Skip to main content

research: Wheat

STEM the gap: Scientists reflect on women’s increasing participation and visibility in STEM careers

CIMMYT’s women in science are shaping the future of agriculture. (Photo: CIMMYT)

Much has changed since many CIMMYT scientists attended university. In the past decades, the STEM field was predominantly male, with far less representation from marginalized groups and communities. Challenged by societal prejudices, only a handful of young women pursued STEM subjects, which further influenced career choices made by them, reinforcing the gender gap.

The gender gap in STEM is still significant, but times are changing. “At CIMMYT, we are deeply committed to promoting the voice of youth, marginalized communities, and women to improve the rigor of science for sustainable development. This includes investment in mentorship, learning from champions and pioneers, and appropriate performance assessment guidelines,” said Program Director of CIMMYT’s Sustainable Agrifood Systems, Sieglinde Snapp. “It is a long journey with bumps along the way, but I am proud to be in solidarity with the Global South, where we champion gender and social inclusion every day.”

On International Day of Women and Girls in Science 2024, five CIMMYT scientists who inspire, support, and open doors for many young women and underrepresented groups with their scientific work and pay-it-forward commitment share their motivation behind charting a career in STEM and encourage more young women and make the field more inclusive.

Beyhan Akin, winter wheat breeding lead 

Beyhan Akin stands with wheat plants. (Photo: Beyhan Akin)

Hailing from a farming family, Beyhan Akin was always surrounded by the beauty and potential of agriculture. She wished to contribute to her farming community, so 35 years ago, she joined CIMMYT’s wheat research program. Akin reminisced about her early days, how there were few women scientists, and the realization that if she succeeded, she could motivate more to follow in her footsteps.

“Agriculture science is expanding beyond core crop science with huge potential for interdisciplinary research and innovation. I hope young women students and scientists get the opportunity to pursue and excel in these fields. Increased advocacy and investment—grants, fellowships—at an institutional level is crucial to motivating and supporting the aspirations of women in science,” said Akin. “It might have taken a long time for women scientists like us to be in positions of influence, but I hope we can ensure the path is far less challenging today for these young women pursuing agriculture science/STEM.”

Alison Laing, agroecology specialist

Alison Laing stands with women farmers. (Photo: Alison Laing)

“Search out mentors. Don’t be afraid to either ask for help when you need it or to promote your achievements. And build networks,” advises Alison Laing to young women scientists starting in the field. Based in Bangladesh and working across South and Southeast Asia for over 15 years, Laing hopes that girls have opportunities to choose science education and become women with rewarding careers in fields that interest them, especially in non-traditional STEM disciplines.

Laing remembers how her mentor early in her career, the late John Schiller, a rice agronomist at the International Rice Research Institute (IRRI), encouraged her enthusiasm for learning and research. “He taught me so much about doing research in Southeast Asia, and I am indebted to him for his motivation and support in showing me how rewarding and interesting a scientific career can be.” She hopes other young students and scientists will have such mentors in their lives.

Sabina Tiwari, assistant research associate 

Sabina Tiwari speaks at a NSAF planning meeting. (Photo: Sabina Tiwari)

Fascinated by nature, plants, and how they thrive in diverse environments, Sabina Tiwari’s journey in science led her to become a plant breeder. “The indefinite potential of agriculture to improve lives made me realize how powerful agricultural science can be. This led to the motivation that I could create a positive difference in the world by being part of crop science and technology while working alongside great scientific minds, both men and women. Today, to young girls aspiring to make a difference in the world, I recommend they empower their cause through science and innovations.”

According to Tiwari, mentorship programs, internships, and job-shadowing experiences that helped her career must be extended to young women to gain practical exposure and knowledge of the possibilities in agriculture science.

Mazvita Chiduwa, associate scientist  

Mazvita Chiduwa speaks with a farmer. (Photo: Mazvita Chiduwa)

For Mazvita Chiduwa, a career in agriculture science has been rewarding. “I love the adventure involved in discovery in agriculture. I am inquisitive, and this career allows me to ask questions and seek answers,” said Mazvita.

Chiduwa believes society needs to embrace the participation of women and girls in STEM education and careers and that stereotypes about women not being cut out for STEM, prevalent even today, must be done away with.

To young girls and women aspiring for a career in STEM, Chiduwa says, “Go for it. There is a need for your uniqueness to contribute a wholesome solution to our world’s challenges.”

Luisa Cabrera Soto, research associate  

Luisa Cabrera conducts an analysis at a CIMMYT laboratory. (Photo: CIMMYT)

“A feminine perspective and approach are needed to enrich research,” reminds Luisa Cabrera Soto. “In a society where almost half of the members are female, I hope equity and inclusion will help improve under-representation in STEM.”

According to Cabrera, it is essential that women in science continue to challenge the gender prejudices and stereotypes that still exist. “Don’t let the spark of your curiosity go out. As a food science professional, I can say that there are still discoveries to be made and, through it, the probability of finding innovative solutions to global challenges such as food security.”

Wheat blast spread globally under climate change modeled for the first time

Climate change poses a threat to yields and food security worldwide, with plant diseases as one of the main risks. An international team of researchers, surrounding professor Senthold Asseng from the Technical University of Munich (TUM), has now shown that further spread of the fungal disease wheat blast could reduce global wheat production by 13% until 2050. The result is dramatic for global food security.

With a global cultivation area of 222 million hectares and a harvest volume of 779 million tons, wheat is an essential food crop. Like all plant species, it is also struggling with diseases that are spreading more rapidly compared to a few years ago because of climate change. One of these is wheat blast. In warm and humid regions, the fungus magnaporthe oryzae has become a serious threat to wheat production since it was first observed in 1985. It initially spread from Brazil to neighboring countries. The first cases outside of South America occurred in Bangladesh in 2016 and in Zambia in 2018. Researchers from Germany, Mexico, Bangladesh, the United States, and Brazil have now modeled for the first time how wheat blast will spread in the future.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Regionally up to 75% of total wheat acreage affected

According to the researchers, South America, southern Africa, and Asia will be the regions most affected by the future spread of the disease. Up to 75% of the area under wheat cultivation in Africa and South America could be at risk in the future. According to the predictions, wheat blast will also continue to spread in countries that were previously only slightly impacted, including Argentina, Zambia, and Bangladesh. The fungus is also penetrating countries that were previously untouched. These include Uruguay, Central America, the southeastern US, East Africa, India, and eastern Australia. According to the model, the risk is low in Europe and East Asia—with the exception of Italy, southern France, Spain, and the warm and humid regions of southeast China. Conversely, where climate change leads to drier conditions with more frequent periods of heat above 35 °C, the risk of wheat blast may also decrease. However, in these cases, heat stress decreases the yield potential.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Dramatic yield losses call for adapted management

The affected regions are among the areas most severely impacted by the direct consequences of climate change. Food insecurity is already a significant challenge in these areas and the demand for wheat continues to rise, especially in urban areas. In many regions, farmers will have to switch to more robust crops to avoid crop failures and financial losses. In the midwest of Brazil, for example, wheat is increasingly being replaced by maize. Another important strategy against future yield losses is breeding resistant wheat varieties. CIMMYT in collaboration with NARs partners have released several wheat blast-resistant varieties which have been helpful in mitigating the effect of wheat blast. With the right sowing date, wheat blast-promoting conditions can be avoided during the ear emergence phase. Combined with other measures, this has proven to be successful. In more specific terms, this means avoiding early sowing in central Brazil and late sowing in Bangladesh.

First study on yield losses due to wheat blast

Previous studies on yield changes due to climate change mainly considered the direct effects of climate change such as rising temperatures, changing precipitation patterns, and increased CO2 emissions in the atmosphere. Studies on fungal diseases have so far ignored wheat blast. For their study, the researchers focused on the influence of wheat blast on production by combining a simulation model for wheat growth and yield with a newly developed wheat blast model. Environmental conditions such as the weather are thus included in the calculations, as is data on plant growth. In this way, the scientists are modeling the disease pressure in the particularly sensitive phase when the ear matures. The study focused on the influence of wheat blast on production. Other consequences of climate change could further reduce yields.

Read the full article.

Further information:

The study was conducted by researchers from:

  • CIMMYT (Mexico and Bangladesh)
  • Technical University of Munich (Germany)
  • University of Florida (United States)
  • Brazilian Agricultural Research Corporation (Brazil)
  • International Fertilizer Development Center (United States)
  • International Food Policy Research Institute (United States)

Padma Shri for Kashi scientist Ravi Prakash Singh

Dr. Ravi Prakash Singh, associated with CIMMYT, is awarded the Padma Shri. He’s recognized for his global impact in agricultural science, notably developing over 730 climate-resilient, high-yield wheat varieties, benefiting small-holder farmers.

Read the full story.

New wheat varieties lauded for mitigating rust disease, increasing yield in Ethiopia

CIMMYT’s development and release of six new wheat varieties in Ethiopia, aimed at combating rust diseases and increasing yields, underscore its pivotal role in advancing agricultural self-sufficiency and productivity in the country. These varieties, covering the majority of Ethiopia’s wheat cultivation area, highlight CIMMYT’s significant contribution to enhancing food security and agricultural resilience.

Read the full story.

Marcelo Ortiz

Marcelo is an experienced graphic designer with over 20 years of graphic design experience for CIMMYT headquarters in Mexico. His main responsibilities include branding development, branding, design, and production of corporate reports and project reports. Developing designs for scientific articles, papers, abstracts, and serving as a liaison with the various vendors that provide a service for communications.

Kudzanai Chimhanda

Kudzanai is an experienced communications strategist and development researcher who currently supports communications for the CIMMYT Zimbabwe office. With a career spanning seven years, Kudzanai has been actively involved in impactful research at both local and international think tanks. Specializing in agricultural issues, Kudzanai’s expertise spans policy analysis, food systems, regional integration, and sustainability. As a dedicated professional, Kudzanai brings invaluable insights to the field, combining research acumen with effective communication strategies to drive positive change and promote informed decision-making in the field of agriculture and development.

CIMMYT scientists recognized for significant research impact

CIMMYT applies high quality science to develop more resilient agrifood systems. This year three scientists from CIMMYT are included in Clarivate’s 2023 Analysis of the most highly cited academic papers.

Jill Cairns participates at a plenary session. (Photo: Alfonso Cortés/CIMMYT)

While CIMMYT’s mission does explicitly require academic publication from its scientists, “the recognition reflects extensive networking with academia, opening doors for new technologies to benefit resource-poor farmers and consumers as well as lending scientific kudos to CIMMYT and underpinning fundraising efforts,” says Distinguished Scientist and Head of Wheat Physiology, Matthew Reynolds.

Maize Physiologist Jill Cairns and collaborators spearheaded the application of high throughput phenotyping for maize-breeding in sub-Saharan Africa, which she says, “would not have been possible without involving leading academic experts like JL Araus at Barcelona University.”

José Crossa chairs the session: adding value to phenotypic data. (Photo: Alfonso Cortés/CIMMYT)

Biometrician and Distinguished Scientist José Crossa has pioneered wheat genetic analysis and use of artificial intelligence to solve crop research questions. “With machine learning tools like Deep Learning, there is a golden opportunity to understand the many complex dimensions of crop adaptation, so data-driven breeding models will have the necessary precision to target complex traits,” he explains. Crossa is widely respected by leading academics in biometrics for his insights on bridging statistical theory to solve real world problems.

Reynolds has built initiatives like the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP) that transfer cutting-edge technologies—from many of the best academic institutions in the world—to application in breeding, helping to widen wheat gene pools globally.

Matthew Reynolds speaks at a workshop. (Photo: Alfonso Cortés/CIMMYT)

All three scientists achieved the same recognition last year. As in 2022, Reynolds was awarded for his contribution to scientific literature in plant and animal sciences, while Cairns and Crossa were awarded for their contributions to scientific literature across several fields of research (cross fields).

Since 2001, Clarivate’s Highly Cited Researchers list has identified global research scientists and social scientists who have demonstrated significant and broad influence in their field(s) of research. It recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.

In 2023, the list recognizes 6,849 individuals from more than 1,300 institutions across 67 countries and regions.

Ismahane Elouafi returns to CIMMYT—on a system-wide tour

As part of her fact-finding mission across CGIAR Research Centers, Ismahane Elouafi, CGIAR’s executive managing director, returned to CIMMYT headquarters in Texcoco, Mexico, where she studied as a Ph.D. student twenty years ago. Through meetings with CIMMYT staff from 21-24 December 2023, Elouafi learned how CIMMYT’s 2030 Strategy of more investment in developing food systems and climate-smart agriculture will contribute to CGIAR’s 2030 vision of a food and nutrition secure future.

“CIMMYT was pleased to host Ismahane,” said Bram Govaerts, CIMMYT director general. “Our ultimate mission is to transform agrifood systems. The only way we will reach our goal of food and nutrition security is by working globally and collaboratively across the value chain.”

Elouafi examines samples with CIMMYT researchers at the biosafety laboratory. (Photo: CIMMYT)

At CIMMYT’s museum and gene bank, Elouafi met with researchers to discuss the latest discoveries in genetic innovation, biodiversity conservation, and crop breeding. Elouafi and Kevin Pixley, director of the Dryland Crops program, visited the biosafety laboratory and glasshouses where gene editing on pearl millet and ground nut represent cutting-edge work with dryland crops. Elouafi also saw gene editing for resistance to maize lethal necrosis, which is already in field validation with Kenyan partners from the Kenya Agricultural & Livestock Research Organization (KALRO).

Global Wheat and Dryland Crops presented CIMMYT’s 2050 vision for wheat in Africa and near-term goals of advancing partnerships from phenotyping platforms to the International Wheat Improvement Network (IWIN). Seed experts from the Seed Health Unit shared progress on the productivity and nutrition findings of key cereals for healthy and balanced diets.

Elouafi also visited conservation trial plots with Jelle Van Loon, associate director of the Sustainable Agrifood Systems (SAS) program, who briefed Elouafi on cropping systems diversity related to maize, wheat, and beans, and showcased a variety of innovative farming technologies. At the trial plots, Elouafi met with Guillermo Bretón, a farmer, to talk about CIMMYT’s efforts to expand the MasAgro program into Central America aiming to address the region’s growing food insecurity contributing to migration.

(Left to right) Guillermo Bretón, Ismahane Elouafi, Bram Govaerts, and Jelle Van Loon, test a range of novel farming technologies. (Photo: CIMMYT)

The value of genetic resources as sources of novel diversity was discussed with Elouafi during a visit to field screenhouses, where she saw wide crosses work for biological nitrification inhibition (BNI) in wheat, gene bank accessions of triticale—a cross between wheat and rye—for use in searching for new sources of resistance to wheat blast, and the ex-situ clonal collection of tripsacum, a wild relative of maize.

“CIMMYT’s 2030 Strategy adopts a systems approach to food science, which I strongly support. Through the development of mechanization and post-harvest management, increased focus on seed systems and health, and most importantly, cooperation with partners to ensure that improved crop varieties are adopted by smallholders, I am confident that this approach will only strengthen CIMMYT’s historical strength of research and innovation for food and nutrition security and contribute to achieving CGIAR’s 2030 mission,” said Elouafi.

Kevin Kabunda, chief of party for the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub (AID-I) and Sieglinde Snapp, director of the SAS program, presented key milestones achieved in southern and eastern Africa on expanded seed systems, market access, and mechanization technologies. Snapp also highlighted important CIMMYT-led initiatives like the CGIAR Plant Health Initiative and the Cereal Systems Initiative for South Asia (CSISA) which have had a positive impact on smallholders in part because of partnerships with government agencies and other CGIAR Research Centers.

Elouafi and Govaerts visited the ancient city of Teotihuacán to learn about the cultural significance of maize to the history and agricultural practices of the Americas. She received a guided tour by chef Carlos Cedillo, operational director of La Gruta, a local restaurant dedicated to understanding and promoting the production and consumption of native maize varieties in the Valley of Mexico. CIMMYT has collaborated with La Gruta through capacity building initiatives by CIMMYT specialists for technicians and farmers.

Elouafi joins CIMMYT staff for a meet and greet coffee session. (Photo: CIMMYT)

Elouafi joined CIMMYT staff in a meet and greet session on 21 December, where staff expressed the strides being made by CIMMYT’s leadership team to foster a more inclusive workplace. “This moment of coming together with the staff that make CIMMYT a great place to work and who position the Center as a significant actor in agricultural development will be a highlight of my visit,” said Elouafi.

CIMMYT-BISA-ICAR partnership brings huge benefits in South Asia

A climate resilient agriculture program for the state of Bihar, India, launched in 2019 by the Borlaug Institute for South Asia (BISA) and the state government, was operating in 190 villages and had by 2022 improved water, soil nutrient, energy, labor and time use efficiency by at least 20% with around 35% higher yields and a reduced environmental footprint, as well as helping rice-wheat farmers to diversify their production with crops such as maize, millet and mungbean, among others.

This is just one of the achievements cited in a recent 2023 end-of-year reflection involving members of the BISA Executive Committee in New Delhi, India, including Bram Govaerts, director general of CIMMYT and BISA, and Arun Kumar Joshi, managing director of BISA.

“BISA has achieved significant milestones and is progressing towards organizational goals,” said Joshi. “The long-standing and productive partnership with the Indian Council of Agricultural Research (ICAR) and agricultural councils of other countries in South Asia became more robust, as strategies that focused on building capacities and improving seed systems for the whole of South Asia were implemented.”

Established jointly by CIMMYT and ICAR in 2011, BISA is a non-profit international research institute dedicated to food, nutrition, livelihood security and environmental rehabilitation in South Asia, home to more than 300 million undernourished people. Its work harnesses the latest genetic, digital, resource management technologies, and research-for-development approaches.

BISA’s flagship projects benefit millions of farmers and include the Atlas of Climate Adaptation in South Asian Agriculture (ACASA), the testing of experimental wheat that carries grass genes associated with the inhibition of nitrification in the soil near crop roots, a climate resilient agriculture program for South Asia, and implementation of the CGIAR Fruit and Vegetables for Sustainable Healthy Diets (FRESH) initiative.

“Of the top 10 bread wheat varieties in India, 6 are derived from the ICAR-CIMMYT-BISA collaboration,” Joshi explained.

“BISA has grown tremendously in the last few years,” said Govaerts. “The diverse arena of projects shows the capabilities and potential that BISA holds today. The flagship programs are undoubtedly creating a huge impact and would contribute to solving tomorrow’s problems today.”

BISA has renewed and diversified its research projects each year, according to T.R. Sharma, deputy director general of Crops, ICAR. “BISA’s impact on genetic innovation in wheat through ICAR-CIMMYT-BISA collaboration is indeed praiseworthy,” he said. Govaerts also attended an interactive session with CIMMYT-BISA India staff, presenting an analysis of the CIMMYT 2030 strategy and encouraging everyone’s contributions towards the goals.

2024 WIT Award nominations now open from Borlaug Global Rust Initiative

Nominations are now being accepted for the 2024 Jeanie Borlaug Laube Women in Triticum (WIT) awards honoring outstanding early-career scientists engaged in wheat research. The Borlaug Global Rust Initiative (BGRI) presents the WIT awards to acknowledge excellence and leadership among scientists in the initial stages of their careers. Recipients of the 2024 awards will benefit from advanced leadership and scientific training for wheat research, supported by the BGRI and the Accelerating Genetic Gains in Maize and Wheat project led by CIMMYT.

Applications for the 2024 WIT Awards 

Applications will be accepted until January 31, 2024. These awards, named after Jeanie Borlaug Laube, chair of the BGRI and daughter of Nobel Peace Prize Laureate Norman E. Borlaug, have recognized the accomplishments of early-career scientists in wheat research worldwide since their establishment in 2010. To date, the BGRI has acknowledged over 70 deserving individuals.

CIMMYT and WorldVeg strengthen collaboration in the midst of the climate crisis to increase their impact

On December 9, 2023, CIMMYT and the World Vegetable Center (WorldVeg) signed a memorandum of understanding (MoU) to further promote research and development, capacity strengthening activities and facilitate joint learning and the exchange of information and technology between the two organizations.

Sustainable diversification of food systems, good agricultural practices and safe and sustainable development of cereal and vegetable production systems and agrifood value chains sits at the core of this partnership.

The ultimate objective of the MoU is to further contribute to the achievement of the Sustainable Development Goals (SDGs), in particular SDG1 and SDG2, enhancing food and nutrition security, reducing rural and urban poverty and increasing employment opportunities in particular for women and youth.

CIMMYT and the World Vegetable Center are already partners in the Southern Africa Accelerated Innovation Delivery Initiative Rapid Delivery Hub (AID-I).  Through this program, it is distributing seed kits directly to vulnerable populations such as pregnant and lactating mothers and children under five, as well as improving soil health, promoting the production of traditional African vegetables, and increasing employment opportunities through building vegetable businesses. Recent impacts in Zanzibar are a good example.

Bram Govaerts, director general of CIMMYT, and Marco Wopereis, director general of the World Vegetable Center, sign the MoU. (Photo: CIMMYT and WorldVeg)

“This collaboration between CIMMYT and WorldVeg is a testament to the potential of collective action, highlighting sustainable solutions and community empowerment as essential elements in combating malnutrition and enhancing overall well-being. We are building on the foundation already established by our collaborations within the Accelerated Innovation Delivery (AID-I) project in southern and eastern Africa,” said CIMMYT Director General, Bram Govaerts. “CIMMYT is excited to expand our connection with WorldVeg to bring innovations to even more people as crop diversification encourages improved nutrition.”

“The World Vegetable Center is proud to deepen our work with CIMMYT. Reaching the Sustainable Development Goals will require not only advanced technologies but also systems to deliver those innovations to the people that need them most and this partnership will enable both priorities,” said Director General of the World Vegetable Center, Marco Wopereis. “Promoting and enhancing the availability of nutritious vegetables and cereals are vital to achieving these aims.”

By providing farmers with more options, CIMMYT and WorldVeg will promote the cultivation of diverse crops that are essential for a balanced and nutritious diet particularly among vulnerable communities around the world. By raising awareness about the significant benefits of incorporating different vegetables and cereals into daily diets, the partnership will inspire and encourage millions of people to fully embrace diversification and improved nutrition.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources. For more information, visit cimmyt.org.

About the World Vegetable Center

The World Vegetable Center (WorldVeg) is an international non-profit institute for vegetable research and development. It mobilizes resources from the public and private sectors to realize the potential of vegetables for healthier lives and more resilient livelihoods.

WorldVeg’s globally important genebank, improved varieties, production and postharvest methods help farmers to increase their vegetable harvests, raise incomes in poor rural and urban households, create jobs, and provide healthier, more nutritious diets for families and communities. With headquarters in Taiwan, field operations are led from regional centers in Benin, India, Mali, Tanzania and Thailand, and through offices in other key countries.

Discovering the potential of multispectral UAV and satellite sensors in detecting wheat rust in Ethiopia

Latest advances in sensor technology and data processing allow early detection, mapping and monitoring of crop infestation, helping prevent large-scale outbreaks.

A recent study published in Nature Scientific Reports, assesses the capability of very high-resolution satellite (VHRS) imagery and high-resolution unmanned aerial vehicles (UAVs) imagery for high-throughput phenotyping and detecting impacts of wheat rusts in earlier crop growth stages. UAVs and VHRS offer high potential for nonintrusive, extensive, rapid and flexible measurements of plant biophysical properties at very high spatial and temporal scales.

The study—led by CIMMYT in partnership with the Ethiopian Institute of Agricultural Research (EIAR) and Lincoln Agritech Ltd from New Zealand—establishes that these advanced sensor technologies are emerging as gamechangers in crop health management. They save time, complement traditional disease scoring methods and field surveys, and are cost-effective.

Further, the study establishes that multispectral VHRS sensors can pave the way for the upscaling of disease severity assessment from plot to regional scales at early growth stages.

Wheat rust is a global challenge

Globally, crop infections are an increasing threat to crop production and food security. Increased cross-border trade and travel, coupled with a changing climate are resulting in increased frequency and severity of crop disease outbreaks. Of all the diseases that affect wheat, wheat rusts are among the most damaging, capable of causing epidemics on a vast scale with significant economic and production losses. As of date, global losses from wheat rusts equate to 15 million tonnes per year (USD $2.9 billion). In Ethiopia, a major stripe/yellow-rust epidemic in 2010 affected an estimated 600,000 hectares, resulting in production losses of 15–20% and causing economic losses of USD $250 million. Similarly, a stem/black rust (SR) epidemic from 2013-2014 infected approximately 40,000 hectares. SR, which can cause 100% crop loss within weeks, is re-emerging as a major concern to wheat production.

Early detection, monitoring and timely intervention is key

Rapid early-season detection, monitoring and timely control of wheat rusts in susceptible varieties are critical to avoid large-scale outbreaks, especially in countries where fungicides are scarcely available or too costly for smallholders. UAV-based high-throughput phenotyping (HTP) has been recently investigated to support wheat improvement breeding, in particular, to assess plant growth development, canopy architecture, physiology, reaction to abiotic stress, crop disease and insect pest response, and wheat yield.

Figure 1

Spectral and thermal measurements at the plant and canopy levels allow for monitoring the interactions between plant germplasm and environmental (abiotic and biotic) factors. The current study identifies several spectral features from UAV and VHRS multispectral imagery that have strong assessment power for the detection of combined wheat rust diseases at early crop growth stages.

During a randomized trial conducted in Ethiopia, six bread wheat varieties with differing rust resistance were monitored using UAV and VHRS. In total, 18 spectral features were tested to assess stem and yellow rust disease progression and associated yield loss. Spectral properties of the wheat canopy (e.g., pigmentation, moisture, and biomass) are altered under rust disease stress. Using multispectral images and derived vegetation indices, it is possible to determine crop susceptibility to diseases and consequently can be used for detection and monitoring of wheat rusts.

Figure 2

Recent research on wheat, maize and dry bean demonstrated strong and significant correlations between vegetation indices extracted from UAV and VHRS imagery, confirming the feasibility of VHRS-HTP targeting biomass and yield; however, such satellite applications for plant breeding programs are still scarce.

Looking ahead to upscaling

This study provides valuable insight into the upscaling capability of multispectral sensors for disease detection from UAV imagery at 5 cm per pixel to pan-sharpened satellite imagery at 50 cm per pixel, demonstrating a first step towards upscaling disease detection from plot to regional scales. Further work will expand and improve current methodology to examine the VHRS detection capability towards machine and deep learning techniques (e.g., convolutional neural network) to allow for continuous monitoring systems, focusing on both single and mixed rust diseases under different treatments (e.g., variable fungicide rates, irrigation rates).

The early detection of diseases through spectral analysis and the integration of machine learning algorithms offers invaluable tools to mitigate the spread of infections and implement prompt disease management strategies.

Figures (1-2):

Field trial captured at varying spatial resolutions:

(a) SkySat false color composite (NIR-R-G) at 50 cm pixels (booting stage; 2020-10-17)

(b) UAV false color composite (NIR-R-G) at 5 cm pixels (heading stage; 2020-10-29) 

(Photo: Nature Scientific Reports)

While you were sleeping: increasing nighttime temperatures and their effects on plant productivity

When one thinks of heat waves, the natural tendency is to consider high daytime temperatures. However, when most people are sleeping, a hidden factor of climate change is taking place: temperatures at night are not dipping as much as observed in the past, which has dramatic effects on many crops, including wheat. In fact, nocturnal temperatures are rising more rapidly globally than daytime temperatures, which is of great concern as research is starting to show the sensitivity of plants to warmer nights.

A group of researchers, from the University of Nottingham, the Sonora Institute of Technology (ITSON) and CIMMYT examined how different wheat lines reacted to the effects of rising nighttime temperatures treatments imposed in the field, for three years at CIMMYT’s Norman E. Borlaug experimental station in Ciudad Obregon, Mexico. Their results, Night-time warming in the field reduces nocturnal stomatal conductance and grain yield but does not alter daytime physiological responses were published in New Phytologist.

Previous studies revealed that wheat yields decline 3-8% for every 1°C increase of the nighttime low temperature. For this research, the team subjected the selected wheat breeds to an increase of 2°C. The varieties were selected based on previous evaluations of their daytime heat tolerance.

Notably, the findings highlighted that genotypes classified as traditionally heat tolerant were sensitive to small increases in nighttime temperature even without daytime temperature stress, implying that adaptation to warm nights is likely under independent genetic control than daytime adaptation.

“These results are exciting as they offer new perspectives on the impact of night temperatures on diurnal photosynthetic performance and wheat yields,” said co-first author Liana Acevedo-Siaca. “Through this work we found that wheat yields decreased, on average, 1.9% for every degree that increased at night. Our hope is that this work can help inform future breeding and research decisions to work towards more resilient agricultural systems, capable of dealing with warmer day and nighttime temperatures.”

Plants at night

While plants do not “sleep” in the way animals do, nighttime for plants has long been thought of as a time of repose compared to daylight hours when photosynthesis is taking place. However, recent findings have revealed that plants are more active than previously thought at night, for example in transpiration, which is the process of plants gathering liquid water from the soil and releasing water vapor through their leaves.

“An interesting result of our research was that we found varieties characterized as heat tolerant, showed some of the greatest declines in yield in response to warmer nights,” said co-first author Lorna McAusland, Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham. “These are the varieties wheat farmers are being recommended for increasing daytime temperature, and so there is a worry that advantages gained during the day are being lost at night.”

“There is likely a goldmine of opportunities related to genetically improving nighttime processes in crops, as very little research has been conducted in that space. Useful genetic variation can be expected, since ‘night’ traits have never been considered or needed before now,” said co-author Matthew Reynolds, who leads the CIMMYT’s Wheat Physiology Lab that collaborates globally with experts via HeDWIC (https://hedwic.org/) and uses physiological pre-breeding as a conduit for cutting edge technologies to impact mainstream breeding.