Skip to main content

research: Wheat

CIMMYT director general and cropping system scientist to receive the 2023 Glenn Anderson Lectureship Award

The Canadian Phytopathological Society (CPS) will bestow on Bram Govaerts, director general of CIMMYT, the 2023 Glenn Anderson Lectureship Award, during the upcoming International Congress of Plant Pathology (ICPP2023) in Lyon, France, on August 21, 2023.

Bram Govaerts, CIMMYT director general, participates in the World Food Prize and Borlaug Dialogue. (Photo: CIMMYT)

The award honors the legacy of Robert Glenn Anderson (1924-81), eminent Canadian agricultural scientist and former CIMMYT wheat research director who helped ignite in India the “green revolution,” a rapid modernization of agriculture during the 1960s-70s and by which that nation went from grain shortages and hunger to becoming a leading grain exporter.

A bioscience engineer and soil scientist who is a PhD graduate from Belgium’s Katholieke Universiteit Leuven and has worked in Africa, Asia, and Latin America, Govaerts will give the keynote address “Agrifood system for a food and nutrition secure world: From efficiency to resilience,” describing in part the relevance of CIMMYT and its partners’ work.

“Early warning and surveillance systems are key to building resilience in food insecure communities and regions,” said Govaerts. “Supporting this, in concert with national agricultural research systems and private partners, CIMMYT crop breeding programs yearly disseminate dozens of disease resistant, climate resilient varieties of maize, wheat, and dryland cereals, where they are most needed.”

“The Center’s science and partnerships have helped prevent the spread of deadly crop pests and diseases in sub-Saharan Africa and South Asia,” he added, “and we have new ‘Glenn Andersons’ who are doing exactly what is needed to strengthen global food security, with plant health innovations and systemic thinking.”

Borlaug’s wish: Take it to the farmer

Working with scientists, training specialists, extension agents, farmers, and communications and technology experts, a CIMMYT program led by Govaerts for over a decade in Mexico applied the admonition of Norman E. Borlaug, Nobel laureate and colleague of Anderson, to “take it to the farmer,” combining the right seed with the right conservation agriculture production practices embedded in integrated markets, while recognizing and incorporating farmer knowledge.

“Ongoing efforts of the Center and national and local partners are promoting the adoption of conservation agriculture-based sustainable intensification to transform food systems throughout the Global South” Govaerts explained. “The training offered, and the advisory systems supported by CIMMYT’s work aim to empower women and disadvantaged social groups, while offering opportunities for fulfilling livelihoods to a new generation of farmers who will grow nutritious food for all.”

A CIMMYT scientist since 2007 as a Post-doctoral Fellow, Maize and Wheat based Cropping Systems Management, and current director general, in 2014 Govaerts received the World Food Prize’s “Norman Borlaug Award for Field Research and Application from the World Food Prize” for the development and spread of sustainable agricultural systems. He is A.D. White Professor-at-Large at Cornell University and, in 2020, was elected a Fellow of the American Society of Agronomy (ASA) for outstanding contributions to the field of agronomy.

The Robert Glenn Anderson lecture series on the security of the world food supply was first given at joint meetings of the Canadian Phytopathological Society (CPS) and American Phytopathological Society (APS) in 1986 and an endowment fund was then established by the CPS. More recently, the Lecture has been given at the International Congresses of Plant Pathology (ICPP1998 to 2018).

As a Robert Glenn Anderson lecturer, Govaerts enters the hallowed company of other distinguished scientists who have been invited to give the address, including Norman E. Borlaug (1992); Per Pinstrup-Andersen, Emeritus Professor of Cornell University (2000), South African researcher Jennifer A. Thomson (2015); and late World Food Prize laureate and CIMMYT wheat director, Sanjaya Rajaram (2019).

For more information or interviews:

Ricardo Curiel
Communications manager to the director general
CIMMYT
r.curiel@cgiar.org

CIMMYT announces 2030 Strategy

The world’s food systems are under threat by escalating armed conflicts, economic stagnation, the effects of the climate crisis and natural resource degradation. Against this backdrop, the next seven years are crucial in meeting the challenges of keeping the world’s growing population fed and secure.

Recognizing that business as usual will not be sufficient, CIMMYT has embarked on a journey to proactively face the new challenges of the 21st century. This novel approach to agrifood systems is the core of CIMMYT’s 2030 Strategy, which has the potential to shape the future of agriculture.

Ethiopian Seed Enterprise maize crop for multiplying seedlings of DT maize. (Photo: Peter Lowe/CIMMYT)

“We understand that the challenges facing food security are complex, varied and rapidly changing. For instance, the effects of COVID-19 and Ukraine-Russia conflict on food systems are still being felt today. With that in mind, we set out to develop a strategy that is both robust and nimble. The best way to create a sustainable and inclusive strategy was to engage directly with CIMMYT scientists and staff, the people on the front lines of this effort to deliver food and nutrition security to the world,” said CIMMYT Director General Bram Govaerts.

Looking back to move forward

The first step in crafting the 2030 Strategy was looking at where does CIMMYT want the world to be in 2100. In answering this question, CIMMYT crafted a long-term vision of how it wants to engage in a changing world and achieve the transformation to a food and nutrition secure world within planetary boundaries. CIMMYT has integrated the use of foresight and specifically a set of 2030 Food and Agriculture scenarios to explore potential changes in intervention areas over the strategic period and help prepare engagements in different contexts across the globe. These scenarios are a decision-making tool that has underpinned the development of the strategy to ensure that it is context-driven and focused on the most pressing challenges facing the agrifood systems in which CIMMYT operates.

From the future CIMMYT looks back at its history and examines how its core business has evolved over the years to proactively meet ever-changing needs across the world.

At each stage of CIMMYT’s evolution, it has taken its strengths and the skills it has built and added to its experience, and expanded on what it delivers while maintaining the core strengths.

Norman Borlaug teaching trainees. (Photo: CIMMYT)

In CIMMYT’s earliest days, the mission was developing and improving germplasm and agronomic practices, then CIMMYT began working more closely with farmers (1980s), broadened emphasis in genetic improvements (2000), embarked on sustainable multidisciplinary projects (2010s), and most recently, advancing technologies in participatory innovation systems (2015-2022). All leading to the mission codified in the 2030 Strategy: accelerating food systems transformation by using the power of collective action.

Now, in 2023, CIMMYT’s progress is being shaped by the CGIAR mission statement: “To deliver science and innovation that advance the transformation of food, land, and water systems in a climate crisis.”

Building the Strategy

To define the 2030 Strategy, CIMMYT responded to the following core questions:

  • What does success look like?
  • Where can CIMMYT deliver the most value?
  • How can CIMMYT deliver value for communities?

“As an organization, we have concentrated on strategies that foster collaboration and adapt them for a non-profit international organization whose vision is not to grow as an institution but to deliver greater value for the communities they serve, to innovate for the end users of their products and to ensure a better future for our global community,” said Govaerts.

The tools used to develop the elements of this strategic plan leveraged the framework provided in the CGIAR Research and Innovation Strategy to guide the process. Staff from across the Center engaged in a consultative process to develop the objectives for following strategic components: Excellence in Science and Innovation, Excellence in Operations, Talent Management, Resource Mobilization, Partnership, and Influence.

Developing the Excellence in Science and Innovation component serves as an example of this collaborative, bottom-up approach. Planning was led by the Emerging Thought Leaders Group, made up of 24 early and mid-career scientists across the breadth of CIMMYT’s global and program portfolio. The group worked collaboratively with CIMMYT researchers and staff to first delineate the challenges facing agri-food systems and then workshopped solutions which now serve as the foundation of the 2030 Strategy.

Workshop participants study seed samples in CIMMYT’s Seed Health Laboratory. (Photo: Xochiquetzal Fonseca/CIMMYT)

“Each component complements the others,” said Govaerts. “This is our answer to the core questions. Only by working collectively can we initiate sustainable solutions that reach everyone.”

Together, the components create a network to support CIMMYT’s three pillars: Discovery (research and innovation), SystemDev (working collaboratively to innovate foundational systems), and Inc. (incubating startups and new ways of doing business in the agri-food system space).

CIMMYT is leading the way in shaping a sustainable and prosperous agricultural landscape

The goal to facilitate food security where sustainable agriculture is part of the solution to the climate crisis and agriculture provides an avenue to build household resilience and enables communities to pull themselves out of poverty requires the strategic use of resources. CIMMYT’s 2030 Strategy, built from the bottom up on a foundation over 50 years’ experience and the expertise of scientists, staff, and farmers maximizes resources, enhances dynamic partnerships, and both retains and recruits a world-class staff in a world of growing challenges to food security.

Read the 2030 Strategy: Science and Innovation for a Food and Nutrition Secure World: CIMMYT’s 2030 Strategy 

Hot, dry, windy events on the rise in Kansas wheat fields

Kansas is experiencing a record-breaking year for hot, dry, windy (HDW) — the nation’s largest winter wheat producer — hit worse than any other state. CIMMYT researchers act to avert food insecurity as temperatures climb, atmospheric pressure increases — generating faster and longer gusts of wind and unpredictable weather conditions.

Click here to read the full story.

 

Country moving forward from wheat importer to self-sufficiency

Wheat is critical to millions of households in Pakistan as it serves a dual role as a foundational part of nutritional security and as an important part of the country’s economy. Pakistan’s goal to achieve self-sufficiency in wheat production is more attainable with the release of 31 wheat varieties since 2021.

These new seeds will help the country’s 9 million hectares of cultivated wheat fields become more productive, climate resilient, and disease resistant—a welcome development in a region where climate change scenarios threaten sustained wheat production.

The varieties, a selection of 30 bread wheat and 1 durum wheat, 26 of which developed from wheat germplasm provided by the International Maize and Wheat Improvement Center (CIMMYT) were selected after rigorous testing of international nurseries and field trials by partners across Pakistan. During this period, three bread wheat varieties were also developed from local breeding programs and two varieties (one each of durum and bread wheat) were also developed from the germplasm provided by the ICARDA. These efforts are moving Pakistan closer to its goal of improving food and nutrition security through wheat production, as outlined in the Pakistan Vision 2025 and Vision for Agriculture 2030.

Harvesting wheat in Tandojam, Pakistan (Photo: CIMMYT)

Over multiple years and locations, the new varieties have exhibited a yield potential of 5-20% higher than current popular varieties for their respective regions and also feature excellent grain quality and attainable yields of over seven tons per hectare.

The new crop of varieties exhibit impressive resistance to leaf and yellow rusts, compatibility with wheat-rice and wheat-cotton farming systems, and resilience to stressors such as drought and heat.

Battling malnutrition

Malnutrition is rampant in Pakistan and the release of biofortified wheat varieties with higher zinc content will help mitigate its deleterious effects, especially among children and women. Akbar-2019, a biofortified variety released in 2019, is now cultivated on nearly 3.25 million hectares. Farmers like Akbar-2019 because of its 8-10% higher yields, rust resistance, and consumers report its good chapati (an unleavened flatbread) quality.

“It is gratifying seeing these new varieties resulting from collaborative projects between Pakistani wheat breeding programs and CIMMYT along with funding support from various donors (USAID, Bill & Melinda Gates Foundation, HarvestPlus, and FCDO) and the government of Pakistan,” said Ravi Singh, wheat expert and senior advisor.

Closing the yield gap between research fields and smallholder fields

Releasing a new variety is only the first step in changing the course of Pakistan’s wheat crop. The next step is delivering these new, quality seeds to markets quickly so farmers can realize the benefits as soon as possible.

Increasing evidence suggests the public sector cannot disseminate enough seeds alone; new policies must create an attractive environment for private sector partners and entrepreneurs.

Field monitoring wheat fields (Photo: CIMMYT)

“Pakistan has developed a fast-track seed multiplication program which engages both public and private sectors so the new varieties can be provided to seed companies for multiplication and provided to farmers in the shortest time,” said Javed Ahmad, Wheat Research Institute chief scientist.

Strengthening and diversifying seed production of newly released varieties can be done by decentralizing seed marketing and distribution systems and engaging both public and private sector actors. Marketing and training efforts need to be improved for women, who are mostly responsible for household level seed production and seed care.

A concerted effort to disseminate the improved seed is required, along with implementing conservation agriculture based sustainable intensification, to help Pakistan’s journey to self-sufficiency in wheat production.

Bram Govaerts appointed as CIMMYT Director General

Bram Govaerts, renowned scientist and leader, has been appointed as CIMMYT’s Director General for the period 2023-2028 as of July 1, 2023, after holding the position on an interim basis for two years and steering the organization through the unprecedented global challenges of the pandemic and ongoing food insecurity.

Under Govaerts’ leadership, CIMMYT has expanded its research portfolio and strengthened its work in key regions. Govaerts has also started an effort to streamline internal processes and operations to speed up CIMMYT’s response capacity and impact across the world.

Bram with Zamseed staff holding pro-vitamin A orange maize (Photo: Katebe Mapipo/CIMMYT)

Govaerts holds a PhD in Bioscience Engineering – Soil Science, a master’s degree in Soil Conservation and Tropical Agriculture, and a bachelor’s degree in Bioscience Engineering, all from Katholieke Universiteit Leuven, Belgium. He has also received multiple awards during his career: the Development Cooperation Prize from the Belgian Federal Government in 2003, the Norman Borlaug Award for Field Research and Application in 2014, the Premio Tecnoagro, awarded by an organization of 2,500 Mexican farmers in 2018, and Fellow of The American Society of Agronomy (ASA). In addition to leading CIMMYT, Govaerts is an A.D. White Professor-at-Large at Cornell University.

“With Bram’s appointment, I am excited and confident about CIMMYT’s future,” said Margaret Bath, Chair of CIMMYT’s Board of Trustees. “We look forward to many great days ahead for CIMMYT staff across the globe, who lift smallholder farmers and their communities to achieve better and more sustainable livelihoods and to ensure that food security is delivered, and human potential maximized.”

An Example of International Cooperation: China and CIMMYT

Awais Rasheed has established a high-throughput KASP molecular breeding platform and made outstanding contributions to promoting China-Pakistan cooperation. He has discovered and validated 90 KASP markers available for wheat breeding, accounting for 60 percent of similar markers internationally, which are widely used in China and 15 other countries.

Read the full story here.

CIMMYT Director General reaffirms commitment to Zambia

Honoring a legacy of innovative development in Zambia and looking forward to meeting the nation’s goals for food security, Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), along with CGIAR Board Chair Lindiwe Sibanda, visited facilities and met with southern Africa collaborators of the Southern Africa AID-I Rapid Delivery Hub on June 2 and 3, 2023.

Bram Govaerts visited field experiments with the head of science at Zamseed (Photo: Katebe Mapipo/CIMMYT)

“CIMMYT’s work in Zambia and the region is geared to help national governments build resilience to climate change, diversify maize-based farming systems and improve productivity and production to address reduce hunger and poverty,” said Govaerts.
Southern Africa AID-I Rapid Delivery Hub aims to provide critical support to over 3 million farming households in Malawi, Tanzania and Zambia via targeted interventions for demand driven seed scaling, improved soil health and fertilizer use efficiency, and rapid delivery of critical agricultural advisory services deep into rural communities.

CIMMYT research and innovation supports Zambia’s medium-term goal of “Socio-Economic Transformation for Improved Livelihoods” and its 2030 Vision of becoming “A Prosperous Middle-Income Nation by 2030.”

Govaerts and Sibanda toured Afriseed’s factory in Lusaka and its wheat field trials in Ngwerere. They also attended a field demonstration of Purdue Improved Crop Storage bags in the nearby district of Chongwe organized by the Catholic Relief Services, a local partner promoting low-cost post-harvest technologies for small-scale farmers in Zambia.
The delegation visited private partner Zamseed, a company commercializing and releasing CIMMYT-bred, Fall Armyworm tolerant maize seeds.

Southern Africa AID-I Rapid Delivery Hub has enabled the release of nearly 10,000 metric tons of certified maize and legume seed, which have been harvested by Zambian seed companies and community-based seed organizations, directly benefiting a million semi-subsistence farmers.

Govaerts also hailed Zambia’s commitment to creating a transparent seed system. “Thanks to this conducive policy environment, Zambia is a major hub in sub-Saharan Africa for hybrid maize seed production and export in Africa.”

Kevin Kabunda opened a partner meeting in which Bram Govaerts met AID-I farmers and partners from seed companies, educational institutions, CGIAR centers, and micro-finance and tech companies. (Photo: Katebe Mapipo/CIMMYT)

Besides Southern Africa AID-I Rapid Delivery Hub, CIMMYT and the Zambia Agricultural Research Institute have been collaborating for over two decades along with public and private partners in Zambia through different investments designed to create sustainable interventions that strengthen food systems and directly reach small-scale farmers.

CIMMYT and BWMRI host international training program on surveillance and management strategies for wheat blast

The devastating disease wheat blast is a threat to crop production in many South Asian countries. In Bangladesh, it was first identified in seven southern and southwestern districts in 2016, and later spread to 27 others causing significant damage. The International Maize and Wheat Improvement Center (CIMMYT) is working with the Bangladesh Wheat and Maize Research Institute (BWMRI) and other national partners to conduct research and extension activities to mitigate the ongoing threat.

From March 1-10, 2023, a group of 46 wheat researchers, government extension agents, and policy makers from ten countries — Bangladesh, Brazil, China, Ethiopia, India, Japan, Mexico, Nepal, Sweden, and Zambia — gathered in Jashore, Bangladesh to learn about and exchange experiences regarding various wheat diseases, particularly wheat blast. Following the COVID-19 pandemic, this was the first in-person international wheat blast training held in Bangladesh. It focused on the practical application of key and tricky elements of disease surveillance and management strategies, such as resistance breeding and integrated disease management.

Training participants get hands-on practice using a field microscope, Bangladesh. (Photo: Ridoy/CIMMYT)

“This is an excellent training program,” said Shaikh Mohammad Bokhtiar, executive chairman of the Bangladesh Agriculture Research Council (BARC), during the opening session.  “Participants will learn how to reduce the severity of the blast disease, develop and expand blast resistant varieties to farmers, increase production, and reduce imports.”

This sentiment was echoed by Golam Faruq, director general of BWMRI. “This program helps in the identification of blast-resistant lines from across the globe,” he said. “From this training, participants will learn to manage the devastating blast disease in their own countries and include these learnings into their national programs.”

Hands-on training

The training was divided into three sections: lectures by national and international scientists; laboratory and field experiment visits; and trips to farmers’ fields. Through the lecture series, participants learned about a variety of topics including disease identification, molecular detection, host-pathogen interaction, epidemiology and integrated disease management.

Hands-on activities were linked to working on the Precision Phenotyping Platform (PPP), which involves the characterization of more than 4,000 wheat germplasm and releasing several resistant varieties in countries vulnerable to wheat blast. Participants practiced taking heading notes, identifying field disease symptoms, tagging, and scoring disease. They conducted disease surveillance in farmers’ fields in Meherpur and Faridpur districts — both of which are extremely prone to wheat blast — observing the disease, collecting samples and GPS coordinates, and completing surveillance forms.

Muhammad Rezaul Kabir, senior wheat breeder at BWMRI, explains the Precision Phenotyping Platform, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

Participants learned how to use cutting-edge technology to recognize blast lesions in leaves using field microscopes. They went to a pre-installed spore trapping system in a farmer’s field to learn about the equipment and steps for collecting spore samples, observing them under a compound microscope, and counting spores. They also visited the certified seed production fields of Shawdesh Seed, a local company which has played an important role in promoting wheat blast resistant varieties BARI Gom 33 and BWMRI Gom 3 regionally, and Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU) in Gazipur to see current wheat blast research in action.

Blast-resistance in Bangladesh

“I am so happy to see the excellent infrastructure and work ethics of staff that has made possible good science and impactful research come out of the PPP,” said Aakash Chawade, associate professor in Plant Breeding at the Swedish University of Agricultural Sciences. “Rapid development of blast-resistant varieties and their dissemination will help Bangladesh mitigate the effects of wheat blast, not only inside the country but by supporting neighboring ones as well.”

Training participants scout and score disease in a blast-infected wheat field, Bangladesh. (Photo: Md. Harun-Or-Rashid/CIMMYT)

“Besides the biotic and abiotic challenges faced in wheat production, climate change and the Russia-Ukraine crisis are further creating limitations to wheat production and marketing,” said Pawan Kumar Singh, head of Wheat Pathology at CIMMYT and lead organizer of the training. “Due to the development of blast-resistant wheat varieties and its commercial production under integrated disease management practices, the domestic production of wheat in Bangladesh has increased and there is increased interest from farmers in wheat.”

Dave Hodson, a principal scientist at CIMMYT and one of the training’s resource speakers, added: “This is a remarkable success that researchers developed two blast resistant varieties in Bangladesh urgently. It was only achievable because of the correct measures taken by the researchers and support of Government policies.”

However, there are still some barriers to widespread adoption of these varieties. As such, in parallel to other activities, a team from Bangladesh Agricultural University (BAU) joined the field trip to meet local farmers and conduct research into the socio-economic factors influencing the adoption and scaling of relevant wheat varieties.

Wheat output in Africa and South Asia will suffer severely from climate change by 2050, modelling study shows

Leading crop simulation models used by a global team of agricultural scientists to simulate wheat production up to 2050 showed large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.

The model predicted average declines in wheat yields of 15% in African countries and 16% in South Asian countries by mid-century, as described in the 2021 paper “Climate impact and adaptation to heat and drought stress of regional and global wheat production,” published in the science journal Environmental Research Letters. Climate change will lower global wheat production by 1.9% by mid-century, with the most negative impacts occurring in Africa and South Asia, according to the research.

“Studies have already shown that wheat yields fell by 5.5% during 1980-2010, due to rising global temperatures,” said Diego N.L. Pequeno, wheat crop modeler at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the paper. “We chose several models to simulate climate change impacts and also simulated wheat varieties that featured increased heat tolerance, early vigor against late season drought, and late flowering to ensure normal biomass accumulation. Finally, we simulated use of additional nitrogen fertilizer to maximize the expression of these adaptive traits.”

Wheat fields in Ankara, Turkey, where data was used for crop model simulation (Photo: Marta Lopes/CIMMYT)

The wheat simulation models employed — CROPSIM-CERES, CROPSIM, and Nwheat within the Decision Support System for Agrotechnology Transfer, DSSAT v.4.6 — have been widely used to study diverse cropping systems around the world, according to Pequeno.

“The DSSAT models simulated the elevated CO2 stimulus on wheat growth, when N is not limiting,” he said. “Our study is the first to include combined genetic traits for early vigor, heat tolerance, and late flowering in the wheat simulation.”

Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. The DSSAT wheat models simulate the impact of temperature, including heat stress, water balance, drought stress, or nitrogen leaching from heavy rainfall.

“Generally, small and low-volume wheat producers suffered large negative impacts due to future climate changes, indicating that less developed countries may be the most affected,” Pequeno added.

Climate change at high latitudes (France, Germany, and northern China, all large wheat-producing countries/region) positively impacted wheat grain yield, as warming temperatures benefit wheat growth through an extended early spring growing season. But warmer temperatures and insufficient rainfall by mid-century, as projected at the same latitude in Russia and the northwestern United States, will reduce rainfed wheat yields — a finding that contradicts outcomes of some previous studies.

At lower latitudes that are close to the tropics, already warm, and experiencing insufficient rainfall for food crops and therefore depending on irrigation (North India, Pakistan, Bangladesh), rising heat will damage wheat crops and seriously reduce yields. China, the largest wheat producer in the world, is projected to have mixed impacts from climate change but, at a nation-wide scale, the study showed a 1.2% increase in wheat yields.

“Our results showed that the adaptive traits could help alleviate climate change impacts on wheat, but responses would vary widely, depending on the growing environment and management practices used,” according to Pequeno. This implies that wheat breeding for traits associated with climate resilience is a promising climate change adaptation option, but its effect will vary among regions. Its positive impact could be limited by agronomical aspects, particularly under rainfed and low soil N conditions, where water and nitrogen stress limit the benefits from improved cultivars.

Extreme weather events could also become more frequent. Those were possibly underestimated in this study, as projections of heat damage effects considered only changes in daily absolute temperatures but not possible changes in the frequency of occurrence. Another limitation is that most crop models lack functions for simulating excess water (e.g., flooding), an important cause of global wheat yield variability.

This study was supported by the CGIAR Research Program on Wheat agri-food systems (CRP WHEAT; 2012-2021), the CGIAR Platform for Big Data in Agriculture, the International Wheat Yield Partnership (IWYP115 Project), the Bill & Melinda Gates Foundation, the World Bank, the Mexican government through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, and the International Treaty of Plant Genetic Resources for Food and Agriculture and its Benefit-sharing Fund for co-funding the project, with financial support from the European Union.

CIMMYT at the Group of 20

The G20 MACS is composed of the ministries or governmental bodies responsible for agricultural research in each G20 state and leading research institutions, including CIMMYT as part of CGIAR, which strategically advise these decision makers. The G20 MACS addresses diverse global challenges in agriculture affecting the people and planet through joint agricultural research and innovation strategies and implementation of initiatives under new cooperation formats.

“CIMMYT is working for a world with resilient agri-food systems and protecting biodiversity with a multi-crop, multi-institutional, and multi-disciplinary approach,” said Govaerts during the recent MACS meeting. “70% of wheat and over 50% of maize varieties sown worldwide are derived from CIMMYT materials, and we are improving livelihoods in over 50 countries.”

Wheat and maize plots at the CIMMYT experimental station in El Batån, Mexico. (Photo: Alfonso Cortés/CIMMYT)

In its efforts to ensure biodiversity, CGIAR genebanks hold over 770,000 accessions, of which 80% are immediately accessible. As an added measure of security, duplicates of 78% of the seeds reside at the Svalbard Global Seed Vault.

Because wheat provides 20% of the global population’s daily protein intake, protecting it from disease, pests, and the effects of climate change is paramount. And to keep pace with the growing population, yields must increase in sustainable manners. To meet those challenges, CIMMYT coordinates the International Wheat Improvement Network, which involves hundreds of partners and testing sites worldwide. The Network has established a global phenotyping network, with platforms hosted locally so that environments are optimal for specific trait phenotyping.

Battling pests

In efforts to combat the threat of wheat blast, CIMMYT has established a regional collaboration which includes testing centers (over 15,000 lines tested), surveillance networks, and the release of blast resistant varieties in India, Nepal, and Bangladesh. In addition, CIMMYT has trained 100 extension agents from 10 countries in wheat blast identification and surveillance protocols.

Examining Ug99 stem rust symptoms on wheat. (Photo: Petr Kosina/CIMMYT)

Fall armyworm, is a voracious pest in both Africa and Asia, has caused up to $13 billion per year in crop losses in sub-Saharan Africa since 2016, threatening the livelihoods of millions of farmers throughout the region. CIMMYT has developed hybrid maize varieties resistant to this pest by identifying and validating sources of native genetic resistance.

International Year of the Millet: 2023

Within its presence in CGIAR, CIMMYT is working in networks with African NARS and private sector partners to share resources and knowledge and innovating sustainable crop and crop-livestock systems. This will directly support the Millets And Other Ancient Grains International Research Initiative (MAHARISHI), inaugurated at the G20 MACS conference. The initiative facilitates research collaboration on climate-resilient and nutritious grains, including millets and other underutilized grains. CIMMYT is also initiating and supporting crop improvement programs for sorghum, millet, groundnut, pigeon pea, and chickpea, in a model that empowers the national research centers.

Malawian farmer in her groundnut plot under conservation agriculture. (Photo: T. Samson/CIMMYT)

This work dovetails with the recently announced Accelerated Innovation Delivery Initiative (AID-I), in which CIMMYT is catalyzing efforts to scale up existing and high potential innovations, technologies, and business models as opposed to starting new ones in Malawi, Tanzania, and Zambia.

Creating sustainable solutions

CIMMYT is also pioneering the development of a hub network which supports adaptive research and integrated development for sustainable agrifood systems. With particular attention paid to inclusivity, these hubs are changing the perception of women’s roles in agriculture.

“CIMMYT is building towards future-proof solutions that foster empowerment through raising family income and food security, working with partners in the Global South for the benefit of the Global South,” said Govaerts.

Inauguration of the international soil-borne pathogens research & development center in Ankara, Turkey

Staff of the International Soil Borne Pathogens Research and Development Center along with the Minister, deputy ministers, TAGEM’s DG, and high-level officials of the Ministry of Agriculture Forestry. (Photo: TAGEM)

Soil-borne pathogens (SBP) are a serious threat to Turkey’s food security, especially as climate extremes (temperature, precipitations) become more commonplace. SBP are an array of specific adverse effects, such as root rot, wilt, yellowing, and dwarfing caused by fungi, bacteria, viruses, and nematodes. These pathogens can cause 50-75% yield loss in crops.

On May 2, 2023, the International Maize and Wheat Improvement Center (CIMMYT) Country Representative in Turkey, Abdelfattah Dababat, joined the inauguration ceremony of the International Soil-Borne Pathogens Research & Development Center (ISBPRDC).

Vahit Kirißci, Turkish Minister of Agriculture and Forestry, inaugurated the Center, which is the first of its kind in the Central West Asia and North Africa (CWANA) region dedicated to advancing research on SBPs and developing innovative solutions to control and prevent their spread.

The opening ceremony took place at the Directorate of Plant Protection Central Institute working under the General Directorate of Agricultural Research and Policies (TAGEM), and it was attended by deputy ministers, TAGEM’s DG, and high-level officials of the Ministry of Agriculture and Forestry.

Serving under the auspices of the General Directorate of Agricultural Research and Policies (TAGEM), part of the Turkish Minister of Agriculture and Forestry, the ISBPRDC will meet international standards for sanitary conditions.

CGIAR and TAGEM mutually supported the SBP CIMMYT Turkey program by establishing and funding the ISBPRDC.

Bringing partners together

CIMMYT is signing a collaboration agreement with the ISBPRDC to facilitate knowledge exchange and technology transfer between the two institutions, which will support joint research and development activities aimed at improving crop health and productivity.

“The most effective way forward to battle against threats to food security is through cooperation,” said Dababat. “This collaboration is a great opportunity for Turkey’s seed industry to maintain its competitive advantage in foreign markets.”

Professor Vahit Kirißci, Turkish Minister of Agriculture and Forestry, TAGEM’s DG, CIMMYT’s Representative, and high-level officials from the Ministry of Agriculture and Forestry. (Photo: TAGEM)

Thirty-five scientists and technicians will work at the ISBPRDC and the institute will act as an umbrella for all SBP research in Turkey. Bahri Dağdaß International Agricultural Research Institute (BDIARI), the Transitional Zone Agricultural Research Institute (TZARI), and the Plant Protection Central Research Institute (PPCRI) with offices in Konya, Eskisehir, and Ankara, respectively, will support the ISBPRDC center and collaborate with the SBP program at CIMMYT to deliver high-yielding wheat germplasm that is resistant to SBP.

Among new programs at the center are the development of a robust surveillance system to track pathogens, a genebank for germplasm, and screening facilities for resistance against SBP.