The Pakistan-China laboratory has developed wheat varieties that have shown an impressive 8-10% yield increase over local varieties, and CIMMYT has expressed interest in collaborating with the laboratory to further strengthen wheat variety development efforts.
Staff of the Nepal Seed and Fertilizer (NSAF) project conducted a three-day “training of trainers” workshop on integrated soil fertility management and related practices for commercial rice farming, for 50 agricultural technicians from 50 farm cooperatives in districts of mountainous midwestern Nepal and its lowland Terai Region.
Held in Nepalgunj, midwestern Nepal, the workshop focused on the “4Rs” for soil fertilization—right source, right rate, right time, and right place—along with other best farming and soil nutrient stewardship practices for rice-based farming systems.
“Subject matter was comprehensive, covering variety selection, transplanting, weeding, management of nursery beds, fertilizer, irrigation, controlling pests and diseases and proper handling of rice grain after harvest,” said Dyutiman Choudhary, NSAF project coordinator and scientist at CIMMYT. “Topics relating to the integrated management of soil fertility included judicious application of organic and inorganic fertilizer, composting and the cultivation of green manure crops such as mungbean and dhaincha, a leguminous shrub, were also included.”
Support to sustainably boost Nepal’s crop yields
With funding from the United States Agency for International Development (USAID), the NSAF project promotes the use of improved seeds and integrated soil fertility management technologies, along with effective extension, including the use of digital and information and communication technologies.
Agriculture provides livelihoods for two-thirds of Nepal’s predominantly rural population, largely at a subsistence-level. Rice is the nation’s staple food, but yields are relatively low, requiring annual imports worth some $300 million, to satisfy domestic demand.
Workshop participants attended sessions on digital agri-advisories using the Geokrishi and PlantSat platforms and received orientation regarding gender and social inclusion concerns and approaches—crucial in a nation where 70% of smallholder farmers are women and exclusion of specific social groups remains prevalent.
“Topics in that area included beneficiary selection, identifying training and farmer field day participants, and support for access to and selection of improved seed and small-scale farm equipment,” explained Choudhary. “The participants will now go back to their cooperatives and train farmers, local governments and agrovets on improved rice production.”
Nepal scientists and national research programs have partnered with CIMMYT for more than three decades to breed and spread improved varieties of maize and wheat and test and promote more productive, resource-conserving cropping systems, including rotations involving rice.
On July 17-18, 2023, 87 wheat scientists gathered to learn about new approaches and methods for wheat improvement in Faisalabad, Pakistan. CIMMYT and the Wheat Research Institute, Faisalabad (WRI-FSD) jointly organized a two-day training. The course covered two topics: high throughput genotyping technologies and high throughput phenotyping platforms. The trainees, who were able to attend in person or remotely and 27% of whom were women, hailed from 17 NARES partners across Pakistan.
Trainees at Faisalabad, Pakistan. (Photo: CIMMYT)
After being welcomed by the Director General of Ayub Agricultural Research Institute (AARI), Akhtar Ali, and CIMMYT’s Country Representative, TP Tiwari, participants received an update on the status of wheat in Pakistan from Muhammad Sohail, national wheat coordinator for the Pakistan Agricultural Research Council (PARC). Subsequently, WRI-FSD Director, Javed Ahmed, discussed wheat research in Punjab, where over 70% wheat is grown in Pakistan. Kevin Pixley, interim director of CIMMYT’s Global Wheat Program, joined the proceedings remotely for a conversation about CIMMYT’s and CGIAR’s collaboration with NARES. Participants discussed the model’s successes, bottlenecks, the role of NARES, and the potential for capacity development. The conversation generated broad interest and suggestions for enhancing the partnership’s effectiveness. Akhtar Ali, Muhammad Sohail, and Javed Ahmed all spoke very highly about CIMMYT’s support in Pakistan.
This event was organized as part of a collaborative project entitled “Rapid development of climate resilient wheat varieties for South Asia using genomic selection” that is jointly managed by Kansas State University and CIMMYT with funding from the USAID Feed the Future program.
“Training emphasized the need for an output-oriented researcher that covered the development of climate-resilient wheat varieties, given the environmental challenges we are experiencing like, drought and heat, and highlighted the importance of innovative methodologies and advanced tools for high throughput phenotyping and genotyping for sustainable and resilient wheat production in Pakistan” said Muhammad Ishaq, a senior research officer and one of the training participants from Kohat Research Station, Khyber Pakhtunkhwa.
At the conclusion of the training, Javed, direct of WRI Faisalabad, commended CIMMYT’s support and suggested continuing the pace of training. Dr. Tiwari stressed the importance of such efforts will help Pakistan’s scientists develop and deploy climate resilient, impactful wheat varieties to boost wheat production and reduce wheat imports in the country.
One of the world’s largest crop pathogen surveillance systems is set to expand its analytic and knowledge systems capacity to protect wheat productivity in food vulnerable areas of East Africa and South Asia.
Researchers announced the Wheat Disease Early Warning Advisory System (Wheat DEWAS), funded through a $7.3 million grant from the Bill & Melinda Gates Foundation and the United Kingdom’s Foreign, Commonwealth & Development Office, to enhance crop resilience to wheat diseases.
The project is led by David Hodson, principal scientist at CIMMYT, and Maricelis Acevedo, research professor of global development and plant pathology at Cornell University’s College of Agriculture and Life Sciences. This initiative brings together research expertise from 23 research and academic organizations from sub-Saharan Africa, South Asia, Europe, the United States and Mexico.
Wheat DEWAS aims to be an open and scalable system capable of tracking important pathogen strains. The system builds on existing capabilities developed by the research team to provide near-real-time model-based risk forecasts and resulting in accurate, timely and actionable advice to farmers. As plant pathogens continue to evolve and threaten global food production, the system strengthens the capacity of countries to respond in a proactive manner to transboundary wheat diseases.
The system focuses on the two major fungal pathogens of wheat known as rust and blast diseases. Rust diseases, named for a rust-like appearance on infected plants, are hyper-variable and can significantly reduce crop yields when they attack. The fungus releases trillions of spores that can ride wind currents across national borders and continents and spread devastating epidemics quickly over vast areas.
Wheat blast, caused by the fungus Magnaporte oryzae Tritici, is an increasing threat to wheat production, following detection in both Bangladesh and Zambia. The fungus spreads over short distances and through the planting of infected seeds. Grains of infected plants shrivel within a week of first symptoms, providing little time for farmers to take preventative actions. Most wheat grown in the world has limited resistance to wheat blast.
“New wheat pathogen variants are constantly evolving and are spreading rapidly on a global scale,” said Hodson, principal investigator for Wheat DEWAS. “Complete crop losses in some of the most food vulnerable areas of the world are possible under favorable epidemiological conditions. Vigilance coupled with pathogen-informed breeding strategies are essential to prevent wheat disease epidemics. Improved monitoring, early warning and advisory approaches are an important component for safeguarding food supplies.”
Previous long-term investments in rust pathogen surveillance, modelling, and diagnostics built one of the largest operational global surveillance and monitoring system for any crop disease. The research permitted the development of functioning prototypes of advanced early warning advisory systems (EWAS) in East Africa and South Asia. Wheat DEWAS seeks to improve on that foundation to build a scalable, integrated, and sustainable solution that can provide improved advanced timely warning of vulnerability to emerging and migrating wheat diseases.
“The impact of these diseases is greatest on small-scale producers, negatively affecting livelihoods, income, and food security,” Acevedo said. “Ultimately, with this project we aim to maximize opportunities for smallholder farmers to benefit from hyper-local analytic and knowledge systems to protect wheat productivity.”
The system has already proven successful, contributing to prevention of a potential rust outbreak in Ethiopia in 2021. At that time, the early warning and global monitoring detected a new yellow rust strain with high epidemic potential. Risk mapping and real-time early forecasting identified the risk and allowed a timely and effective response by farmers and officials. That growing season ended up being a production record-breaker for Ethiopian wheat farmers.
While wheat is the major focus of the system, pathogens with similar biology and dispersal modes exist for all major crops. Discoveries made in the wheat system could provide essential infrastructure, methods for data collection and analysis to aid interventions that will be relevant to other crops.
CIMMYT targets some of the world’s most pressing problems: ending poverty, ensuring food for the future, mitigating climate change and improving the lives of farmers and consumers (especially women). CIMMYT is a CGIAR Research Center and has long been the world’s leading center for research on maize and wheat. This research capacity is being harnessed to achieve the crucial goals of climate resilience, and food and nutrition security.
Most of the world’s people depend on annual grain crops for their survival. Yet some of the world’s poorest men and women produce cereals. Annual grain farming has exacerbated climate change. The world’s great challenges of achieving climate resilience and nutrition security are being addressed by focusing CIMMYT’s research and development (R&D) on maize, and wheat, as well as on underutilized grain and legume crops.
Highlights from the 2022 Annual Report:
Annual cereal farming tends to release carbon into the atmosphere, while degrading the soil. Improving the soil takes years, and the high annual variation in weather demands long-term experiments. Field trials by CIMMYT over many years show that farmers can return carbon to the soil by using minimum tillage, rotating cereals with legumes, and by applying animal manure and strategic amounts of nitrogen fertilizer. As soil fertility improves, so do farmers’ yields.
Eleven million farmers in India alone produce maize, usually without irrigation, exposing families to climate-related disaster. Twenty new hybrids bred by CIMMYT out-perform commercial maize, even in drought years. One thousand tons of this heat-tolerant maize seed have now been distributed to farmers across South Asia.
Farmer Yangrong Pakhrin shells maize on his verandah in Gharcau, Kanchanpur, Nepal. (Photo: Peter Lowe/CIMMYT)
Some wheat is rich in zinc and iron, which prevent anemia, especially in children. Yet naturally-occurring phytic acid in wheat blocks the body’s absorption of these minerals. A technique developed by CIMMYT lowers the cost of assaying phytic acid, so plant breeders in developing countries can identify promising lines of wheat faster. CIMMYT is also helping to reduce food imports by learning how other crops, like cassava and sorghum, can be blended with wheat to make flours that consumers will accept.
Some wheat hotspots are warm, dry, and subject to plant diseases. CIMMYT collaborates with plant breeders worldwide through the International Wheat Improvement Network (IWIN) to test promising new wheat lines in these tough environments. As more places become warmer and drier with climate change, CIMMYT and allies are developing wheat varieties that will thrive there.
Harvesting more maize in the future will depend on higher yields, not on planting more land. In plant breeding programs in Africa, South Asia and Latin America, CIMMYT and partners are already developing maize varieties and hybrids that will be released in just a few years. A review of these efforts reveals that annual yield increases will be about twice the rate achieved from 1973 to 2012.
Sorghum, millets, pigeon pea, chickpea and groundnuts have been favorite food crops in Africa for centuries. They are already adapted to warm, dry climates. CIMMYT is now working with national research programs to ensure that new crop varieties have the traits that male and female farmers need. Seed systems are being organized to produce more of Africa’s preferred crops.
A group member harvests groundnut in Tanzania. (Photo: Susan Otieno/CIMMYT)
Researchers can only breed new crop varieties if someone saves the old ones from extinction. CIMMYT does that with its world-class collection of wheat and maize seed. In 2022, CIMMYT’s two separate wheat and maize germplasm banks were combined into one. Modern techniques, such as vacuum-sealed seed packets and QR codes, allow rapid response to requests for seed from plant breeders around the world.
CIMMYT is helping Nepali farmers to plant maize in the lowlands, in the spring, when most land lies fallow. In 2022, CIMMYT provided training and investment to 2,260 farmers (35% women), who earned, on average, an additional $367 in one year. The added income allowed these farmers to invest in health care and schooling for their children.
Mexican farmers are saving money, harvesting more and selling their grain more easily. Some 4,000 farmers are now selling on contract to food manufacturing companies. The farmers lower production costs by using CIMMYT innovations in irrigation, fertilizer application and ecological pest control. Yields increase, the soil improves, and farmers find a ready market for their harvest.
The stories we have highlighted in this article are just some of the ones included in the Annual Report. See the full text of all the stories in “Harvesting Success” to learn how CIMMYT scientists are doing some of the most important research, for some of the world’s best causes.
India can applaud a hallmark in national food production: in 2023, the harvest of wheat—India’s second most important food crop—will surpass 110 million tons for the first time.
This maintains India as the world’s number-two wheat producer after China, as has been the case since the early 2000s. It also extends the wheat productivity jumpstart that begun in the Green Revolution—the modernization of India’s agriculture during the 1960s-70s that allowed the country to put behind it the recurrent grain shortages and extreme hunger of preceding decades.
“Newer and superior wheat varieties in India continually provide higher yields and genetic resistance to the rusts and other deadly diseases,” said Distinguished Scientist Emeritus at CIMMYT, Ravi Singh. “More than 90 percent of spring bread wheat varieties released in South Asia in the last three decades carry CIMMYT breeding contributions for those or other valued traits, selected directly from the Center’s international yield trials and nurseries or developed locally using CIMMYT parents.”
Wheat grain yield in Indian farmers’ fields rose yearly by more than 1.8 percent—some 54 kilograms per hectare—in the last decade, a remarkable achievement and significantly above the global average of 1.3 percent. New and better wheat varieties also reach farmers much sooner, due to better policies and strategies that speed seed multiplication, along with greater involvement of private seed producers.
“The emergence of Ug99 stem rust disease from eastern Africa in the early 2000s and its ability to overcome the genetic resistance of older varieties drove major global and national initiatives to quickly spread the seed of newer, resistant wheat and to encourage farmers to grow it,” Singh explained. “This both protected their crops and delivered breeding gains for yield and climate resilience.”
CIMMYT has recently adopted an accelerated breeding approach that has reduced the breeding cycle to three years and is expected to fast-track genetic gains in breeding populations and hasten delivery of improvements to farmers. The scheme builds on strong field selection and testing in Mexico, integrates genomic selection, and features expanded yield assays with partner institutions. To stimulate adoption of newer varieties, the Indian Institute of Wheat and Barley Research (IIWBR, of the Indian Council of Agricultural Research, ICAR) operates a seed portal that offers farmers advanced booking for seed of recently released and other wheat varieties.
Private providers constitute another key seed source. In particular, small-scale seed producers linked to the IIWBR/ICAR network have found a profitable business in multiplying and marketing new wheat seed, thus supporting the replacement of older, less productive or disease susceptible varieties.
Farm innovations for changing climates and resource scarcities
Following findings from longstanding CIMMYT and national studies, more Indian wheat farmers are sowing their crops weeks earlier so that the plants mature before the extreme high temperatures that precede the monsoon season, thus ensuring better yields.
New varieties DBW187, DBW303, DBW327, DBW332 and WH1270 can be planted as early as the last half of October, in the northwestern plain zone. Recent research by Indian and CIMMYT scientists has identified well-adapted wheat lines for use in breeding additional varieties for early sowing.
Resource-conserving practices promoted by CIMMYT and partners, such as planting wheat seed directly into the unplowed fields and residues from a preceding rice crop, shave off as much as two weeks of laborious plowing and planking.
Weeds in zero-tillage wheat in India. (Photo: Petr Kosina/CIMMYT)
“This ‘zero tillage’ and other forms of reduced tillage, as well as straw management systems, save the time, labor, irrigation water and fuel needed to plant wheat, which in traditional plowing and sowing requires many tractor passes,” said Arun Joshi, CIMMYT wheat breeder and regional representative for Asia and managing director of the Borlaug Institute for South Asia (BISA). “Also, letting rice residues decompose on the surface, rather than burning them, enriches the soil and reduces seasonal air pollution that harms human health in farm communities and cities such as New Delhi.”
Sustainable practices include precision levelling of farmland for more efficient irrigation and the precise use of nitrogen fertilizer to save money and the environment.
Science and policies ensure future wheat harvests and better nutrition
Joshi mentioned that increased use of combines has sped up wheat harvesting and cut post-harvest grain losses from untimely rains caused by climate change. “Added to this, policies such as guaranteed purchase prices for grain and subsidies for fertilizers have boosted productivity, and recent high market prices for wheat are convincing farmers to invest in their operations and adopt improved practices.”
To safeguard India’s wheat crops from the fearsome disease wheat blast, native to the Americas but which struck Bangladesh’s wheat fields in 2016, CIMMYT and partners from Bangladesh and Bolivia have quickly identified and cross-bred resistance genes into wheat and launched wheat disease monitoring and early warning systems in South Asia.
“More than a dozen wheat blast resistant varieties have been deployed in eastern India to block the disease’s entry and farmers in areas adjoining Bangladesh have temporarily stopped growing wheat,” said Pawan Singh, head of wheat pathology at CIMMYT.
Building on wheat’s use in many Indian foods, under the HarvestPlus program CIMMYT and Indian researchers applied cross-breeding and specialized selection to develop improved wheats featuring grain with enhanced levels of zinc, a micronutrient whose lack in Indian diets can stunt the growth of young children and make them more vulnerable to diarrhea and pneumonia.
“At least 10 such ‘biofortified’ wheat varieties have been released and are grown on over 2 million hectares in India,” said Velu Govindan, CIMMYT breeder who leads the Center’s wheat biofortification research. “It is now standard practice to label all new varieties for biofortified traits to raise awareness and adoption, and CIMMYT has included high grain zinc content among its primary breeding objectives, so we expect that nearly all wheat lines distributed by CIMMYT in the next 5-8 years will have this trait.”
A rigorous study published in 2018 showed that, when vulnerable young children in India ate foods prepared with such zinc-biofortified wheat, they experienced significantly fewer days of pneumonia and vomiting than would normally be the case.
Celebrating joint achievements and committing for continued success
The April-June 2018 edition of the “ICAR Reporter” newsletter called the five-decade ICAR-CIMMYT partnership in agricultural research “…one of the longest and most productive in the world…” and mentioned mutually beneficial research in the development and delivery of stress resilient and nutritionally enriched wheat, impact-oriented sustainable and climate-smart farming practices, socioeconomic analyses, and policy recommendations.
Speaking during an August 2022 visit to India by CIMMYT Director General Bram Govaerts, Himanshu Pathak, secretary of the Department of Agricultural Research and Education (DARE) of India’s Ministry of Agriculture and Farmers Welfare and Director General of ICAR, “reaffirmed the commitment to closely work with CIMMYT and BISA to address the current challenges in the field of agricultural research, education and extension in the country.”
“The ICAR-CIMMYT collaboration is revolutionizing wheat research and technology deployment for global food security,” said Gyanendra Singh, director, ICAR-IIWBR. “This in turn advances global peace and prosperity.”
India and CIMMYT wheat transformers meet in India in February, 2023. From left to right: Two students from the Indian Agricultural Research Institute (IARI); Arun Joshi, CIMMYT regional representative for Asia; Rajbir Yadav, former Head of Genetics, IARI; Gyanendra Singh, Director General, Indian Institute of Wheat and Barley Research (IIWBR); Bram Govaerts, CIMMYT director general; Harikrishna, Senior Scientist, IARI. (Photo: CIMMYT)
According to Govaerts, CIMMYT has concentrated on strategies that foster collaboration to deliver greater value for the communities both ICAR and the Center serve. “The way forward to the next milestone — say, harvesting 125 million tons of wheat from the same or less land area — is through our jointly developing and making available new, cost effective, sustainable technologies for smallholder farmers,” he said.
Wheat research and development results to date, challenges, and future initiatives occupied the table at the 28th All India Wheat & Barley Research Workers’ Meeting, which took place in Udaipur, state of Rajasthan, August 28-30, 2023, and which ICAR and CIMMYT wheat scientists attended.
Generous funding from various agencies, including the following, have supported the work described: The Australian Centre for International Agricultural Research (ACIAR), the Bill & Melinda Gates Foundation, the Federal Ministry for Economic Cooperation and Development of Germany (BMZ), the Foreign, Commonwealth & Development Office of UK’s Government (FCDO), the Foundation for Food & Agricultural Research (FFAR), HarvestPlus, ICAR, the United States Agency for International Development (USAID), funders of the One CGIAR Accelerated Breeding Initiative (ABI), and the Plant Health Initiative (PHI).
Paraguay’s Minister of Foreign Affairs, Ambassador Julio César Arriola, recently bestowed on Man Mohan Kohli, retired wheat geneticist of CIMMYT the “Comendador” award of the country’s National Order of Merit, highlighting the scientist’s “…exceptional contribution to Paraguayan agriculture and economy.”
A dedicated field specialist, on 2 August 2023 retired CIMMYT wheat geneticist Man Mohan Kohli was recognized as “Comendador” of the Paraguay’s National Order of Merit. In his acceptance speech, Kohli cited the benefits of public-private partnerships to profit farmers and catalyze food grain value chains. (Photo: CIMMYT)
A native of India, where he completed schooling including a Ph.D. in wheat genetics, Kohli worked at CIMMYT during 1971-2004 on topics including spring x winter wheat crosses, resistance in wheat to the rust and other diseases, and the improvement and promotion of triticale, a wheat x rye hybrid.
In 1978 he was assigned to a CIMMYT regional program involving wheat breeding, development and training in collaboration with countries of the Southern Cone of South America, which included facilitating the regional testing and exchange of wheat breeding lines and selection data.
As of 2004, Kohli has been an active part-time consultant with Paraguay’s national wheat program and the Bioceres Group in Argentina.
“Funding ended for CIMMYT wheat research in Paraguay in 1993,” Kohli said. “In 2003 we started direct cooperation again through a joint venture including the Ministry of Agriculture and Livestock, the Paraguayan Chamber of Cereals and Oilseeds Exporters, and CIMMYT.”
“Back in 2003, Paraguay was producing about 320,000 tons of wheat each year and importing over 200,000 tons. Now, yearly output is around 1 million tons and the country exports almost a third of that.”
Kohli said the joint initiative had promoted higher-yielding wheat varieties and farming methods, lowered the costs of agrochemicals, and helped form associations involving farmers and millers—the complete cycle from sowing to marketing for wheat.
Paraguayans eat an average of over 85 kilograms of wheat each year as pasta, bread and other bakery products.
Kohli’s career has led him to work with science luminaries such as M.S. Swaminathan, Glenn Anderson, Joe Rupert, Cal Qualset, Warren Kronstad, Frank Zillinsky, and Sanjaya Rajaram, among others.
“I met CIMMYT scientist and eventual Nobel Peace laureate, Dr. Norman E. Borlaug, in 1967,” Kohli said. “We continued to meet every year on his visits to India and, when I was about to finish my Ph.D. in 1970, he invited me to join the team at CIMMYT.”
“It has been a privilege and honor to have worked alongside many dedicated colleagues at CIMMYT and national programs who have contributed significantly to building research capacities and global food security over the last 50 years. This award is dedicated to all of them and the farmers who have been the primary source of inspiration for our work”.
CIMMYT joins with members of the international development community to mourn the passing of renowned wheat geneticist and “Father of the Green Revolution in India,” Monkombu Sambasivan Swaminathan who died on September 27 at the age of 98.
Swaminathan devoted his life to sustainably feeding the world. His vision reshaped India almost overnight to a breadbasket for South Asia, through adoption of innovative high-yield wheat varieties and efficient farming techniques for Indian farmers. TIME magazine acclaimed him as one of the twenty most influential Asians of the 20th Century, making him one of three from India to be named alongside Mahatma Gandhi and Rabindranath Tagore.
M.S. Swaminathan. (Photo: MSSRF)
Swaminathan began his career in the world of academia. After earning his Ph.D. in plant genetics from Cambridge University in 1952, he moved to the United States to continue his research as a professor; however, his home country India eventually called him back home. With the crisis of a rapidly increasing population and low food production, Swaminathan returned to become a scientist at the Indian Agricultural Research Institute (IARI), where he later served as Director from 1961 to 1972.
It was during this time that he began his collaboration scientist Norman Borlaug, future Nobel Prize laureate and soon to be leader of CIMMYT wheat research. Swaminathan saw the value of the Mexican semi-dwarf wheat varieties, which were developed by Borlaug, for wheat production in India and requested that Borlaug send him a range of breeding materials containing the Norin dwarfing genes. The seeds arrived in 1963 along with Borlaug and the pair travelled the wheat-belt of India. Swaminathan arranged multi-location trials for the varieties and established an inter-disciplinary team to adapt the new varieties for Indian conditions.
Norman Borlaug with Swaminathan and Kohli, key promoters of modern varieties, in a seed production plot, India, 1964. (Photo: CIMMYT)
The next step was convincing local farmers to grow the varieties. By 1966, Swaminathan had established 2,000 model farms where farmers could see for themselves the benefits of the new wheats. Swaminathan’s final act in kickstarting the Green Revolution in India was to successfully lobby the Indian government to import 18,000 tons of the Mexican seed.
Just 4 years later India’s wheat harvest had doubled to 20 million tons, ending the nation’s dependence on wheat imports and saving millions from starvation. Swaminathan continued to work with the Indian government to maintain food security and long-term self-sufficiency across the country and the impact of his work earned him the first World Food Prize in 1987.
Swaminathan held a number of leadership roles in world agricultural and conservation organizations over his lifetime, including the FAO council, the International Union for the Conservation of Nature and Natural Resources, the World Wide Fund for Nature (India), and the National Academy of Agricultural Sciences. He also served as Director General of the Indian Council of Agricultural Research (ICAR), and Secretary to the Government of India at the Department of Agricultural Research and Education from 1972-79, as well as Director General of the International Rice Research Institute in the Philippines from 1982-88.
A humanitarian at heart
Not just a scientist, Swaminathan was an advocate and humanitarian. Shortly after winning the World Food Prize, he used the award funds to establish a research center, the M.S. Swaminathan Research Foundation (MSSRF), in Chennai, India. The MSSRF allowed him to work on his other passion, sustainable development, where he coordinated research and action on conservation of endangered species, protection of coastal ecosystems, precision farming, ecotechnology, community education and technical training, and programs for rural internet access.
M.S. Swaminathan won the World Food Prize in 1987. (Photo: World Food Prize)
He has received 84 honorary doctorate degrees from universities around the world and multiple awards including the Padma Shri (1967), Padma Bhushan (1972) and Padma Vibushan (1989) – the fourth, third and second highest civilian awards in India. He has also won numerous international awards including the 1994 UNEP Sasakawa Environment Prize, the UNESCO Gandhi Gold Medal in 1999 and the Franklin D. Roosevelt Four Freedoms Award in 2000.
“He was a real gentleman with a sharp memory,” recalls CIMMYT distinguished scientist Ravi Singh. “I always admired his capacity and his ability to link complicated topics into a nice synthesis.”
He was an inspiration to thousands and will be greatly missed for his scientific brilliance, his pioneering advocacy and humanitarianism, and his life mission to reduce world hunger through improved technology for citizens from all levels of society.
The CIMMYT family extends its deepest condolences to the Swaminathan family.
As hotter temperatures and drought become the norm in places used to growing wheat, yields will be reduced, climate change will have some effect on most of the world’s wheat. CIMMYT is working to strengthen seed systems as demand for staple crops like wheat is only expected to increase as the climate crisis makes the world’s food system more vulnerable.
Erratic climate patterns, global and regional conflicts, biodiversity degradation, and insufficient funding for agricultural research pose a serious risk to meeting global food production goals by mid-century, according to Cary Fowler, the U.S. special envoy for food security.
The world must produce 50-60% more food by 2050 to nourish a growing population. Yet global crop yields are projected to drop between 3-12% over the same period. Wheat yields in Africa and South Asia, two regions with the fastest growing and youngest populations, are expected to decline by 15% due to global warming. Food systems have also been disrupted by the Russia-Ukraine conflict and the COVID-19 pandemic, raisingfood and fertilizer prices, and exacerbating regional instability.
Maize vendor at village market in Arsi Negele, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Fowler cites inadequate government funding for plant breeding programs as a contributor to an ineffective response to introducing improved climate-adaptable staple crops. “With the state of current affairs, we are on our way to failing to feed the world by century’s end,” said Fowler.
Global peace and development efforts will demand a cross-sector and coordinated response. Through its 2030 Strategy, CIMMYT has laid out a robust series of investments in crop systems innovation, partnership, and sustainable development, to advance more resilient food systems. The 2030 Strategy consolidates CIMMYT’s target areas through three pillars: Discovery, SystemDev, and Inc. These pillars focus on research and innovation, systems approach, and strong partnerships and advocacy efforts with the private and government sectors to address an emerging food crisis.
“Our 2030 Strategy places research, innovation and partnership at the center of facing the challenges of the 21st century to solve tomorrow’s problems today—for greater food security and the prosperity of smallholder farmers. As we implement work plans, CIMMYT is proud of the achievements it has seen through projects in sub-Saharan Africa, our contribution to influential policy reports, and continued praise for our agri-development initiatives in Latin America. All these feats will help us deliver on and expand our efforts to reach our 2030 vision,” said Bram Govaerts, CIMMYT director general.
CIMMYT remains prominent in developing sustainable solutions for farmers and policy actors
CIMMYT has achieved important progress in Eastern and Southern Africa. Projects such as the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub have brought together regional seed partners, government agencies, and CGIAR Research Centers, to reduce fertilizer prices, boost resilience to drought and pests, and facilitate market access for smallholders.
In the recent SPG Coalition report, CIMMYT featured prominently as a leading organization in climate-smart agriculture, nutrient-use efficiency, and pest and fertilizer management. This report informs researchers, non-governmental organizations and private sector partners in agrifood and climate policy development.
A CIMMYT staff member gives a farmer training session in Boiragee, Bangladesh. (Photo: S. Mojumder Drik/CIMMYT)
MasAgro, a research-for-development initiative, has received praise by international organizations and governments as an exemplary program for sustainable development in Latin America. Over 500,000 farmers in Mexico have adopted hardy maize or wheat varieties and resource-conserving agricultural practices. To maximize on the experience of MasAgro, CIMMYT has partnered with a CGIAR initiative: AgriLAC Resiliente. This initiative aims to bolster the competitiveness and sustainability of agrifood systems to respond to forced migrations in Central and South America which are worsened by regional food insecurity and conflict.
Science and innovation powered by partnership can deliver a food secure world
Climate change undoubtedly threatens global peace and agrifood systems. With over 130 countries depending on food imports, today’s hyper-connected world demands collaborative partnership across all sectors to build up shockproof food systems. Through a grassroots approach to research and innovation, the CIMMYT 2030 Strategy is built upon decades of applied science which has impacted communities around the world, to continue influencing policy, pioneering innovations, and advocating for the development of a food secure future.
In plant breeding, efforts to increase the rate of genetic gains and enhance crop resilience to the effects of climate change are often limited by the inaccessibility and costs of phenotyping methods. The recent rapid development of sensors, image-processing technology and data analysis has provided new opportunities for multiple scales phenotyping methods and systems. Among these, satellite imagery may represent one of the best ways to remotely monitor trials and nurseries planted in multiple locations, while standardizing protocols and reducing costs.
This is because relevant data collected as part of crop phenotyping can be generated from satellite images. For instance, the sensors onboard the SkySat satellite constellation of Planet Labs have four spectral bands—blue, green, red, and infrared—which can be used to calculate the normalized difference vegetation index (NDVI), which is a measure of vegetation and its greenness, and various canopy traits like ground cover, leaf area index and chlorosis. It can also be used to monitor plot establishment and phenological parameters.
High-resolution RGB orthomosaic of wheat experiments, assessing the effect of plot size and spacing in the spectral signature, collected from SkySat satellite images. (Photo: Gilberto Thompson)
The use of satellite-based phenotyping in breeding trials has typically been restricted by low resolution, high cost and long intervals between fly-overs. However, the advent of a new generation of high-resolution satellites—such as the SkySat constellation—now offers multispectral images at a 0.5m resolution with close to daily acquisition attempts on any place on Earth. This could be a game changer in terms of the scale at which yield trials can be conducted, enabling more precise variety placement and thereby increasing genetic diversity across farmer’s fields and reducing the probability of disease epidemics. It could also revolutionize the capacity for research in realistic field conditions, since traits can be measured throughout the cycle in a highly standardized way, over multiple sites at low cost. For example, an image which covers 25 km2 can monitor an entire research station at a cost of about US$300.
To test the suitability of this technology, a team of researchers from CIMMYT set out to evaluate the reliability of SkySat NDVI estimates for maize and wheat breeding plots of different sizes and spacing, as well as testing its capacity for detecting seasonal changes and genotypic differences.
Both their initial findings, recently published in Frontiers in Plant Science, and more recently acquired data, show that the SkySat satellites can be used to monitor plots commonly used in wheat and maize nurseries. While wheat yield plots usually are 1.2m wide, maize plots tend to consist of at least two rows, resulting in a width of 1.5m. Plot length ranges from 2-4m. The authors also discuss on other factors to be considered when extracting and interpreting satellite data from yield trials, such as plot spacing.
Through the successful collection of six satellite images in Central Mexico during the rainy season and parallel monitoring of a maize trial in Zimbabwe, the researchers demonstrate the flexibility of this tool. Beyond the improvement of spatial resolution, the researchers suggest that the next challenge will be the development and fine-tuning of operational procedures that ensure high quality, standardized data, allowing them to harness the benefits of the modern breeding triangle, which calls for the integration of phenomics, enviromics and genomics, to accelerate breeding gains.
This research was supported by the Foundation for Food and Agriculture Research, the CGIAR Research Program on Maize, the CGIAR Research Program on Wheat, and the One CGIAR Initiatives on Digital Innovation, F2R-CWANA, and Accelerated Breeding.
Scientists from CIMMYT, founded in Mexico in 1966, have pursued decades of participatory research with Mexico’s smallholder maize farmers to improve their local varieties for traits like yield and insect resistance, while preserving their special grain quality, as well as testing and promoting zero-tillage and other resource-conserving farming practices.
Farmer Maria Luisa Gordillo Mendoza harvests a plot of maize grown with conservation agriculture techniques in her field in Nuevo México, Chiapas. (Photo: Peter Lowe/CIMMYT)
Smallholder farm operations account for more than 80% of all farms worldwide and produce roughly 35% of the world’s food, according to FAO census data and follow-up studies.
An estimated two-thirds of the Mexico’s farmers are smallholders, typically working challenging agroecologies scattered across the country’s mountainous terrain and applying generations-old subsistence practices to grow low-yielding local maize varieties.
Ancient milpa multicropping systems can lift up the present and future
The milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — has a millennial history in the Americas and can furnish a vital supply of food and nutrients for marginalized, resource-poor communities.
One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to a CIMMYT-led study in the western highlands of Guatemala, an isolated and impoverished region, reported in Nature Scientific Reports in 2021.
But milpas are typically grown on much smaller areas than a hectare, so households cannot depend on this intercrop alone to satisfy their needs. A solution? Customized milpas that merge farmers’ age-old wisdom and practices with science-based innovation.
An example is planting fruit trees — guava, avocado, mango, peaches, or lime among others — among milpa crops in lines perpendicular to hill slopes. The practice was tested and promoted in the Los Tuxtlas region of the state of Veracruz by Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) and the Colegio de Postgraduados (ColPos) and has been refined by farmers in other areas through CIMMYT-led innovation networks.
Planted milpa crops in lines perpendicular to the slope on a steep hillside in Chiapas, Mexico. (Photo: Peter Lowe/CIMMYT)
In Los Tuxtlas the practice provided added income and nutrition, dramatically reduced erosion, improved land and water-use efficiency by around 50%, and boosted soil health and fertility.
In the state of Puebla and other parts of South and southwestern Mexico, milpa-fruit tree intercrops have worked well on steep hillsides. In the state of Oaxaca, for example, versions of the practice have notably improved farming by indigenous communities in the Mixe and Mazateca regions, supported by outreach of the Mexican Agency for the Sustainable Development of Hillsides (AMDSL), a partner in a CIMMYT research hub in the region.
Research by AMDSL and CIMMYT on smallholder plots in two Oaxaca municipalities where farmers have been combining milpas with peach and avocado production and conservation agriculture practices for more than a decade found that cropping diversification, together with use of zero tillage and keeping crop residues on the soil rather than removing or burning them, raised total yearly crop outputs by as much as 1.7 tons per hectare and reduced farmers’ risk of catastrophic crop losses due to droughts or other climate extremes.
Blue maize pleases diners and delivers profits
Farmers’ local maize varieties yield less than hybrids but are still grown because they provide ideal grain quality for traditional foods, as well as marketable stalks and leaves to feed farm animals and maize husks for wrapping tamales, to name a few products.
Building on longstanding partnerships with INIFAP and the Autonomous University of Chapingo (UACh) to improve local varieties and preserve maize genetic diversity in Mexico, CIMMYT breeders have recently developed improved blue maize hybrids and open-pollinated varieties.
Sought by restauranteurs worldwide for its flavor and beauty, blue maize grain normally comes from native varieties grown by smallholder farmers on small plots with low yields and variable quality.
The new CIMMYT varieties are derived from traditional Guatemalan, Mexican, and Peruvian landraces and feature higher yields, more consistent grain quality, and enhanced resistance to common maize diseases, offering smallholders and other Mexican farmers a profitable product for the country’s booming restaurant industry and for export chains.
Selection of corn varieties for the state of Morelos, Mexico. (Photo: ACCIMMYT)
Parental inbred lines of the new hybrids have been distributed to private and public partners, who are developing their own hybrids and OPVs in Mexico. CIMMYT continues to test the new hybrids under various farming systems to ensure they produce stable yields when grown in farmers’ fields.
Data driven extension
Using cutting-edge data systems, CIMMYT has leveraged information from nearly 200,000 plots representing more than 26,000 hectares across diverse agroecologies to offer Mexican farmers — including smallholders — site-specific recommendations that make their farming systems more productive, resilient, and sustainable. The initiative was supported by MasAgro, an integrated development partnership of Mexico and CIMMYT during 2010-21 and funded by Mexico’s Secretariat of Agriculture and Rural Development (SADER).
Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.
Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.
“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”
Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)
Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.
They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.
“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”
Advancing more sustainable farming in Mexico
Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.
CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El Batán, Mexico. (Photo credit: CIMMYT)
CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.
Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. “We’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil beds…. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
Farmers in the Milpa Sustentable project in the Yucatán Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of Yucatán. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer María Martínez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario Guzmán Manuel of San Francisco Chindúa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”
Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known as “MasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.
Tlaltizapan Experimental Station in Morelos, Mexico is used through the winter for drought and heat trials and through the summer for yield-trials and biofortification. (Photo: Alfonso Cortés/CIMMYT)
As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.
The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.
MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.
State-level partners sign on to MasAgro
Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.
MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)
CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.
An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.
Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.
Acclaim and interest abroad for MasAgro
MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:
Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgro’s farmer outreach component.
MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.
Moving out and beyond
In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.
Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.
Farmer Marilu Meza Morales harvests her maize in Comitán, Mexico. (Photo: Peter Lowe/CIMMYT)
As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.
“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.
The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “…is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”
The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.
In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.
CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.
Nutrient-use efficiency and fertilizer management
While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.
Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)
In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.
The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.
The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.
Climate-smart maize breeding
Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.
Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)
CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.
The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.
“The SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. It’s also an important reminder to assess our strong points and where more investment and collaboration is needed,” said Bram Govaerts, CIMMYT director general.