conservation agriculture, technical efficiency analysis, trade-off analysis, non-market valuation and big data, data mining and advanced machine learning.
There are decades when nothing happens and weeks when decades happen. So goes the old saw. In the social sciences, these âweeksâ are often referred to as critical junctures. They are moments when the old rules of the game â the long-established ways of doings things â go out the window and new patterns begin to emerge. The breadbasket states of northwestern India seem to be having one of those weeks.
After years of research and advocacy that appeared to be making little headway, researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) are seeing a sudden and dramatic increase in the adoption of some of the technologies and techniques they have long argued are necessary in this region, including direct-seeding of rice, crop diversification and the adoption of Happy Seeder technology.
A case of unintended consequences
In March 2020 the Indian government decreed a national lockdown in response to the COVID-19 crisis. This triggered the largest internal migration since partition, as millions of migrant workers and day laborers scrambled to return to their home villages. Estimates suggest that up to 1 million workers left the northwestern states of Haryana and Punjab alone.
Agriculture in the region is dominated by the labor- and input-intensive production of rice and wheat in rotation. This system is the most productive per hectare in India, but it is also extremely sensitive to external shocks. The success of both the rice and wheat crop depend on the timely transplantation of rice in mid-June.
As the results of a recently published study demonstrate, delays in this schedule can have devastating downstream effects not only on rice and wheat yields, but on regional air quality too. Models of the worst-case delay scenario predicted a total economic loss of nearly $1.5 billion. Moreover, they predicted that, if no action were taken, up to 80% of rice residue would be burned later in the autumn, when cooler conditions contribute to seasonally poor air quality.
Such an exacerbation of the regionâs air pollution would be dire under normal conditions. During a global pandemic of a primarily respiratory illness, it could be devastating.
Fortunately, solutions and technologies that CIMMYT researchers had been studying for decades, along with ICAR, Punjab Agricultural University (PAU) and other national partners, promised to help ward off the worst effects of the crisis. The adoption of direct-seeding technology could help reduce the labor-intensiveness of rice production, crop diversification could minimize the economic impacts of the crisis, and the use of Happy Seeder technology could alleviate the practice of residue burning.
A farmer burns rice residues after harvest to prepare the land for wheat planting around Sangrur, Punjab, India. (Photo: Neil Palmer/CIAT)
Decades of work pay off
The study, co-authored by researchers at CIMMYT, ICAR and the International Rice Research Institute (IRRI), relied on a sophisticated ex ante model of four different rice-transplanting delay scenarios. It is published in the November 2020 issue of Agricultural Systems.
However, given the time-sensitivity and high-stakes of the issue, the lead researchers did not wait for the articles publication to press their case. Earlier this year they circulated their initial findings and recommendations to policymakers via their national partners. Notably, after receiving a one-pager summarizing these, the Chief Minister of Punjab released a video address echoing their points.
âPolicymakers realized the need for these kinds of solutions,â says Balwinder Singh, a CIMMYT scientist and lead author of the paper. They then moved quickly to incentivize their adoption through various mechanisms, such as subsidizing direct-seeding drills and ensuring the timely availability of machines and other inputs.
Singh and Jat have been carrying out a multi-year survey to assess farmer willingness to adopt Happy Seeder technology and have documented a drastic increase in farmer interest in the technology during 2020. For Jat, this highlights the power of partnerships. âIf you donât include your partners from the beginning, they will not own what you say,â he argues.
Such changes are to be celebrated not only as an important response to the current labor shortage, but also as key to ensuring the long-term sustainability of agricultural production in the region, having important implications for the stewardship of water resources, air pollution and soil health.
âPolicies encouraging farming practices that save resources and protect the environment will improve long-term productivity and sustainability of the nation,â says S. K. Chaudhari, deputy director general for Natural Resource Management at ICAR.
A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
Warding off catastrophe
Although the agricultural cycle is not yet over, and early data are still partial, Singh and Jat estimate that thanks to the dramatic adoption of alternative agricultural practices this year, their worst-case estimates have been avoided. Given the rapid response from both policymakers and farmers, the real-world effects of the COVID-19 labor crisis are likely closer to the mid-range severity scenarios of their analysis. Indeed, early estimates predict no rice yield losses and minor-to-no wheat yield losses over baseline. For the researchers, the relief is palpable and the lessons couldnât be clearer.
âThese technologies were there for decades, but they were never appreciated because everything was normal,â says Jat. âThis clearly indicates a need for investment in the technology and the research. You may encounter a problem at any time, but you cannot generate the technology overnight.â
A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)
Global climate change represents an existential threat to many of the worldâs most vulnerable farmers, introducing new stresses and amplifying the unpredictability and risk inherent in farming. In low- and middle-income countries that are heavily reliant on domestic production, this increased risk and unpredictability threatens disastrous consequences for the food security and wellbeing of rural and urban populations alike.
Given the stakes, substantial investments have been made towards developing climate-resilient crops. But what happens when the innovations widely considered to be beneficial donât gain traction on the ground, among those who stand to lose the most from inaction? What can researchers, policymakers and funders do to ensure that the most vulnerable rural populations donât lose out on the benefits?
These are the questions posed by a new scoping review co-authored by Kevin Pixley, interim deputy director general for research and partnerships and director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).
The paper relies on a descriptive analysis of 202 studies from the past 30 years which assess the determinants of climate-resilient crop adoption by small-scale producers in low- and middle-income countries. These were identified through an extensive search and screening process of multiple academic databases and grey literature sources, and selected from an initial pool of over 6,000 articles.
Taking stock
The authors identified interventions determining adoption across the literature surveyed. A key theme which emerged was the need for context-sensitive technical and financial support for climate-resilient crop adoption. Nearly 16% of the studies found that adoption depended on access to relevant extension programs. Around 12% identified access to credit and other financial instruments as key, while a further 12% identified the implementation of community programs supporting climate-resilient crops as a determining factor.
However, the study stresses that there are no one-size-fits-all solutions. Increased adoption of climate-resilient agricultural innovations will depend on interventions being highly context informed. For example, the review shows that while some studies identified older farmers as more reluctant to adopt new technologies, an equal number of studies found the opposite.
Moreover, the review identified important opportunities for further research. Gender-based approaches, for example, remain a blind spot in the literature. The majority of studies reviewed only included women if they were household heads, thus overlooking the role they may play in influencing the adoption of new agricultural technologies in male-headed households.
A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)
Driving evidence-based policymaking
The review was published as part of a collection of 10 research papers produced as part of Ceres2030: Sustainable Solutions to End Hunger. The project, a partnership between Cornell University, the International Food Policy Research Institute (IFPRI) and the International Institute for Sustainable Development (IISD), distills decades of scientific and development research into a clear menu of policy options for funders committed to achieving the UNâs Sustainable Development Goal 2: Ending world hunger by 2030.
Speaking at a German government event on achieving Sustainable Development Goal 2, Bill Gates praised the Ceres2030 initiative, noting that ânothing on this scale has ever been done because we lacked the tools to analyze this complex information. But with the new research, solid evidence will drive better policymaking.â
He went on to highlight the CGIARâs leadership role in these efforts, saying: âThe CGIAR system is a key global institution that is investing in these approaches. Itâs a critical example of how innovation can lead the way.â
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.
The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.
The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.
The project was officially launched online on September 16, 2020. Zambiaâs Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.
âIt is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,â Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. âConservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.â
Proven benefits
Conservation agriculture â a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species â can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.
Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.
“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.
âAlthough adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,â said  Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.
Christian Thierfelder, Principal  Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.
Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).
The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.
Interview opportunities:
Arega Alene, Agricultural Economist, IITA.
Christian Thierfelder, Principal  Cropping Systems Agronomist, CIMMYT
For more information, or to arrange interviews, contact the media team:
Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org
The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.
About IITA:
The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africaâs most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.
A study on the impact of providing site-specific fertilizer recommendations on fertilizer usage, productivity and welfare outcomes in Ethiopia shows that targeted fertilizer recommendations encourage fertilizer investments and lead to improved maize productivity outcomes.
Enumerators manually shelling maize cobs to test grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)
Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Department of Economics and Trinity Impact Evaluation unit (TIME), Trinity College Dublin, anticipate that the findings will provide valuable guidance to the design and delivery of improved extension services in developing countries.
Soil degradation and nutrient depletion have been serious threats to agricultural productivity and food security in Ethiopia. Over the years, soil fertility has also declined due to the increase in population size and decline in plot size. Studies have identified nitrogen (N) and phosphorus (P) as being the nutrients most lacking and have called for action to improve the nutrient status of soils.
In response to this, in 2007, the Ministry of Agriculture and Natural Resources and agricultural research centers together developed regional fertilizer recommendations. These recommendations, about fertilizer types and application rates for different crops, were disseminated to farmers through agricultural extension workers and development agents.
However, adoption of fertilizer remains low â and average application rates are generally lower than recommended. One reason for these low adoption rates is that the information provided is too broad and not tailored to the specific requirements of smallholder farmers.
A study conducted on 738 farm households randomly selected from the main maize growing areas of Ethiopia â Bako, Jimma and the East Shewa and West Gojjam zones â shows that well-targeted fertilizer recommendations can increase fertilizer usage in smallholder maize production.
Maize is one of Ethiopiaâs most important crops in terms of production, productivity, and area coverage. It is a primary staple food in the major maize growing areas as well as a source of feed for animals and a raw material for industries.
The study examined the impact of providing site-specific fertilizer recommendations to farmers on fertilizer usage/adoption, farm productivity/production per hectare and consumer expenditure/welfare outcomes using a two-level cluster randomized control trial.
Tailored recommendations
CIMMYT researcher Hailemariam Ayalew examines maize crops during the study. (Photo: Hailemariam Ayalew/CIMMYT)
The Nutrient Expert decision-support tool, developed by the International Plant Nutrition Institute (IPNI) in partnership with the CGIAR Research Center on Maize (MAIZE), was used to give site-specific recommendations to each farmer. With this tool, researchers offered tailored recommendations, using information on fertilizer blends available in Ethiopia, current farmersâ practices, relevant inputs and field history, and local conditions. The experiment also considered whether coupling the site-specific recommendation with crop insurance â to protect farmersâ fertilizer investment in the event of crop failure â enhanced adoption rates.
Results show that well-targeted fertilizer recommendations improve fertilizer usage and productivity of maize production. The intervention led to an increase of 5 quintals, or 0.5 tons, in average maize yields for plots in the treatment group. While the study did not find any evidence that these productivity gains led to household welfare improvements, it is likely that such improvements may take longer to realize.
The study found no differential effect of the site-specific recommendation when coupled with agricultural insurance, suggesting that the risk of crop failure is not a binding constraint to fertilizer adoption in the study setting. The findings of this research should help guide the design and delivery of improved extension services in relation to fertilizer usage and adoption in developing countries.
Cover photo:Â Workers harvesting green maize at Ambo Research Center, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)
Abdu Mohammed is a research officer who has been working at CIMMYT’s Ethiopia office since 2018. Currently, he works on the socioeconomics components of the DNA Fingerprinting and Enhancing Climate Change Adaptive Capacity and Food Security (ECCAFS) projects.
Hailemariam Ayalew is a currently working as an Irish Council Post-Doctoral Fellow at Trinity College Dublin, based at CIMMYT, Ethiopia. He obtained his Ph.D and MSc degrees in Economics from the University of Copenhagen, Denmark.
Ayalewâs research examines the impacts of different random, quasi and natural experiments in developing countries. He is currently examining the impact of providing site-specific fertilizer recommendations on fertilizer usage, productivity and welfare outcomes in Ethiopia using a randomized control trial. He is also working on a number of field experiment projects in the country, including non-random errors in plot area estimation methods and intra-plot yield variation in maize farms.
Moti Jaleta is a senior agricultural economist. He has been working at the International Maize and Wheat Improvement Center (CIMMYT) since 2011 and currently coordinates an IFAD-funded project on enhancing smallholder wheat productivity through sustainable intensification in Rwanda and Zambia.
Jaleta’s research areas of interest include adoption and impact assessments of improved agricultural technologies, with special focus on maize and wheat; crop-livestock interactions and their implications on the sustainability of cereal-based mixed farming systems; analysis of the roles of agricultural markets and value chain development in smallholder commercialization; and impact assessments of conservation agriculture-based practices as a means of sustainable intensification of smallholder farming in maize and wheat based systems of Eastern and Southern Africa.
How to track adoption and assess the impact of maize and wheat varieties? Some of the methods used until now, like farmersâ recall surveys, have various limitations. In addition to relying exclusively on peopleâs memory and subjectivity, they are difficult to replicate and prone to errors.
DNA fingerprinting, on the other hand, allows objective evaluation and is considered the âgold standardâ method for adoption and impact assessments.
It consists of a chemical test that shows the genetic makeup of living things, by separating strands of DNA and revealing the unique parts of their genome. The results show up as a pattern of stripes that can be matched against other samples.
This technique is extremely helpful in tracking crop varieties and monitoring their adoption. It can be used to assess the impact of research-for-development investments, guide breeding and seed system strategies, implement the intellectual property rights of breeders, assess the use of crop genetic resources, and informing policy.
On June 25, 2019, the International Maize and Wheat Improvement Center (CIMMYT) held a half-day workshop in Addis Ababa to discuss the use and application of DNA fingerprinting in Ethiopia for the tracking of crop varieties.
High-level government officials and major players in the agricultural sector were interested in learning more about the policy implications of this tool and how to mainstream its use.
CIMMYTâs Socioeconomics Program Director, Olaf Erenstein (left), talks to Eyasu Abraha, Minister of Agriculture and Natural Resources (center), and Mandefro Nigussie, Director General of the Ethiopian Institute of Agricultural Research.
Introducing DNA fingerprinting in Ethiopia
The main DNA fingerprinting project in Ethiopia has been in operation since January 2016, focusing on the countryâs two major staple crops: wheat and maize. The project covers the Amhara, Oromia, SNNPR, and Tigray regions, which together account for 92% and 79% of the national wheat and maize production.
The Bill & Melinda Gates Foundation has funded the project, which was jointly implemented by CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR), Ethiopiaâs Central Statistical Agency (CSA) and Diversity Arrays Technology (DArT).
The main objective of the project was to generate a knowledge base for the practical use of DNA fingerprinting, to mainstream the use of this technology, and to offer policy options and recommendations.
CIMMYT scientists Dave Hodson (left), Bekele Abeyo (center) and Sarah Hearne participated in the workshop.
Better monitoring for wheat self-sufficiency
At the workshop, researchers presented two policy briefs specific to Ethiopia: one focusing on policy implications of DNA fingerprinting for tracking bread wheat varieties and another one on how to revitalize the durum wheat sub-sector.
Speaking at the workshop, Eyasu Abraha, Minister of Agriculture and Natural Resources, noted that the government planned to achieve wheat grain self-sufficiency in the next few years by increasing wheat productivity in the highlands and expanding wheat production to the lowlands through irrigation. In this regard, improved crop variety development and dissemination is one of the key elements to increase agricultural productivity and improve the livelihood of millions of smallholder farmers.
According to Abraha, more than 130 wheat varieties have been released or registered in Ethiopia since the late 1960s, in collaboration with international research organizations. Public and private seed enterprises have multiplied and distributed these varieties to reach smallholder farmers.
Even though adoption studies have been conducted, there is still a strong need for more accurate and wider studies. In addition to tracking adoption and demand, using DNA fingerprinting could help understand the distribution of varieties across space and time.