Skip to main content

research: Wheat

Ismahane Elouafi returns to CIMMYT—on a system-wide tour

As part of her fact-finding mission across CGIAR Research Centers, Ismahane Elouafi, CGIAR’s executive managing director, returned to CIMMYT headquarters in Texcoco, Mexico, where she studied as a Ph.D. student twenty years ago. Through meetings with CIMMYT staff from 21-24 December 2023, Elouafi learned how CIMMYT’s 2030 Strategy of more investment in developing food systems and climate-smart agriculture will contribute to CGIAR’s 2030 vision of a food and nutrition secure future.

“CIMMYT was pleased to host Ismahane,” said Bram Govaerts, CIMMYT director general. “Our ultimate mission is to transform agrifood systems. The only way we will reach our goal of food and nutrition security is by working globally and collaboratively across the value chain.”

Elouafi examines samples with CIMMYT researchers at the biosafety laboratory. (Photo: CIMMYT)

At CIMMYT’s museum and gene bank, Elouafi met with researchers to discuss the latest discoveries in genetic innovation, biodiversity conservation, and crop breeding. Elouafi and Kevin Pixley, director of the Dryland Crops program, visited the biosafety laboratory and glasshouses where gene editing on pearl millet and ground nut represent cutting-edge work with dryland crops. Elouafi also saw gene editing for resistance to maize lethal necrosis, which is already in field validation with Kenyan partners from the Kenya Agricultural & Livestock Research Organization (KALRO).

Global Wheat and Dryland Crops presented CIMMYT’s 2050 vision for wheat in Africa and near-term goals of advancing partnerships from phenotyping platforms to the International Wheat Improvement Network (IWIN). Seed experts from the Seed Health Unit shared progress on the productivity and nutrition findings of key cereals for healthy and balanced diets.

Elouafi also visited conservation trial plots with Jelle Van Loon, associate director of the Sustainable Agrifood Systems (SAS) program, who briefed Elouafi on cropping systems diversity related to maize, wheat, and beans, and showcased a variety of innovative farming technologies. At the trial plots, Elouafi met with Guillermo Bretón, a farmer, to talk about CIMMYT’s efforts to expand the MasAgro program into Central America aiming to address the region’s growing food insecurity contributing to migration.

(Left to right) Guillermo Bretón, Ismahane Elouafi, Bram Govaerts, and Jelle Van Loon, test a range of novel farming technologies. (Photo: CIMMYT)

The value of genetic resources as sources of novel diversity was discussed with Elouafi during a visit to field screenhouses, where she saw wide crosses work for biological nitrification inhibition (BNI) in wheat, gene bank accessions of triticale—a cross between wheat and rye—for use in searching for new sources of resistance to wheat blast, and the ex-situ clonal collection of tripsacum, a wild relative of maize.

“CIMMYT’s 2030 Strategy adopts a systems approach to food science, which I strongly support. Through the development of mechanization and post-harvest management, increased focus on seed systems and health, and most importantly, cooperation with partners to ensure that improved crop varieties are adopted by smallholders, I am confident that this approach will only strengthen CIMMYT’s historical strength of research and innovation for food and nutrition security and contribute to achieving CGIAR’s 2030 mission,” said Elouafi.

Kevin Kabunda, chief of party for the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub (AID-I) and Sieglinde Snapp, director of the SAS program, presented key milestones achieved in southern and eastern Africa on expanded seed systems, market access, and mechanization technologies. Snapp also highlighted important CIMMYT-led initiatives like the CGIAR Plant Health Initiative and the Cereal Systems Initiative for South Asia (CSISA) which have had a positive impact on smallholders in part because of partnerships with government agencies and other CGIAR Research Centers.

Elouafi and Govaerts visited the ancient city of Teotihuacán to learn about the cultural significance of maize to the history and agricultural practices of the Americas. She received a guided tour by chef Carlos Cedillo, operational director of La Gruta, a local restaurant dedicated to understanding and promoting the production and consumption of native maize varieties in the Valley of Mexico. CIMMYT has collaborated with La Gruta through capacity building initiatives by CIMMYT specialists for technicians and farmers.

Elouafi joins CIMMYT staff for a meet and greet coffee session. (Photo: CIMMYT)

Elouafi joined CIMMYT staff in a meet and greet session on 21 December, where staff expressed the strides being made by CIMMYT’s leadership team to foster a more inclusive workplace. “This moment of coming together with the staff that make CIMMYT a great place to work and who position the Center as a significant actor in agricultural development will be a highlight of my visit,” said Elouafi.

CIMMYT-BISA-ICAR partnership brings huge benefits in South Asia

A climate resilient agriculture program for the state of Bihar, India, launched in 2019 by the Borlaug Institute for South Asia (BISA) and the state government, was operating in 190 villages and had by 2022 improved water, soil nutrient, energy, labor and time use efficiency by at least 20% with around 35% higher yields and a reduced environmental footprint, as well as helping rice-wheat farmers to diversify their production with crops such as maize, millet and mungbean, among others.

This is just one of the achievements cited in a recent 2023 end-of-year reflection involving members of the BISA Executive Committee in New Delhi, India, including Bram Govaerts, director general of CIMMYT and BISA, and Arun Kumar Joshi, managing director of BISA.

“BISA has achieved significant milestones and is progressing towards organizational goals,” said Joshi. “The long-standing and productive partnership with the Indian Council of Agricultural Research (ICAR) and agricultural councils of other countries in South Asia became more robust, as strategies that focused on building capacities and improving seed systems for the whole of South Asia were implemented.”

Established jointly by CIMMYT and ICAR in 2011, BISA is a non-profit international research institute dedicated to food, nutrition, livelihood security and environmental rehabilitation in South Asia, home to more than 300 million undernourished people. Its work harnesses the latest genetic, digital, resource management technologies, and research-for-development approaches.

BISA’s flagship projects benefit millions of farmers and include the Atlas of Climate Adaptation in South Asian Agriculture (ACASA), the testing of experimental wheat that carries grass genes associated with the inhibition of nitrification in the soil near crop roots, a climate resilient agriculture program for South Asia, and implementation of the CGIAR Fruit and Vegetables for Sustainable Healthy Diets (FRESH) initiative.

“Of the top 10 bread wheat varieties in India, 6 are derived from the ICAR-CIMMYT-BISA collaboration,” Joshi explained.

“BISA has grown tremendously in the last few years,” said Govaerts. “The diverse arena of projects shows the capabilities and potential that BISA holds today. The flagship programs are undoubtedly creating a huge impact and would contribute to solving tomorrow’s problems today.”

BISA has renewed and diversified its research projects each year, according to T.R. Sharma, deputy director general of Crops, ICAR. “BISA’s impact on genetic innovation in wheat through ICAR-CIMMYT-BISA collaboration is indeed praiseworthy,” he said. Govaerts also attended an interactive session with CIMMYT-BISA India staff, presenting an analysis of the CIMMYT 2030 strategy and encouraging everyone’s contributions towards the goals.

2024 WIT Award nominations now open from Borlaug Global Rust Initiative

Nominations are now being accepted for the 2024 Jeanie Borlaug Laube Women in Triticum (WIT) awards honoring outstanding early-career scientists engaged in wheat research. The Borlaug Global Rust Initiative (BGRI) presents the WIT awards to acknowledge excellence and leadership among scientists in the initial stages of their careers. Recipients of the 2024 awards will benefit from advanced leadership and scientific training for wheat research, supported by the BGRI and the Accelerating Genetic Gains in Maize and Wheat project led by CIMMYT.

Applications for the 2024 WIT Awards 

Applications will be accepted until January 31, 2024. These awards, named after Jeanie Borlaug Laube, chair of the BGRI and daughter of Nobel Peace Prize Laureate Norman E. Borlaug, have recognized the accomplishments of early-career scientists in wheat research worldwide since their establishment in 2010. To date, the BGRI has acknowledged over 70 deserving individuals.

CIMMYT and WorldVeg strengthen collaboration in the midst of the climate crisis to increase their impact

On December 9, 2023, CIMMYT and the World Vegetable Center (WorldVeg) signed a memorandum of understanding (MoU) to further promote research and development, capacity strengthening activities and facilitate joint learning and the exchange of information and technology between the two organizations.

Sustainable diversification of food systems, good agricultural practices and safe and sustainable development of cereal and vegetable production systems and agrifood value chains sits at the core of this partnership.

The ultimate objective of the MoU is to further contribute to the achievement of the Sustainable Development Goals (SDGs), in particular SDG1 and SDG2, enhancing food and nutrition security, reducing rural and urban poverty and increasing employment opportunities in particular for women and youth.

CIMMYT and the World Vegetable Center are already partners in the Southern Africa Accelerated Innovation Delivery Initiative Rapid Delivery Hub (AID-I).  Through this program, it is distributing seed kits directly to vulnerable populations such as pregnant and lactating mothers and children under five, as well as improving soil health, promoting the production of traditional African vegetables, and increasing employment opportunities through building vegetable businesses. Recent impacts in Zanzibar are a good example.

Bram Govaerts, director general of CIMMYT, and Marco Wopereis, director general of the World Vegetable Center, sign the MoU. (Photo: CIMMYT and WorldVeg)

“This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being. We are building on the foundation already established by our collaborations within the Accelerated Innovation Delivery (AID-I) project in southern and eastern Africa,” said CIMMYT Director General, Bram Govaerts. “CIMMYT is excited to expand our connection with WorldVeg to bring innovations to even more people as crop diversification encourages improved nutrition.”

“The World Vegetable Center is proud to deepen our work with CIMMYT. Reaching the Sustainable Development Goals will require not only advanced technologies but also systems to deliver those innovations to the people that need them most and this partnership will enable both priorities,” said Director General of the World Vegetable Center, Marco Wopereis. “Promoting and enhancing the availability of nutritious vegetables and cereals are vital to achieving these aims.”

By providing farmers with more options, CIMMYT and WorldVeg will promote the cultivation of diverse crops that are essential for a balanced and nutritious diet particularly among vulnerable communities around the world. By raising awareness about the significant benefits of incorporating different vegetables and cereals into daily diets, the partnership will inspire and encourage millions of people to fully embrace diversification and improved nutrition.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources. For more information, visit cimmyt.org.

About the World Vegetable Center

The World Vegetable Center (WorldVeg) is an international non-profit institute for vegetable research and development. It mobilizes resources from the public and private sectors to realize the potential of vegetables for healthier lives and more resilient livelihoods.

WorldVeg’s globally important genebank, improved varieties, production and postharvest methods help farmers to increase their vegetable harvests, raise incomes in poor rural and urban households, create jobs, and provide healthier, more nutritious diets for families and communities. With headquarters in Taiwan, field operations are led from regional centers in Benin, India, Mali, Tanzania and Thailand, and through offices in other key countries.

Discovering the potential of multispectral UAV and satellite sensors in detecting wheat rust in Ethiopia

Latest advances in sensor technology and data processing allow early detection, mapping and monitoring of crop infestation, helping prevent large-scale outbreaks.

A recent study published in Nature Scientific Reports, assesses the capability of very high-resolution satellite (VHRS) imagery and high-resolution unmanned aerial vehicles (UAVs) imagery for high-throughput phenotyping and detecting impacts of wheat rusts in earlier crop growth stages. UAVs and VHRS offer high potential for nonintrusive, extensive, rapid and flexible measurements of plant biophysical properties at very high spatial and temporal scales.

The study—led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR) and Lincoln Agritech Ltd from New Zealand—establishes that these advanced sensor technologies are emerging as gamechangers in crop health management. They save time, complement traditional disease scoring methods and field surveys, and are cost-effective.

Further, the study establishes that multispectral VHRS sensors can pave the way for the upscaling of disease severity assessment from plot to regional scales at early growth stages.

Wheat rust is a global challenge

Globally, crop infections are an increasing threat to crop production and food security. Increased cross-border trade and travel, coupled with a changing climate are resulting in increased frequency and severity of crop disease outbreaks. Of all the diseases that affect wheat, wheat rusts are among the most damaging, capable of causing epidemics on a vast scale with significant economic and production losses. As of date, global losses from wheat rusts equate to 15 million tonnes per year (USD $2.9 billion). In Ethiopia, a major stripe/yellow-rust epidemic in 2010 affected an estimated 600,000 hectares, resulting in production losses of 15–20% and causing economic losses of USD $250 million. Similarly, a stem/black rust (SR) epidemic from 2013-2014 infected approximately 40,000 hectares. SR, which can cause 100% crop loss within weeks, is re-emerging as a major concern to wheat production.

Early detection, monitoring and timely intervention is key

Rapid early-season detection, monitoring and timely control of wheat rusts in susceptible varieties are critical to avoid large-scale outbreaks, especially in countries where fungicides are scarcely available or too costly for smallholders. UAV-based high-throughput phenotyping (HTP) has been recently investigated to support wheat improvement breeding, in particular, to assess plant growth development, canopy architecture, physiology, reaction to abiotic stress, crop disease and insect pest response, and wheat yield.

Figure 1

Spectral and thermal measurements at the plant and canopy levels allow for monitoring the interactions between plant germplasm and environmental (abiotic and biotic) factors. The current study identifies several spectral features from UAV and VHRS multispectral imagery that have strong assessment power for the detection of combined wheat rust diseases at early crop growth stages.

During a randomized trial conducted in Ethiopia, six bread wheat varieties with differing rust resistance were monitored using UAV and VHRS. In total, 18 spectral features were tested to assess stem and yellow rust disease progression and associated yield loss. Spectral properties of the wheat canopy (e.g., pigmentation, moisture, and biomass) are altered under rust disease stress. Using multispectral images and derived vegetation indices, it is possible to determine crop susceptibility to diseases and consequently can be used for detection and monitoring of wheat rusts.

Figure 2

Recent research on wheat, maize and dry bean demonstrated strong and significant correlations between vegetation indices extracted from UAV and VHRS imagery, confirming the feasibility of VHRS-HTP targeting biomass and yield; however, such satellite applications for plant breeding programs are still scarce.

Looking ahead to upscaling

This study provides valuable insight into the upscaling capability of multispectral sensors for disease detection from UAV imagery at 5 cm per pixel to pan-sharpened satellite imagery at 50 cm per pixel, demonstrating a first step towards upscaling disease detection from plot to regional scales. Further work will expand and improve current methodology to examine the VHRS detection capability towards machine and deep learning techniques (e.g., convolutional neural network) to allow for continuous monitoring systems, focusing on both single and mixed rust diseases under different treatments (e.g., variable fungicide rates, irrigation rates).

The early detection of diseases through spectral analysis and the integration of machine learning algorithms offers invaluable tools to mitigate the spread of infections and implement prompt disease management strategies.

Figures (1-2):

Field trial captured at varying spatial resolutions:

(a) SkySat false color composite (NIR-R-G) at 50 cm pixels (booting stage; 2020-10-17)

(b) UAV false color composite (NIR-R-G) at 5 cm pixels (heading stage; 2020-10-29) 

(Photo: Nature Scientific Reports)

While you were sleeping: increasing nighttime temperatures and their effects on plant productivity

When one thinks of heat waves, the natural tendency is to consider high daytime temperatures. However, when most people are sleeping, a hidden factor of climate change is taking place: temperatures at night are not dipping as much as observed in the past, which has dramatic effects on many crops, including wheat. In fact, nocturnal temperatures are rising more rapidly globally than daytime temperatures, which is of great concern as research is starting to show the sensitivity of plants to warmer nights.

A group of researchers, from the University of Nottingham, the Sonora Institute of Technology (ITSON) and CIMMYT examined how different wheat lines reacted to the effects of rising nighttime temperatures treatments imposed in the field, for three years at CIMMYT’s Norman E. Borlaug experimental station in Ciudad Obregon, Mexico. Their results, Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses were published in New Phytologist.

Previous studies revealed that wheat yields decline 3-8% for every 1°C increase of the nighttime low temperature. For this research, the team subjected the selected wheat breeds to an increase of 2°C. The varieties were selected based on previous evaluations of their daytime heat tolerance.

Notably, the findings highlighted that genotypes classified as traditionally heat tolerant were sensitive to small increases in nighttime temperature even without daytime temperature stress, implying that adaptation to warm nights is likely under independent genetic control than daytime adaptation.

“These results are exciting as they offer new perspectives on the impact of night temperatures on diurnal photosynthetic performance and wheat yields,” said co-first author Liana Acevedo-Siaca. “Through this work we found that wheat yields decreased, on average, 1.9% for every degree that increased at night. Our hope is that this work can help inform future breeding and research decisions to work towards more resilient agricultural systems, capable of dealing with warmer day and nighttime temperatures.”

Plants at night

While plants do not “sleep” in the way animals do, nighttime for plants has long been thought of as a time of repose compared to daylight hours when photosynthesis is taking place. However, recent findings have revealed that plants are more active than previously thought at night, for example in transpiration, which is the process of plants gathering liquid water from the soil and releasing water vapor through their leaves.

“An interesting result of our research was that we found varieties characterized as heat tolerant, showed some of the greatest declines in yield in response to warmer nights,” said co-first author Lorna McAusland, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham. “These are the varieties wheat farmers are being recommended for increasing daytime temperature, and so there is a worry that advantages gained during the day are being lost at night.”

“There is likely a goldmine of opportunities related to genetically improving nighttime processes in crops, as very little research has been conducted in that space. Useful genetic variation can be expected, since ‘night’ traits have never been considered or needed before now,” said co-author Matthew Reynolds, who leads the CIMMYT’s Wheat Physiology Lab that collaborates globally with experts via HeDWIC (https://hedwic.org/) and uses physiological pre-breeding as a conduit for cutting edge technologies to impact mainstream breeding.

Millers in Nigeria laud the release to farmers of co-developed, CIMMYT-derived wheat varieties

Nigerian wheat scientists and millers recently recognized and thanked CIMMYT for its contributions to four new wheat varieties released to farmers, citing the varieties’ exceptional performance in field trials and farmers’ fields across national wheat-growing regions.

“The release of these four wheat varieties, uniquely tailored to suit our local conditions, has marked a significant milestone in enhancing food security and farmer livelihoods,” said Ahamed T. Abdullahi, agronomist for wheat value chains at the Flour Milling Association of Nigeria (FMAN), in a recent message to CIMMYT’s Global Wheat program. “The improved characteristics, such as higher yield potential, enhanced disease resistance, and adaptability to local climatic conditions, have significantly boosted wheat productivity. Moreover, the quality profiles of these varieties, as expressed in Nigeria, comply fully with the standards required by the local industry.”

Two of the varieties are bread wheat and yield up to 7 tons of grain per hectare, according to a recent Nigeria Tribune article. The other two are durum wheat, a species grown to make pasta and foods such as couscous and tabbouleh. One of those, given the name LACRIWHIT 14D in Nigeria, was from a CIMMYT wheat line selected for its novel genetic resistance to leaf rust and high-yield potential under irrigated conditions. It was also released in Mexico under the name CIRNO C2008 and is the country’s number-one durum wheat variety, according to Karim Ammar, a wheat breeder at CIMMYT.

Four new bread and durum wheat varieties based on CIMMYT breeding lines are well adapted to local conditions and offer excellent yields and grain quality. (Photo: FMAN)

“Aside from its high yield potential, it has considerable grain size and an aggressive grain fill that is expressed even under extreme heat,” explained Ammar. “These characteristics have certainly helped its identification as outstanding for Nigerian conditions.”

Writing on behalf of FMAN and the Lake Chad Research Institute (LCRI) of Nigeria’s Federal Ministry of Agriculture and Rural Development, Abdullahi said, “We deeply appreciate the expertise and support provided by CIMMYT throughout the development and release process. Your team’s technical guidance on the access to germplasm has played a crucial role in equipping our farmers and extension agents with the necessary skills and resources for successful wheat cultivation.”

Nigeria has a fast-growing population which, coupled with increasing per capita demand for wheat, has made increasing wheat production a national priority, according to Kevin Pixley, director of the Dryland Crops and Global Wheat programs at CIMMYT.

“Until recently, Nigeria produced only 2% of the wheat it consumes, but potential exists to double the current average yield and expand wheat production by perhaps 10-times its current area,” said Pixley. “New wheat varieties will be essential and must be grown using sustainable production practices that improve farmers’ livelihoods while safeguarding long-term food security and natural resources.”

Abdullahi said the release of the varieties demonstrated the power of collaborative research and highlighted the potential for future collaborations. “We look forward to continued collaborations and success in the pursuit of sustainable food systems.”

CIMMYT Ethiopia signs MoU with key private food processor to bolster durum wheat market

CIMMYT Ethiopia signed a memorandum of understanding (MoU) in November 2023 with the Addis Ababa-based private food processing company Alvima Foods Complex Plc, in an effort to encourage durum wheat production among smallholder farmers and create market linkage in selected woredas of Oromia and Amhara regional states.

The MoU, which is part of CIMMYT Ethiopia’s overall durum wheat project aiming to reinvigorate durum wheat production in the country, was signed by Workneh Rikita, Alvima general manager, and Kindie Tesfaye, CIMMYT Ethiopia’s senior scientist.

CIMMYT Ethiopia signing a memorandum of understanding.

The MoU aims primarily to create market linkage between farmers and manufacturers, in a context of a sharp decrease of durum wheat production. “Prior to the 1980s, 80% of the wheat produced in Ethiopia was durum, but in 2016 our nationwide research on wheat showed that the durum wheat coverage was 5%, which stands in contrast to the country’s effort to industrialize the economy and substitute import goods with local produce”, said Kindie Tesfaye, CIMMYT durum wheat project leader. “We, as CIMMYT, want to encourage farmers to produce good quality durum wheat in quantity, and teach them about contract farming by creating market linkage with produce receivers like Alvima.”

“Cooperation, not business venture”

Established in 2011, Alvima Foods Complex initially centered its operations around importing and exporting agro-food products. In 2017, the company set up a pasta and flour processing factory and contracted 800 farmers to produce durum wheat. “At first, our objective was to produce premium quality pasta, unlike most processing companies in the country which produce pasta from hard wheat or mixed wheat,” said Workneh Rikita, Alvima’s general manager. In the absence of binding rules, the project failed and Alvima resigned to import durum wheat. “The law on contract farming was constituted recently and the difficulties to access foreign currency (therefore to import goods), which led us to turn our attention back to our initial project”, said Workneh Rikita.

Alvima Foods Complex general manager added that his company didn’t sign the agreement as a business venture but as an advantageous cooperation to learn from. He thanked CIMMYT for agreeing to work with his company and expressed his hopes for its success.

The current durum wheat market in Ethiopia is unpredictable as prices are set by the brokers, which heavily disadvantages the growers. The objective of the memorandum of understanding is to address such market challenges faced by farmers, affording them guaranteed market opportunities at a fair price.

As part of the agreement between Alvima Foods Complex and the durum wheat growers in target districts of the Amhara and Oromia regional states, CIMMYT will leverage on its expertise to help the farmers produce more and in good quality. Alvima will access the produce from farmers’ cooperatives directly, without the intervention of middlemen, to guarantee better incomes to producers. Moreover, CIMMYT is training farmers on use of climate information, accessing climate advisories, video-based production trainings, and crop disease management.

“If the farmers get the premium price for their produce, they will be encouraged to continue producing better wheat,” said Kindie Tesfaye. “We want the cooperation to be sustainable and to create direct links between farmers and local food processors (such as AVLIMA). The MoU will also benefit Ethiopia by decreasing imports of processed food items.”

A multilayered challenge to durum wheat production

Supported by the Bill and Melinda Gates Foundation, CIMMYT and Digital Green (an organization creating digital tools to assist farmers) have been conducting durum wheat improved varieties were insufficiently promoted; the seed was not made adequately accessible to farmers; productivity was perceived by farmers as being low; and market linkage was poor. These multilayered challenges led farmers to prioritize bread wheat varieties, according to Kindie Tesfaye.

In response, CIMMYT structured its support around three main pillars: the organization helps farmers access seeds together with Oromia’s Seed Enterprise, provides farmers with digital advisory services to improve their productivity, and works with the private and public sectors to upgrade market linkages, as with the memorandum of understanding signed with Alvima Foods Complex Plc.

 

Celebrating collaboration in science

On the evening of 31 October 2023, CIMMYT held a partnership and alumni event with partners in China. Over 100 people from all over China joined the event in Beijing, which was chaired by He Zhonghu, distinguished scientist and CIMMYT country representative for China.

 

The event centered around the promotion and celebration of mutual collaboration in scientific research. In his opening speech, CIMMYT Director General Bram Govaerts celebrated the progress of the China-CIMMYT partnership, and highlighted what can further be achieved for global food security through continued partnership. His sentiments were echoed by the Vice President of the Chinese Academy of Agricultural Sciences (CAAS), Sun Tan, who expressed his high expectations and strong support for future collaboration between Chinese institutions and CIMMYT.

 

Bram Govaerts presents on China’s and CIMMYT’s partnership. (Photo: Lu Yan/CIMMYT)

The event saw four Chinese institutions sign agreements with CIMMYT to promote mutual partnership: the Institute of Crop Sciences at CAAS, Huazhong Agricultural University, Henan Agricultural University, and Xinjiang Academy of Agricultural Sciences. Additionally, a ceremony was held in which 28 alumni and four partner institutions received awards for their contributions to scientific collaboration.

A fruitful partnership

China and CIMMYT have had a fruitful partnership over the past 45 years in areas including shuttle breeding, genomic research, sustainable crop systems and trainings that have greatly contributed to strengthening China’s food security with positive spillover effects to neighboring countries in the region.

The successful CIMMYT-China collaboration in shuttle breeding from the 1980s laid the foundations for the establishment of CIMMYT’s office in China in 1997. Bilateral cooperation then expanded to set up a Joint Lab between CIMMYT and the Ministry of Agriculture and Rural Affairs (MOARA), in which more than 20 Chinese agricultural research institutes also participated. More recently in 2019, CIMMYT and the Jiangsu Academy of Agricultural Sciences jointly opened a new screening facility for the deadly and fast-spreading fungal wheat disease, fusarium head blight.

Bram Govaerts and Fan Shenggen receive an award from former visiting scientists. (Photo: Lu Yan/CIMMYT)

CIMMYT has transferred approximately 26,000 wheat seed samples to more than 25 institutions in China, which are now using these materials in their breeding or crop improvement programs. As a result of these efforts, 300 wheat cultivars derived from CIMMYT germplasm have been released and are currently grown on 10% of China’s wheat production area. This collaboration between CIMMYT and China has yielded 10.7 million tons of wheat grain with an estimated value of $3.4 billion.

Additionally, CIMMYT-derived maize varieties have been planted on more than one million hectares across China, and 3,000 new inbred maize lines have been introduced through CIMMYT to broaden the genetic base of Chinese breeding efforts in southwestern provinces.

Nepal maize farmers share vision of a more profitable future with visiting agriculture officials

In a visit to 5 model sites for maize marketing in midwestern Nepal, 30 federal, provincial and local agricultural authorities were impressed with the coordination and capacity development among market actors, improved supply chain management and leveraging of government support, all of which are benefiting farmers and grain buyers.

Following visits to commercial maize fields and hearing stakeholders’ perceptions of progress and key lessons, the authorities proposed additional funding for irrigation, machinery, grain grading and crop insurance, among other support, and promised to help expand activities of the model sites, which were established as part of the Nepal Seed and Fertilizer (NSAF) project.

Led by CIMMYT with funding from the United States Agency for International Development (USAID) and in its second-last year of operation, the project is working to raise crop productivity, incomes and household food and nutrition security across 20 districts of Nepal, including 5 that were severely affected by the catastrophic 2015 earthquake and aftershocks which killed nearly 9,000 and left hundreds of thousands homeless.

Participants at Sarswoti Khadya Trader, Kohalpur, Banke. (Photo: CIMMYT)

The visitors included officials and experts from the Ministry of Agriculture and Livestock Development (MoALD); the Department of Agriculture (DoA); the Ministry of Land Management, Agriculture and Cooperatives (MoLMAC); the Agriculture Development Directorates (ADD) for Lumbini and Sudurpaschim provinces; the Agriculture Knowledge Centres (AKC) of Banke, Kailali, Kanchanpur, Dang, and Kapilvastu districts; the Prime Minister Agriculture Modernization Project (PMAMP) offices of Dang and Bardiya; and the National Maize Research Program; the Department of Livestock Services; along with NSAF project team members.

The participants interacted with farmers, cooperative leaders, traders, rural municipality officials and elected representatives, and feed mill representatives. Sharing their experiences of behavioral change in maize production, farmers emphasized the benefits of their strengthened relationships with grain buyers and their dreams to expand spring maize cultivation.

Shanta Karki, deputy director the General of Department of the DoA lauded CIMMYT efforts for agriculture growth, improved soil fertility and sustainable agriculture development through NSAF.

Madan Singh Dhami, secretary, MoLMAC in Sudurpaschim Province, emphasized the importance of irrigation, building farmers’ capacities and interactions with buyers, and applying digital innovations to catalyze extension.

CIMMYT scientists have been based in CIMMYT’s office in Nepal and worked with Nepali colleagues for more than three decades to boost the productivity, profitability and ecological efficiency of maize- and wheat-based cropping systems and thus improve rural communities’ food security and livelihoods.

Scientists convene in Kenya for intensive wheat disease training

An international cohort of scientists representing 12 countries gathered at the Kenya Agricultural and Livestock Research Organization (KALRO) station in Njoro for a comprehensive training course aimed at honing their expertise in wheat rust pathology.

The two-week program “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines,” was a collaborative effort between CIMMYT and Cornell University and supported by the Wheat Disease Early Warning Advisory System (DEWAS) and Accelerating Genetic Gains in Maize and Wheat projects.

With a mission to bolster the capabilities of National Agricultural Research Systems (NARS), the training course attracted more than 30 participants from diverse corners of the globe.

Maricelis Acevedo, a research professor of global development at Cornell and the associate director of Wheat DEWAS, underscored the initiative’s significance. “This is all about training a new generation of scientists to be at the forefront of efforts to prevent wheat pathogens epidemics and increase food security all over the globe,” Acevedo said.

First initiated in 2008 through the Borlaug Global Rust Initiative, these training programs in Kenya have played a vital role in equipping scientists worldwide with the most up-to-date knowledge on rust pathogens. The initial twelve training sessions received support from the BGRI under the auspices of the Durable Rust Resistance in Wheat and Delivering Genetic Gain in Wheat projects.

This year’s training aims to prepare global scientists to protect against disease outbreaks that threaten wheat productivity in East Africa and South Asia. The course encompassed a wide array of practical exercises and theoretical sessions designed to enhance the participants’ knowledge in pathogen surveillance, diagnostics, modeling, data management, early warning assessments, and open science publishing. Presentations were made by DEWAS partners from the John Innes Centre, Aarhus University, the University of Cambridge and University of Minnesota.

(Photo: Borlaug Global Rust Initiative)

The course provided practical, hands-on experience in selecting and evaluating wheat breeding germplasm, race analysis and greenhouse screening experiments to enhance knowledge of rust diseases, according to Sridhar Bhavani, training coordinator for the course.

“This comprehensive training program encompasses diverse aspects of wheat research, including disease monitoring, data management, epidemiological models, and rapid diagnostics to establish a scalable and sustainable early warning system for critical wheat diseases such as rusts, fusarium, and wheat blast,” said Bhavani, wheat improvement lead for East Africa at CIMMYT and head of wheat rust pathology and molecular genetic in CIMMYT’s Global Wheat program.

An integral part of the program, Acevedo said, was the hands-on training on wheat pathogen survey and sample collection at KALRO.  The scientists utilized the international wheat screening facility at KALRO as a training ground for hot-spot screening for rust diseases resistance.

Daisy Kwamboka, an associate researcher at PlantVillage in Kenya, said the program provided younger scientists with essential knowledge and mentoring.

“I found the practical sessions particularly fascinating, and I can now confidently perform inoculations and rust scoring on my own,” said Kwamboka said, who added that she also learned how to organize experimental designs and the basics of R language for data analysis.

DEWAS research leaders Dave Hodson, Bhavani and Acevedo conducted workshops and presentations along with leading wheat rust experts. Presenters included Robert Park and Davinder Singh from the University of Sydney; Diane Sauders from the John Innes Centre; Clay Sneller from Ohio State University; Pablo Olivera from the University of Minnesota; Cyrus Kimani, Zennah Kosgey and Godwin Macharia from KALRO; Leo Crespo, Susanne Dreisigacker, Keith Gardner, Velu Govindan, Itria Ibba, Arun Joshi, Naeela Qureshi, Pawan Kumar Singh and Paolo Vitale from CIMMYT; Chris Gilligan and Jake Smith from the University of Cambridge; and Jens Grønbech Hansen and Mogens S. Hovmøller from the Global Rust Reference Center at Aarhus University.

“I thoroughly enjoyed the knowledge imparted by the invited experts, along with the incredible care they have shown us throughout this wonderful training.”

Narain Dhar, Borlaug Institute for South Asia 

For participants, the course offered a crucial platform for international collaboration, a strong commitment to knowledge sharing, and its significant contribution to global food security.

“The dedication of the trainers truly brought the training to life, making it incredibly understandable,” said Narain Dhar, research fellow at the Borlaug Institute for South Asia.

The event not only facilitated learning but also fostered connections among scientists from different parts of the world. These newfound connections hold the promise of sparking innovative collaborations and research endeavors that could further advance the field of wheat pathology.

India transforms wheat for the world

In 2023, India reached a record wheat harvest of over 110 million tons. A partnership between CIMMYT and the Indian Institute of Wheat and Barley Research (IIWBR) now allows farmers to pre-order advanced wheat varieties, transforming the nation’s agriculture.

Read the full story.

CIMMYT researcher receives Heroes Award

Maria Itria Ibba, a scientist at CIMMYT, received the inaugural Heroes Award from the Foundation for Innovation in Healthy Food. She received the award on October 29 at the ASA-CSSA-SSSA International Annual Meeting in St. Louis, Missouri, U.S.

Ibba, head of CIMMYT’s Wheat Chemistry and Quality Laboratory, received the honor in recognition of her outstanding leadership in launching the foundation’s Coalition for Grain Fiber initiative.

Together with her team at CIMMYT, Ibba works on improving the processing and nutritional quality of the bread and durum wheat lines derived from the CIMMYT spring wheat breeding programs. The research they conduct combines genetics and cereal chemistry, and one of the main focuses is to improve wheat grain dietary fiber. This effort begins with the development of efficient screening methods and the identification of germplasm with unique dietary fiber profiles.

The coalition seeks to improve the nutrition in staple foods without impacting their taste, mouthfeel or consumer price. It is simultaneously dedicated to establishing profit incentives for farmers and other food suppliers that enhance public health by delivering increased nutrient foods.

According to the coalition, improvements in the nutritional content of white and whole wheat flour may ultimately save thousands of lives and billions of healthcare U.S. dollars globally.

“Most people across the world do not consume enough dietary fiber, which is essential in the fight against various diseases,” says Ibba. “Increasing the dietary fiber content of a staple crop like wheat could have a significant positive impact on the health of wheat consumers. Our goal is to increase dietary fiber intake through the consumption of wheat products with greater fiber content.”

Maria Itria Ibba. (Photo: CIMMYT)

Plant breeders, food scientists, nutrition/health scientists and economists are partnering with the coalition to transform the food industry. They support non-GMO (not genetically modified organisms) approaches to increasing naturally occurring dietary fiber in grains.

Over 50 public and private-sector laboratory leaders in three countries and 23 U.S. states have engaged with the coalition, including from CIMMYT, Rothamsted Research, University of Nebraska, Lincoln, University of California, Davis, Cornell University and Bayer Crop Science.

The Nebraska Wheat Board provided support for the efforts of the foundation and the coalition.

“I feel humbled to have received the Heroes Award,” says Ibba. “I know that this award not only represents the work I have been doing, but also all the hard work that my team and my organization have been doing for several years.”

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources. For more information, visit cimmyt.org.

About the Foundation for Innovation in Healthy Food

FIHF builds coalitions of stakeholders that support increasing the nutritional value of the foods we consume, while preserving consumers’ food experiences.

About the Coalition for Grain Fiber

The coalition is enrolling grain fiber in the fight against chronic disease. By improving the nutritional content of white and whole wheat flour, it seeks to save thousands of lives and dramatically reduce healthcare costs.

Investment in Wheat Pathogen Surveillance

The Sainsbury Laboratory, the John Innes Centre and 21 other institutes are joining forces in a major global effort to monitor plant pathogens. Led by CIMMYT, the initiative aims to strengthen wheat productivity in food-insecure areas of East Africa and South Asia.

Read the full story.