Skip to main content

Tag: adoption

Partnership approach to maize development praised in new study

Using data from 1995-2015, an empirical study from the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA), led by Vijesh Krishna, CIMMYT Lead Adoption – Impact Economist, has estimated the economic benefits of new varieties in 18 major maize-producing countries in sub-Saharan Africa.

Kevin Pixley, Deputy Director General for Research (Breeding and Genetics), a.i., and Director of the Genetic Resources Program, said, “This was not easy due to the challenges of gathering and analyzing complex data, but it’s a very important milestone for CIMMYT. Peer review in a highly respected journal is a gold standard that gives external critique and endorsement to the impact assessment methods used and estimates reported for CIMMYT and IITA’s work with partners in Africa.”

Around 60 percent of the 1,345 maize varieties released in this twenty-year period had a known CGIAR parentage.

Approximately 34 percent of the total maize area in 2015 was cultivated with CGIAR-related maize varieties from 1995 onwards, equivalent to 9.5 million hectares (ha); 13 percent of the maize area was under CGIAR-related varieties released before 1995.

The new maize varieties hold an economic benefit for the region, with an estimated value of US $1.1-1.6 billion in 2015 equally attributed to CGIAR, public-sector national research and extension programs, and private sector partners. With maximum annual investment in CGIAR maize breeding sitting at US $30 million, the estimated benefit-cost ratio for investment was between 12:1-17:1, depending on the underlying assumptions.

“This paper is a valuable contribution to literature on impact assessment, highlighting the real challenges and approaches to quantify impact of work that is a collaboration among many,” continued Pixley. “Both the methodologies and impact estimates will be valuable to researchers and funders of plant breeding programs.”

Read the study: Impact of CGIAR maize germplasm in Sub-Saharan Africa

Cover photo: Farmer Chana Filimoni harvesting maize in his field in Chakwawa village, Salima District, Malawi. (Photo: Peter Lowe/CIMMYT)

Shining a brighter light on adoption and diffusion

Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Roba Shubisha harvests an improved maize variety in Yubo village, Wondo Genet, Ethiopia. (Photo: Peter Lowe/CIMMYT)

With almost all CGIAR centers represented in Addis Ababa, Ethiopia is considered to be a hub for CGIAR research, and the organization has been a long-term partner to the Ethiopian government when it comes to agriculture. The partnership between CGIAR and the national partners is said to be an exemplary one, with CGIAR serving as the source of new technologies and innovations and national partners contextualizing these products within their own country context. This is believed to have brought impacts that serve the people on the ground.

A new report by CGIAR’s Standing Panel on Impact Assessment (SPIA) indicates that CGIAR innovations have reached between 4.1 and 11 million Ethiopian households. The report — which assesses 52 agricultural innovations and 26 claims of policy influence — documents the reach of CGIAR-related agricultural innovations across the core domains of CGIAR research activity: animal agriculture; crop germplasm improvement; natural resource management; and policy research.

The study compiles comprehensive information on the past two decades of CGIAR research activities in Ethiopia. Using information from interviews with CGIAR research leaders, scientists, government officials, published studies and project documents, this ‘stocktaking’ exercise was used to identify the innovations which are potentially disseminated at scale. The study also employs novel data collection protocols and methods like visual aid protocols for identification of natural resource management innovations or DNA fingerprinting for crop variety identification for barley, maize and sorghum.

The study results show that although many innovations are being adopted by some farmers, only a few are reaching large numbers of households. The three innovations with the largest reach are soil and water conservation practices, improved maize varieties and crossbred poultry. The study also found out that there are synergies between innovations where households adopt two or more. For instance, a household which adopts CGIAR maize varieties is likely to also adopt recommended natural resource management practices.

This, according to the study, is the result of different categories of CGIAR research efforts — natural resource management and policy, crop breeding and livestock research, respectively. The scaling of these innovations can also be linked to supportive government policies, which in turn have been influenced by policy research, as indicated in the report.

A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)
A farmer walks through a maize field in Toga village, Hawassa, Ethiopia. (Photo: Peter Lowe/CIMMYT)

CIMMYT’s footprint

The International Maize and Wheat Improvement Center (CIMMYT) has maintained a presence in Ethiopia for over 30 years and is committed to supporting long-term agricultural development in the country. As part of this effort, CIMMYT has contributed to an increase in maize and wheat production in Ethiopia, working with national partners to test and release improved varieties.

The maize breeding program started in 1988 through CIMMYT and EIAR collaboration and in 1993 BH-660 was released — the first hybrid maize variety derived from CIMMYT germplasm. According to the report, specific maize traits were researched through the Drought Tolerant Maize for Africa (DTMA) and Drought Tolerant Maize for Africa Seed Scaling (DTMASS) projects, and since 2012 the Nutritious Maize for Ethiopia (NuME) project has aimed to develop varieties with higher protein content. Overall, 54 maize varieties have been released in Ethiopia since 1990, and 34 of these are thought to contain CIMMYT-related germplasm. It is also noted that, in the past 20 years ten drought-tolerant varieties and eight quality protein maize (QPM) varieties have been released.

In terms of geographical spread, the study highlights that improved maize varieties derived from CGIAR germplasm were highly adopted in the regions of Harar and Dire Dawa, which account for 81% of adopters overall. Adoption rates were also high in Tigray (79.3% of households), Amhara and the Southern Nations, Nationalities, and Peoples’ Region (63% of households), and Oromia (58.4% of households).

The other important crop in Ethiopia is wheat, which is grown by up to 4.8 million farmers in the country, according to the 2019 Central Statistics Authority (CSA) report. The SPIA document indicates that CGIAR innovations have played great role in the release and uptake of improved wheat varieties. The work of the CGIAR Research Program on Wheat (WHEAT), for instance, has resulted in the release of eight rust-resistant varieties derived from CIMMYT germplasm that are still under production. Of the 133 varieties released since 1974, CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) played a role in developing at least 80.

The report concludes that agricultural research carried out by CGIAR scientists and their national partners generates many new ideas for innovations that might help address pressing policy concerns. CGIAR’s contribution to Ethiopia’s agricultural development is complex and wide-ranging, and while some aspects cannot be accurately captured by survey data, this new source of adoption and diffusion data helps identify the scale and scope of CGIAR’s reach in Ethiopia.

Read the full report: Shining a brighter light: Comprehensive evidence on adoption and diffusion of CGIAR-related innovations in Ethiopia

About the Standing Panel on Impact Assessment

The Standing Panel on Impact Assessment (SPIA) is an external, impartial panel of experts in impact assessment appointed by the System Council and accountable to it. SPIA is responsible for providing rigorous, evidence-based, and independent strategic advice to the broader CGIAR System on efficient and effective impact assessment methods and practices, including those measuring impacts beyond contributions to science and economic performance, and on innovative ways to improve knowledge and capacity on how research contributes to development outcomes

Who benefits?

Maize post-harvest losses in smallholder farming systems in sub-Saharan Africa have been shown to result in significant costs at household and national level, making it difficult to move towards achievement of SDG2 – Zero Hunger.

Within smallholder farming systems, new grain storage technologies such as metal silos can help reduce these losses during storage. However, technologies are often introduced into systems with complex sets of relationships, which may differentially affect the ability of women and men to secure the expected benefits. This, in turn, can have a knock-on effect on adoption rates and expected outcomes.

A recent study by an international team of researchers investigated whether modern storage structures such as metal silos provide equal benefits to women and men farmers in sub-Saharan Africa, using a mixed methods approach to explore the relationships governing maize production and storage in Kenya, Malawi, Zambia and Zimbabwe, where 1717 metal silos have been introduced through the Effective Grain Storage Project (EGSP).

The authors used random sampling to carry out quantitative surveys on metal silo owners in Kenya (124 respondents) and Malawi (100 respondents). Qualitative surveys using purposive sampling were also conducted in all four countries covering 14 ethnic groups using focus group discussions (360 respondents), key informant interviews (62 respondents), and household case studies (62 respondents). “Our aim was to understand gendered post-harvest management and storage strategies in traditional systems and to map changes when metal silos were introduced,” explain the authors.

“We hypothesized that existing gender norms might differentially influence women’s ability to benefit from the introduction of metal silos and our findings seem to indicate that this is correct. In most instances when metal silos are introduced, ownership of the grain storage facility and any benefits attached to that ownership typically switch from women to men, or men’s existing control over stored maize is deepened.”

A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)
A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)

Their findings highlight that roles and responsibilities regarding the ownership and management of storage structures are strongly gendered. Though there are differences between ethnic groups and countries, overall men benefit more than women from the introduction of metal silos. Ownership of a grain storage facility and the benefits attached to this ownership can switch from women to men, with women having less scope for bargaining over their rights to use the stores for their own needs and the benefit of all household members.

Many of the women interviewed suggested that this compromised their ability to access sufficient maize because men might insist on taking any grain set aside to meet their personal needs. “We did not measure how much grain is taken and whether food security is indeed negatively affected, but our research registers that women are concerned about this issue.”

The qualitative research explored whether ownership over the granary — and control over the maize stored within — changed when metal silos were purchased. In all four countries, cultural norms tend to result in men typically owning all large household assets such as land, water pumps, ox-ploughs and carts, etc. They generally make key decisions about how these assets are to be used as well. Furthermore, the income differential between women and men in male-headed households means that it is considerably more difficult for women than men to make a large purchase like a metal silo. “As a consequence of these factors, we found men were more likely to own metal silos in each country.”

There is some differentiation between ethnic groups. In Zimbabwe, for example, Zezuru women who had previously owned and managed a dura — a traditional granary — lost control over maize grain reserves when metal silos were introduced. But for Korekore women nothing changed: men had always controlled traditional storage technologies and the maize within, and they continued to do so when metal silos were introduced. These examples highlight the fact that despite the cultural differences between ethnic groups, Zimbabwean women lost out across the board when metal silos were introduced, either through losing control over storage structures, or because male ownership was not challenged.

In light of these findings, the authors argue that understanding social context is key to designing and disseminating post-harvest technologies that meet the needs and preferences of both men and women farmers in various cultural contexts.

Their results make a strong case for ensuring that agricultural policy-makers prioritize the provision of equal access to improved technologies, as this is crucial not only for supporting women to meet their individual production goals, but also for ensuring that household-level food security needs are met.

Read the full study “Do metal grain silos benefit women in Kenya, Malawi, Zambia and Zimbabwe?” in the Journal of Stored Products Research.

New publications: Voicing demand for farm power

A new study examines how intra-household gender dynamics affect women’s articulation of demand for and adoption of labor-saving technologies in maize-based systems, drawing on empirical data from diverse household categories in Ethiopia and Kenya, where both women and men play important roles in agriculture.

Where agriculture relies heavily on manual labor, small-scale mechanization can reduce labor constraints and contribute to higher yields and food security. However, demand for and adoption of labor-saving machinery remains weak in many areas. Paradoxically, this includes areas where women face a particularly high labor burden.

“How do we make sense of this?” asks Lone Badstue, a rural development sociologist at the International Maize and Wheat Improvement Center (CIMMYT). “What factors influence women’s articulation of demand for and use of farm power mechanization?”

To answer this question, an international team of researchers analyzed data from four analytical dimensions — gender division of labor; gender norms; gendered access to and control over resources like land and income; and intra-household decision-making — to show how interactions between these influence women’s demand for and use of mechanization.

“Overall, a combination of forces seems to work against women’s demand articulation and adoption of labor-saving technologies,” says Badstue. Firstly, women’s labor often goes unrecognized, and they are typically expected to work hard and not voice their concerns. Additionally, women generally lack access to and control over a range of resources, including land, income, and extension services.

This is exacerbated by the gendered division of labor, as women’s time poverty negatively affects their access to resources and information. Furthermore, decision-making is primarily seen as men’s domain, and women are often excluded from discussions on the allocation of labor and other aspects of farm management. Crucially, many of these factors interlink across all four dimensions of the authors’ analytical framework to shape women’s demand for and adoption of labor-saving technologies.

A diagram outlines the links between different factors influencing gender dynamics in demand articulation and adoption of laborsaving technologies. (Graphic: Nancy Valtierra/CIMMYT)
A diagram outlines the links between different factors influencing gender dynamics in demand articulation and adoption of laborsaving technologies. (Graphic: Nancy Valtierra/CIMMYT)

Demand articulation and adoption of labor-saving technologies in the study sites are shown to be stimulated when women have control over resources, and where more permissive or inclusive norms influence gender relations. “Women’s independent control over resources is a game changer,” explains Badstue. “Adoption of mechanized farm power is practically only observed when women have direct and sole control over land and on- or off-farm income. They rarely articulate demand or adopt mechanization through joint decision-making with male relatives.”

The study shows that independent decision-making by women on labor reduction or adoption of mechanization is often confronted with social disapproval and can come at the cost of losing social capital, both within the household and in the community. As such, the authors stress the importance of interventions which engage with these issues and call for the recognition of technological change as shaped by the complex interplay of gender norms, gendered access to and control over resources, and decision-making.

Read the full article ‘How local gender norms and intra-household dynamics shape women’s demand for labor-saving technologies: insights from maize-based livelihoods in Ethiopia and Kenya’ in Gender, Technology and Development.

Read more recent publications by CIMMYT researchers:

1. Activity profiling of barley vacuolar processing enzymes provides new insights into the plant and cyst nematode interaction. 2020. Labudda, M., Rozanska, E., Prabucka, B., Muszynska, E., Marecka, D, Kozak, M, Dababat, A.A, Sobczak, M. In: Molecular Plant Pathology v. 21, no, 1, pg. 38-52.

2. Heteromorphic seeds of wheat wild relatives show germination niche differentiation. 2020. Gianella, M., Balestrazzi, A., Pagano, A., Müller, J.V., Kyratzis, A.C., Kikodze, D., Canella, M., Mondoni, A., Rossi, G., Guzzon, F. In: Plant Biology v. 22, no. 2, pg. 191-202.

3. Genetic dissection of maternal influence on in vivo haploid induction in maize. 2020. Nair, S.K., Chaikam, V., Gowda, M., Hindu, V., Melchinger, A.E., Prasanna, B.M. In: The Crop Journal v. 8 no. 2, pg. 287-298.

4. Genome-wide analyses and prediction of resistance to MLN in large tropical maize germplasm. 2020. Nyaga, C., Gowda, M., Beyene, Y., Muriithi, W.T., Makumbi, D., Olsen, M., Mahabaleswara, S.L., Jumbo, M.B., Das, B., Prasanna, B.M. In: Genes v. 11, no. 1, art. 16.

5. Performance and yield stability of maize hybrids in stress-prone environments in eastern Africa. 2020. Rezende, W.S., Beyene, Y., Mugo, S.N., Ndou, E., Gowda, M., Julius Pyton Sserumaga, Asea, G., Ismail Ngolinda, Jumbo, M.B., Oikeh, S.O., Olsen, M., Borém, A., Cruz, C.D., Prasanna, B.M. In: The Crop Journal v. 8, no. 1, pg. 107-118.

6. Genetic analysis of QTL for resistance to maize lethal necrosis in multiple mapping populations. 2020. Awata, L.A.O., Beyene, Y., Gowda, M., Mahabaleswara, S.L., Jumbo, M.B., Tongoona, P., Danquah, E., Ifie, B.E., Marchelo-D’ragga, P.W., Olsen, M., Ogugo, V., Mugo, S.N., Prasanna, B.M. In: Genes v. 11, no. 1, art. 32.

7. Variation in occurrence and aflatoxigenicity of Aspergillus flavus from two climatically varied regions in Kenya. 2020. Monda, E., Masanga, J., Alakonya, A. In: Toxins v. 12, no. 1, art. 34.

8. A detached leaf assay to rapidly screen for resistance of maize to Bipolaris maydis, the causal agent of southern corn leaf blight. 2020. Aregbesola, E., Ortega Beltran, A., Falade, T. D. O., Gbolagade Jonathan, Hearne, S., Bandyopadhyay, R. In: European Journal of Plant Pathology v. 156, no. 1, pg. 133-145.

9. Spread and impact of fall armyworm (Spodoptera frugiperda J.E. Smith) in maize production areas of Kenya. 2020. De Groote, H., Kimenju, S.C., Munyua, B., Palmas, S., Kassie, M., Bruce, A.Y. In: Agriculture, Ecosystems and Environment v. 292, art. 106804.

10. Genetic dissection of grain yield and agronomic traits in maize under optimum and low-nitrogen stressed environments. 2020. Berhanu Tadesse Ertiro, Olsen, M., Das, B., Gowda, M., Labuschagne, M. In: International Journal of Molecular Sciences v. 21, no. 2, art. 543.

11. ToxA-Tsn1 interaction for spot blotch susceptibility in Indian wheat: an example of inverse gene-for-gene relationship. 2020. Sudhir Navathe, Punam S. Yadav., Chand, R., Vinod Kumar Mishra, Vasistha, N.K., Prabina Kumar Meher, Joshi, A.K., Pushpendra Kumar Gupta In: Plant Disease v. 104, no. 1, pg. 71-81.

12. Novel sources of wheat head blast resistance in modern breeding lines and wheat wild relatives. 2020. Cruppe, G., Cruz, C.D., Peterson, G.L., Pedley, K.F., Asif, M., Fritz, A.K., Calderon Daza, L., Lemes da Silva, C., Todd, T.C., Kuhnem, P., Singh, P.K., Singh, R.P., Braun, H.J., Barma, N.C.D., Valent, B. In: Plant Disease v. 104, no. 1, pg. 35-43.

13. Stripe rust resistance genes in a set of Ethiopian bread wheat cultivars and breeding lines. 2020. Gebreslasie Zeray Siyoum, Huang, S., Gangming Zhan, Badebo, A., Qingdong Zeng, Jianhui Wu, Qilin Wang, Shengjie Liu, Lili Huang, Xiaojing Wang, Zhensheng Kang, Dejun Han In: Euphytica v. 216, no. 2, art. 17.

14. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. 2020. Rasheed, A., Takumi, S., Hassan, M.A., Imtiaz, M., Ali, M., Morgounov, A.I., Mahmood, T., He Zhonghu In: Theoretical and Applied Genetics v. 113, pg. 1503–1520.

15. Diversity and incidence of plant-parasitic nematodes associated with saffron (Crocus sativus L.) in Morocco and their relationship with soil physicochemical properties. 2020. Mokrini, F., Salah-Eddine Laasli, Karra, Y., El Aissami, A., Dababat, A.A. In: Nematology v. 22, no. 1, pg. 87-102.

16. Maya gene variants related to the risk of type 2 diabetes in a family-based association study. 2020. Domínguez-Cruz, M.G., Muñoz, M. de L., Totomoch-Serra, A., García-Escalante, M.G., Burgueño, J., Valadez-González, N., Pinto-Escalantes, D., Diaz-Badillo, A. In: Gene v. 730, art. 144259.

17. Effect of allele combinations at Ppd-1 loci on durum wheat grain filling at contrasting latitudes. 2020. Arjona, J.M., Royo, C., Dreisigacker, S., Ammar, K., Subira, J., Villegas, D. In: Journal of Agronomy and Crop Science, v. 206, no. 1, pg. 64-75.

18. Yield and quality in purple-grained wheat isogenic lines. 2020. Morgounov, A.I., Karaduman, Y., Akin, B., Aydogan, S., Baenziger, P.S., Bhatta, M.R., Chudinov, V., Dreisigacker, S., Velu, G., Güler, S., Guzman, C., Nehe, A., Poudel, R., Rose, D., Gordeeva, E., Shamanin, V., Subasi, K., Zelenskiy, Y., Khlestkina, E. In: Agronomy v. 10, no. 1, art. 86.

19. Anther extrusion and its association with Fusarium head blight in CIMMYT wheat germplasm. 2020. Kaijie Xu, Xinyao He, Dreisigacker, S., He Zhonghu, Singh, P.K. In: Agronomy v. 10, no. 1 art. 47.

20. Does farm structure affect rural household incomes? Evidence from Tanzania. 2020. Chamberlin, J., Jayne, T.S. In: Food Policy v. 90, art. 101805.

21. GAR dwarf gene Rht14 reduced plant height and affected agronomic traits in durum wheat (Triticum durum). 2020. Shan Duan, Zhangchen Zhao, Yue Qiao, Chunge Cui, Morgounov, A.I., Condon, A.G., Liang Chen, Yin-Gang Hu In: Field Crops Research v. 248, art. 107721.

22. Ex-ante and ex-post coping strategies for climatic shocks and adaptation determinants in rural Malawi. 2020. Abid, M., Ali, A., Rahut, D.B., Raza, M., Mehdi, M. In: Climate Risk Management v. 27, art. 100200.

23. Management of spot blotch and heat stress in spring wheat through azoxystrobin-mediated redox balance. 2020. Sudhir Navathe, Chand, R., Vinod Kumar Mishra, Pandey, S.P., Kumar, U., Joshi, A.K. In: Agricultural Research v. 9, pg. 169–178.

24. Spatial variation in fertilizer prices in Sub-Saharan Africa. 2020. Bonilla Cedrez, C., Chamberlin, J., Guo, Z., Hijmans, R.J. In: PLoS One v. 115, no. 1, art. e0227764.

25. Unravelling the variability and causes of smallholder maize yield gaps in Ethiopia. 2020. Banchayehu Tessema Assefa, Chamberlin, J., Reidsma, P., Silva, J.V., Ittersum, M.K. van. In: Food Security v. 12, pg. 83-103.

26. Linking land distribution with food security: empirical evidence from Pakistan. 2020. Mahmood, H.Z., Ali, A., Rahut, D.B., Pervaiz, B., Siddiqui, F. In: Journal of Animal and Plant Sciences v. 30, no.1, pg. 175-184.

27. Agricultural growth and sex-disaggregated employment in Africa: future perspectives under different investment scenarios. 2020. Frija, A., Chebil, A., Mottaleb, K.A., Mason-D’Croz, D., Dhehibi, B. In: Global Food Security v. 24, art. 100353.

28. Genetic diversity analysis using DArTseq and SNP markers in populations of Aegilops species from Azerbaijan. 2020. Abbasov, M., Sansaloni, C.P., Burgueño, J., Petroli, C.D., Akparov, Z., Aminov, N., Babayeva, S., Izzatullayeva, V., Hajiyev, E., Rustamov, K., Mammadova, S.A., Amri, A., Payne, T.S. In: Genetic Resources and Crop Evolution v. 67, no. 2, pg. 281-291.

29. Bridging the disciplinary gap in conservation agriculture research, in Malawi. A review. 2020. Hermans, T.D.G., Whitfield, S., Dougill, A.J., Thierfelder, C. In: Agronomy for Sustainable Development v. 40, no. 1, art. 3.

30. Scaling agricultural mechanization services in smallholder farming systems: case studies from sub-Saharan Africa, South Asia, and Latin America. 2020. Van Loon, J., Woltering, L., Krupnik, T.J., Baudron, F., Boa, M., Govaerts, B. In: Agricultural Systems v. 180, art. 102792.

Rust-resistant bread wheat varieties widely adopted in Ethiopia

Wheat fields in the Arsi highlands, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)
Wheat fields in the Arsi highlands, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)

A state-of-the-art study of plant DNA provides strong evidence that farmers in Ethiopia have widely adopted new, improved rust-resistant bread wheat varieties since 2014.

The results — published in Nature Scientific Reports — show that nearly half (47%) of the 4,000 plots sampled were growing varieties 10 years old or younger, and the majority (61%) of these were released after 2005.

Four of the top varieties sown were recently-released rust-resistant varieties developed through the breeding programs of the Ethiopian Institute for Agricultural Research (EIAR) and the International Maize and Wheat Improvement Center (CIMMYT).

Adoption studies provide a fundamental measure of the success and effectiveness of agricultural research and investment. However, obtaining accurate information on the diffusion of crop varieties remains a challenging endeavor.

DNA fingerprinting enables researchers to identify the variety present in samples or plots, based on a comprehensive reference library of the genotypes of known varieties. In Ethiopia, over 94% of plots could be matched with known varieties. This provides data that is vastly more accurate than traditional farmer-recall surveys.

This is the first nationally representative, large-scale wheat DNA fingerprinting study undertaken in Ethiopia. CIMMYT scientists led the study in partnership with EIAR, the Ethiopian Central Statistical Agency (CSA) and Diversity Array Technologies (DArT).

“When we compared DNA fingerprinting results with the results from a survey of farmers’ memory of the same plots, we saw that only 28% of farmers correctly named wheat varieties grown,” explained Dave Hodson, a principal scientist at CIMMYT and lead author of the study.

The resulting data helps national breeding programs adjust their seed production to meet demand, and national extension agents focus on areas that need better access to seed. It also helps scientists, policymakers, donors and organizations such as CIMMYT track their impact and prioritize funding, support, and the direction of future research.

“These results validate years of international investment and national policies that have worked to promote, distribute and fast-track the release of wheat varieties with the traits that farmers have asked for — particularly resistance to crop-destroying wheat rust disease,” said Hodson.

Ethiopia is the largest wheat producer in sub-Saharan Africa. The Ethiopian government recently announced its goal to become self-sufficient in wheat, and increasing domestic wheat production is a national priority.

Widespread adoption of these improved varieties, demonstrated by DNA fingerprinting, has clearly had a positive impact on both economic returns and national wheat production gains. Initial estimates show that farmers gained an additional 225,500 tons of production — valued at $50 million — by using varieties released after 2005.

The study results validate investments in wheat improvement made by international donor agencies, notably the Bill & Melinda Gates Foundation, the Ethiopian government, the UK Foreign, Commonwealth and Development Office (FCDO, formerly DFID), the US Agency for International Development (USAID) and the World Bank. Their success in speeding up variety release and seed multiplication in Ethiopia is considered a model for other countries.

“This is good news for Ethiopian farmers, who are seeing better incomes from higher yielding, disease-resistant wheat, and for the Ethiopian government, which has put a high national priority on increasing domestic wheat production and reducing dependence on imports,” said EIAR Deputy Director General Chilot Yirga.

The study also confirmed CGIAR’s substantial contribution to national breeding efforts, with 90% of the area sampled containing varieties released by Ethiopian wheat breeding programs and derived from CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA) germplasm. Varieties developed using germplasm received from CIMMYT covered 87% of the wheat area surveyed.

“This research demonstrates that DNA fingerprinting can be applied at scale and is likely to transform future crop varietal adoption studies,” said Kindie Tesfaye, a senior scientist at CIMMYT and co-author of the study. “Additional DNA fingerprinting studies are now also well advanced for maize in Ethiopia.”

This research is supported by the Bill and Melinda Gates Foundation and CGIAR Fund Donors. Financial support was provided through the “Mainstreaming the use and application of DNA Fingerprinting in Ethiopia for tracking crop varieties” project funded by the Bill & Melinda Gates Foundation (Grant number OPP1118996).

RELATED PUBLICATIONS:

Ethiopia’s Transforming Wheat Landscape: Tracking Variety Use through DNA Fingerprinting

FOR FURTHER INFORMATION OR INTERVIEW REQUESTS:

Dave Hodson, International Maize and Wheat Improvement Center (CIMMYT), d.hodson@cgiar.org

ABOUT CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org

A catastrophe avoided

There are decades when nothing happens and weeks when decades happen. So goes the old saw. In the social sciences, these “weeks” are often referred to as critical junctures. They are moments when the old rules of the game — the long-established ways of doings things — go out the window and new patterns begin to emerge. The breadbasket states of northwestern India seem to be having one of those weeks.

After years of research and advocacy that appeared to be making little headway, researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) are seeing a sudden and dramatic increase in the adoption of some of the technologies and techniques they have long argued are necessary in this region, including direct-seeding of rice, crop diversification and the adoption of Happy Seeder technology.

A case of unintended consequences

In March 2020 the Indian government decreed a national lockdown in response to the COVID-19 crisis. This triggered the largest internal migration since partition, as millions of migrant workers and day laborers scrambled to return to their home villages. Estimates suggest that up to 1 million workers left the northwestern states of Haryana and Punjab alone.

Agriculture in the region is dominated by the labor- and input-intensive production of rice and wheat in rotation. This system is the most productive per hectare in India, but it is also extremely sensitive to external shocks. The success of both the rice and wheat crop depend on the timely transplantation of rice in mid-June.

As the results of a recently published study demonstrate, delays in this schedule can have devastating downstream effects not only on rice and wheat yields, but on regional air quality too. Models of the worst-case delay scenario predicted a total economic loss of nearly $1.5 billion. Moreover, they predicted that, if no action were taken, up to 80% of rice residue would be burned later in the autumn, when cooler conditions contribute to seasonally poor air quality.

Such an exacerbation of the region’s air pollution would be dire under normal conditions. During a global pandemic of a primarily respiratory illness, it could be devastating.

Fortunately, solutions and technologies that CIMMYT researchers had been studying for decades, along with ICAR, Punjab Agricultural University (PAU) and other national partners, promised to help ward off the worst effects of the crisis. The adoption of direct-seeding technology could help reduce the labor-intensiveness of rice production, crop diversification could minimize the economic impacts of the crisis, and the use of Happy Seeder technology could alleviate the practice of residue burning.

A farmer burns rice residues after harvest to prepare the land for wheat planting around Sangrur, Punjab, India. (Photo: Neil Palmer/CIAT)
A farmer burns rice residues after harvest to prepare the land for wheat planting around Sangrur, Punjab, India. (Photo: Neil Palmer/CIAT)

Decades of work pay off

The study, co-authored by researchers at CIMMYT, ICAR and the International Rice Research Institute (IRRI), relied on a sophisticated ex ante model of four different rice-transplanting delay scenarios. It is published in the November 2020 issue of Agricultural Systems.

However, given the time-sensitivity and high-stakes of the issue, the lead researchers did not wait for the articles publication to press their case. Earlier this year they circulated their initial findings and recommendations to policymakers via their national partners. Notably, after receiving a one-pager summarizing these, the Chief Minister of Punjab released a video address echoing their points.

“Policymakers realized the need for these kinds of solutions,” says Balwinder Singh, a CIMMYT scientist and lead author of the paper. They then moved quickly to incentivize their adoption through various mechanisms, such as subsidizing direct-seeding drills and ensuring the timely availability of machines and other inputs.

This year, 500,000 hectares were converted to direct seeding, explains M.L. Jat, a principal scientist at CIMMYT. This represents 34% more area converted in 2020 alone than in the previous 10 years. Additionally, 330,000 hectares were converted to other crops, principally cotton, maize and legumes.

Singh and Jat have been carrying out a multi-year survey to assess farmer willingness to adopt Happy Seeder technology and have documented a drastic increase in farmer interest in the technology during 2020. For Jat, this highlights the power of partnerships. “If you don’t include your partners from the beginning, they will not own what you say,” he argues.

Such changes are to be celebrated not only as an important response to the current labor shortage, but also as key to ensuring the long-term sustainability of agricultural production in the region, having important implications for the stewardship of water resources, air pollution and soil health.

“Policies encouraging farming practices that save resources and protect the environment will improve long-term productivity and sustainability of the nation,” says S. K. Chaudhari, deputy director general for Natural Resource Management at ICAR.

A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Warding off catastrophe

Although the agricultural cycle is not yet over, and early data are still partial, Singh and Jat estimate that thanks to the dramatic adoption of alternative agricultural practices this year, their worst-case estimates have been avoided. Given the rapid response from both policymakers and farmers, the real-world effects of the COVID-19 labor crisis are likely closer to the mid-range severity scenarios of their analysis. Indeed, early estimates predict no rice yield losses and minor-to-no wheat yield losses over baseline. For the researchers, the relief is palpable and the lessons couldn’t be clearer.

“These technologies were there for decades, but they were never appreciated because everything was normal,” says Jat. “This clearly indicates a need for investment in the technology and the research. You may encounter a problem at any time, but you cannot generate the technology overnight.”

What can the last 30 years of research tell us?

A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Morogoro, Tanzania, discusses differences in his maize ears caused by differences in on-farm conditions. (Photo: Anne Wangalachi/CIMMYT)

Global climate change represents an existential threat to many of the world’s most vulnerable farmers, introducing new stresses and amplifying the unpredictability and risk inherent in farming. In low- and middle-income countries that are heavily reliant on domestic production, this increased risk and unpredictability threatens disastrous consequences for the food security and wellbeing of rural and urban populations alike.

Given the stakes, substantial investments have been made towards developing climate-resilient crops. But what happens when the innovations widely considered to be beneficial don’t gain traction on the ground, among those who stand to lose the most from inaction? What can researchers, policymakers and funders do to ensure that the most vulnerable rural populations don’t lose out on the benefits?

These are the questions posed by a new scoping review co-authored by Kevin Pixley, interim deputy director general for research and partnerships and director of the Genetic Resources Program at the International Maize and Wheat Improvement Center (CIMMYT).

The paper relies on a descriptive analysis of 202 studies from the past 30 years which assess the determinants of climate-resilient crop adoption by small-scale producers in low- and middle-income countries. These were identified through an extensive search and screening process of multiple academic databases and grey literature sources, and selected from an initial pool of over 6,000 articles.

Taking stock

The authors identified interventions determining adoption across the literature surveyed. A key theme which emerged was the need for context-sensitive technical and financial support for climate-resilient crop adoption. Nearly 16% of the studies found that adoption depended on access to relevant extension programs. Around 12% identified access to credit and other financial instruments as key, while a further 12% identified the implementation of community programs supporting climate-resilient crops as a determining factor.

However, the study stresses that there are no one-size-fits-all solutions. Increased adoption of climate-resilient agricultural innovations will depend on interventions being highly context informed. For example, the review shows that while some studies identified older farmers as more reluctant to adopt new technologies, an equal number of studies found the opposite.

Moreover, the review identified important opportunities for further research. Gender-based approaches, for example, remain a blind spot in the literature. The majority of studies reviewed only included women if they were household heads, thus overlooking the role they may play in influencing the adoption of new agricultural technologies in male-headed households.

A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)
A community-based seed producer in Kiboko, Kenya, inspects her crop of drought-tolerant maize. (Photo: Anne Wangalachi/CIMMYT)

Driving evidence-based policymaking

The review was published as part of a collection of 10 research papers produced as part of Ceres2030: Sustainable Solutions to End Hunger. The project, a partnership between Cornell University, the International Food Policy Research Institute (IFPRI) and the International Institute for Sustainable Development (IISD), distills decades of scientific and development research into a clear menu of policy options for funders committed to achieving the UN’s Sustainable Development Goal 2: Ending world hunger by 2030.

The full collection of papers was published on October 12 across various Nature Research journals.

Speaking at a German government event on achieving Sustainable Development Goal 2, Bill Gates praised the Ceres2030 initiative, noting that “nothing on this scale has ever been done because we lacked the tools to analyze this complex information. But with the new research, solid evidence will drive better policymaking.”

He went on to highlight the CGIAR’s leadership role in these efforts, saying: “The CGIAR system is a key global institution that is investing in these approaches. It’s a critical example of how innovation can lead the way.”

CIMMYT and IITA collaborate to increase adoption of conservation agriculture in southern Africa

Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)
Farmers going home for breakfast in Motoko district, Zimbabwe. (Photo: Peter Lowe/CIMMYT)

The International Institute of Tropical Agriculture (IITA) and the International Maize and Wheat Improvement Center (CIMMYT) recently launched a project that aims to research the drivers and barriers to adoption of conservation agriculture in southern Africa, and to develop strategies for achieving adoption and impact at scale.

The project, Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of Southern Africa (ACASA), will apply social and scaling science to understand the biophysical, socioeconomic, institutional, and policy drivers and barriers to the adoption of conservation agriculture technologies and practices.

The ACASA project is supported by the Norwegian Agency for Development Cooperation (Norad) and will be implemented in Malawi, Zambia, and Zimbabwe in collaboration with partners and farmers in the region.

The project was officially launched online on September 16, 2020. Zambia’s Minister of Agriculture, Michael Katambo, noted that it is a timely intervention, as the livelihoods and food security of smallholder farmers in southern Africa are increasingly being threatened by climate change and variability, which have led to a steady decline in the production of food staples and an increase in the number of food and nutrition-insecure people.

“It is now clear that current productivity and production levels cannot be expected to meet our requirements for food and nutrition security,” Katambo said in a speech read on his behalf by Moses Mwale, Director of the Department of Agriculture. “Conservation agriculture has a proven potential to increase and stabilize crop yields, and to support sustainable and resilient production systems and rural livelihoods.”

Proven benefits

Conservation agriculture — a farming system that promotes minimum soil disturbance, permanent soil cover and diversification of plant species — can efficiently increase agricultural productivity while reducing land degradation and improving soil health for more productive, profitable, and sustainable farming.

Substantial on-farm evidence has been generated on the agronomic and economic benefits of conservation agriculture, first introduced in the 1970s in South Africa. Consequently, donors and governments have made a lot of investments to promote and scale conservation agriculture technologies and practices among smallholder farmers in the region. Despite all these efforts, however, the adoption rate among smallholder farmers remains low.

“We should not let the low adoption of conservation agriculture discourage us. Let us use this opportunity to reflect and identify the missing link and come up with more sustainable solutions to the problem,” said the IITA Director for Southern Africa, David Chikoye.

“Although adoption of improved practices by most resource-poor farmers is primarily determined by the potential immediate benefits on crop yields, profits, risk, and livelihoods, there are a number of biophysical, socioeconomic, institutional, and policy factors that promote or hinder adoption of conservation agriculture. The project, therefore, aims to identify the adoption drivers and barriers, and to develop pathways and strategies for inclusive scaling of conservation agriculture practices,” said  Arega Alene, Agricultural Economist at IITA and leader of the ACASA project.

Christian Thierfelder, Principal  Cropping Systems Agronomist at CIMMYT, highlighted some of the bottlenecks for conservation agriculture adoption, noting they were linked more to socioeconomic and cultural factors rather than biophysical. “Conservation agriculture is a viable and proven climate-smart farming system. Future research efforts should go towards understanding farmers’ decision-making and behavioral change, as well as profitability,” Thierfelder said.

Other key partners include the Food and Agriculture Organization of the United Nations (FAO), the African Conservation Tillage Network (ACT) and Centre for Coordination of Agricultural Research and Development for Southern Africa (CCARDESA).

The project launch was attended by policymakers, donors, members of national and regional conservation agriculture taskforces, national and international research institutions, universities, international development institutions, private seed companies, non-governmental organizations, and farmer organizations.


Interview opportunities:

Arega Alene, Agricultural Economist, IITA.

Christian Thierfelder, Principal  Cropping Systems Agronomist, CIMMYT

For more information, or to arrange interviews, contact the media team:

Genevieve Renard, Director of Communications, CIMMYT. g.renard@cgiar.org

Katherine Lopez, Head of Communication, IITA. k.lopez@cgiar.org

About CIMMYT:

The International Maize and What Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information visit staging.cimmyt.org.

About IITA:

The International Institute of Tropical Agriculture (IITA) is a not-for-profit institution that generates agricultural innovations to meet Africa’s most pressing challenges of hunger, malnutrition, poverty, and natural resource degradation. Working with various partners across sub-Saharan Africa, we improve livelihoods, enhance food and nutrition security, increase employment, and preserve natural resource integrity. IITA is a member of CGIAR, a global agriculture research partnership for a food-secure future.

Targeted fertilizer recommendations improve maize productivity in Ethiopia

A study on the impact of providing site-specific fertilizer recommendations on fertilizer usage, productivity and welfare outcomes in Ethiopia shows that targeted fertilizer recommendations encourage fertilizer investments and lead to improved maize productivity outcomes.

Enumerators manually shelling maize cobs to test grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)
Enumerators manually shelling maize cobs to test grain moisture. (Photo: Hailemariam Ayalew/CIMMYT)

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) and the Department of Economics and Trinity Impact Evaluation unit (TIME), Trinity College Dublin, anticipate that the findings will provide valuable guidance to the design and delivery of improved extension services in developing countries.

Soil degradation and nutrient depletion have been serious threats to agricultural productivity and food security in Ethiopia. Over the years, soil fertility has also declined due to the increase in population size and decline in plot size. Studies have identified nitrogen (N) and phosphorus (P) as being the nutrients most lacking and have called for action to improve the nutrient status of soils.

In response to this, in 2007, the Ministry of Agriculture and Natural Resources and agricultural research centers together developed regional fertilizer recommendations. These recommendations, about fertilizer types and application rates for different crops, were disseminated to farmers through agricultural extension workers and development agents.

However, adoption of fertilizer remains low — and average application rates are generally lower than recommended. One reason for these low adoption rates is that the information provided is too broad and not tailored to the specific requirements of smallholder farmers.

A study conducted on 738 farm households randomly selected from the main maize growing areas of Ethiopia — Bako, Jimma and the East Shewa and West Gojjam zones — shows that well-targeted fertilizer recommendations can increase fertilizer usage in smallholder maize production.

Maize is one of Ethiopia’s most important crops in terms of production, productivity, and area coverage. It is a primary staple food in the major maize growing areas as well as a source of feed for animals and a raw material for industries.

The study examined the impact of providing site-specific fertilizer recommendations to farmers on fertilizer usage/adoption, farm productivity/production per hectare and consumer expenditure/welfare outcomes using a two-level cluster randomized control trial.

Tailored recommendations

CIMMYT researcher Hailemariam Ayalew examines maize crops during the study. (Photo: Hailemariam Ayalew/CIMMYT)
CIMMYT researcher Hailemariam Ayalew examines maize crops during the study. (Photo: Hailemariam Ayalew/CIMMYT)

The Nutrient Expert decision-support tool, developed by the International Plant Nutrition Institute (IPNI) in partnership with the CGIAR Research Center on Maize (MAIZE), was used to give site-specific recommendations to each farmer. With this tool, researchers offered tailored recommendations, using information on fertilizer blends available in Ethiopia, current farmers’ practices, relevant inputs and field history, and local conditions. The experiment also considered whether coupling the site-specific recommendation with crop insurance — to protect farmers’ fertilizer investment in the event of crop failure — enhanced adoption rates.

Results show that well-targeted fertilizer recommendations improve fertilizer usage and productivity of maize production. The intervention led to an increase of 5 quintals, or 0.5 tons, in average maize yields for plots in the treatment group. While the study did not find any evidence that these productivity gains led to household welfare improvements, it is likely that such improvements may take longer to realize.

The study found no differential effect of the site-specific recommendation when coupled with agricultural insurance, suggesting that the risk of crop failure is not a binding constraint to fertilizer adoption in the study setting. The findings of this research should help guide the design and delivery of improved extension services in relation to fertilizer usage and adoption in developing countries.

Cover photo: Workers harvesting green maize at Ambo Research Center, Ethiopia, 2015. (Photo: CIMMYT/ Peter Lowe)

Ethiopian policymakers consider wider use of DNA fingerprinting

How to track adoption and assess the impact of maize and wheat varieties? Some of the methods used until now, like farmers’ recall surveys, have various limitations. In addition to relying exclusively on people’s memory and subjectivity, they are difficult to replicate and prone to errors.

DNA fingerprinting, on the other hand, allows objective evaluation and is considered the “gold standard” method for adoption and impact assessments.

It consists of a chemical test that shows the genetic makeup of living things, by separating strands of DNA and revealing the unique parts of their genome. The results show up as a pattern of stripes that can be matched against other samples.

This technique is extremely helpful in tracking crop varieties and monitoring their adoption. It can be used to assess the impact of research-for-development investments, guide breeding and seed system strategies, implement the intellectual property rights of breeders, assess the use of crop genetic resources, and informing policy.

On June 25, 2019, the International Maize and Wheat Improvement Center (CIMMYT) held a half-day workshop in Addis Ababa to discuss the use and application of DNA fingerprinting in Ethiopia for the tracking of crop varieties.

High-level government officials and major players in the agricultural sector were interested in learning more about the policy implications of this tool and how to mainstream its use.

CIMMYT’s Socioeconomics Program Director, Olaf Erenstein (left), talks to Eyasu Abraha, Minister of Agriculture and Natural Resources (center), and Mandefro Nigussie, Director General of the Ethiopian Institute of Agricultural Research.
CIMMYT’s Socioeconomics Program Director, Olaf Erenstein (left), talks to Eyasu Abraha, Minister of Agriculture and Natural Resources (center), and Mandefro Nigussie, Director General of the Ethiopian Institute of Agricultural Research.

Introducing DNA fingerprinting in Ethiopia

The main DNA fingerprinting project in Ethiopia has been in operation since January 2016, focusing on the country’s two major staple crops: wheat and maize. The project covers the Amhara, Oromia, SNNPR, and Tigray regions, which together account for 92% and 79% of the national wheat and maize production.

The Bill & Melinda Gates Foundation has funded the project, which was jointly implemented by CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR), Ethiopia’s Central Statistical Agency (CSA) and Diversity Arrays Technology (DArT).

The main objective of the project was to generate a knowledge base for the practical use of DNA fingerprinting, to mainstream the use of this technology, and to offer policy options and recommendations.

CIMMYT scientists Dave Hodson (left), Bekele Abeyo (center) and Sarah Hearne participated in the workshop.
CIMMYT scientists Dave Hodson (left), Bekele Abeyo (center) and Sarah Hearne participated in the workshop.

Better monitoring for wheat self-sufficiency

At the workshop, researchers presented two policy briefs specific to Ethiopia: one focusing on policy implications of DNA fingerprinting for tracking bread wheat varieties and another one on how to revitalize the durum wheat sub-sector.

Speaking at the workshop, Eyasu Abraha, Minister of Agriculture and Natural Resources, noted that the government planned to achieve wheat grain self-sufficiency in the next few years by increasing wheat productivity in the highlands and expanding wheat production to the lowlands through irrigation.  In this regard, improved crop variety development and dissemination is one of the key elements to increase agricultural productivity and improve the livelihood of millions of smallholder farmers.

According to Abraha, more than 130 wheat varieties have been released or registered in Ethiopia since the late 1960s, in collaboration with international research organizations. Public and private seed enterprises have multiplied and distributed these varieties to reach smallholder farmers.

Even though adoption studies have been conducted, there is still a strong need for more accurate and wider studies. In addition to tracking adoption and demand, using DNA fingerprinting could help understand the distribution of varieties across space and time.

Study proposes alternative to conventional technology adoption research in smallholder agriculture

Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)
Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)

The development community is introducing increasingly complex and systemic technological designs for sustainable improvements to agriculture. Yet, a systemic perspective is hard to find in “adoption-outcome” focused analyses of technological change processes. In order to improve development interventions, it is necessary not only to analyze both successes and failures, but also the process and impacts of technological change.

Researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Institute of Development Studies (IDS) recently published a paper on rethinking technological change in smallholder agriculture, arguing against the conventional approach to studying technology adoption.

The problem with the concept of technology adoption

While the adoption rate of newly introduced technologies is still used in the evaluation of agricultural research and development, the theory of technology adoption is an insufficient framework for understanding technological change. It is too linear, too binary, too focused on individual decisions and gives an inaccurate and misleading picture to researchers.

The theory of adoption treats technology like a “black box” that is transferred smoothly from one setting to another, following a linear progression of old and inferior tools and methods to new improved ones. This theory is too simplistic to align with the complex realities of the capabilities and agency of multiple actors. In addition, in cases of participatory technology development, where intended users are involved in the creation of innovations, adoption rates are often limited due to the relatively small scale of the project.

Using adoption rate as the only indicator of success or failure can lead researchers to ignore wider impacts of the introduction of a new technology. Adoption rates could go up, but use of a new technology could cause harm to social relations, the local environment, or its resilience. Low adoption rates could classify a program as a failure, while farmers benefited substantially in undetected ways, for example forming networks or acquiring new skills and knowledge. A singular focus on adoption rates thus limits our understanding of what happens in processes of technological change.

Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT).
Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT)

An alternative conceptual framework

In addition to the introduction of a new technology to small-scale farming systems, technological change involves the agency of many social actors. The agency of farmers, scientists, project managers and extension officers is key to understand whether a new technology is perceived to be useful, accessible or realistic, as well as how it is adjusted and changing social relations.

A new framework is needed to capture this reconfiguration of social and technological components that result from the introduction of a new technology to a community.

The authors of this paper propose an alternative conceptual framework with an agent-, practice- and process-oriented approach to better understand technological change. The framework is composed of four key components: propositions, encounters, dispositions and responses.

Propositions are composed of artefacts, methods, techniques and practices and a proposed mode of engagement in agricultural production. Encounters can be deliberately organized, for example a field day, or spontaneous, when a farmer sees a neighbor using a new tool. Intended users of technology may be disposed to respond in a variety of different ways, and dispositions may change over time. Finally, responses are a process or pathway that is likely to involve adjustment or recalibration to make the new technology work for the farmer.

Further work to operationalize this framework is needed. The authors suggest a next step of developing indicators to measure learning, experimentation and behavioral change as part of analyzing technological change processes.

Breaking Ground: Tawanda Mashonganyika unites crop breeders and market experts for more impactful varieties

Tawanda Mashonganyika

The low rate at which farmers adopt improved varieties is one of the biggest obstacles to overcoming food insecurity. The average maize variety grown by farmers in sub-Saharan Africa is 15 years old, even though maize breeders have been releasing more than 50 new varieties every year.

When it comes to climate change, for example, thanks to a plentiful arsenal of genetic diversity crop breeders are developing varieties adapted to increased heat and drought, but farmers continue to grow crops developed for the climate of yesterday.

One part of the answer is that it is not enough merely to create a variety resistant to heat, drought or flooding; complex dynamics are at play in crop markets and in farmers’ fields that must be reflected in the design of new varieties.

This where product manager Tawanda Mashonganyika comes in, working for the CGIAR Excellence in Breeding Platform (EiB) out of CIMMYT-Kenya, and one of the first to occupy such a role in the CGIAR system.

“This position is supposed to bring in a business kind of thinking in the way products and varieties are developed,” said Mashonganyika, who studied agricultural economics, agribusiness and value chains at the universities of Reading, U.K. and Queensland, Australia, and has professional experience with crops grown in Africa.

“You need to know who you are developing varieties for, who are your customers and clients, and you also need to design products so that they can have success on the market.”

Mashonganyika’s role is to support CGIAR and national agricultural research system (NARS) breeders to design new varieties focused on replacing older products in a specific market, as opposed to only breeding for an agro-ecological zone. Key to this approach is the involvement of experts from other disciplines such as gender, socioeconomics and nutrition, as well as people involved in the value chain itself, such as food processors, seed producers and farmers.

The outcome of this collaboration is a product profile: a written description of a new product with all the traits needed to replace the variety that currently dominates the target market. The profile serves as a common goal for CGIAR and NARS collaboration, and as a tool to communicate with donors. With the breeding program accountable for delivering a pipeline of new products designed for impact, they can ensure that these varieties also deliver traits such as biofortification to farmer’s fields.

Instead of breeding for all the traits that may be desirable in a new variety, what sets the product profile approach apart is that breeding programs can then focus resources on the traits that will have the greatest impact in the market, and therefore the field. This market-focused approach also enables better collaboration between breeders and experts from other disciplines:

“When you bring a cross-functional team together, you really need to give them an understanding of the desired goal of what we want to design and eventually put onto the market,” said Mashonganyika. “We put an emphasis on data-driven decisions, so it is not just a meeting of experts with different opinions; we always try to create a platform to say ‘we need to follow what the market is saying.’”

“[Non-breeding experts] are usually very excited to talk about the data that they have about markets, and the knowledge that they have about how gender or nutrition affects products on the market,” said Mashonganyika. “There are so many women farmers, especially in Africa, so when you begin to incorporate gender, we are increasing the scope of impact.”

Although actors such as seed producers or food processors may have no breeding expertise, Mashonganyika views their input as essential: “They are the ones that are at the mouthpiece of the market, they eventually take up the varieties and they multiply the seed, so they have very good information.”

One example is a collaboration with the National Agricultural Research Organization (NARO), Uganda, where representatives from private sector seed companies are being included to help breeders better understand their customers. “They give information about seed multiplication processes, and what makes a variety be considered for multiplication in seed systems.”

EiB has created a standardized tool to create product profiles, and 200 were submitted to the growing database in the first three months of the pilot period alone, including profiles submitted by 10 national agricultural research programs in Africa and Asia.

In addition to promoting the use of product profiles, a product manager is also involved ensuring communication and accountability throughout the development of new products.

“With product profiles we say a breeder should be accountable for delivering each product in a certain timeframe,” said Tawanda. “We always emphasize that a breeding program should have an annual product review process, because markets are dynamic, they are bound to change. This is a good habit to ensure that your products remain relevant and designed for impact.”

Although Mashonganyika is one of the first CGIAR product managers, a desire to see greater impact in the field is turning others in the same direction.

“I hope that in the near future we will see other CGIAR centers developing similar positions,” said Mashonganyika.