Skip to main content

research: Wheat

Maria Itria Ibba presents award for research into improving nutrition in staple foods

Maria Itria Ibba, a scientist at CIMMYT, was among the presenters of the newly established Marie Clark Taylor CGF (Coalition for Grain Fiber) Fellowship. Katherine Frels presented the award to Delaware State University student Lauren A. Waller on 21 February at the Coalition for Grain Fiber workshop in Kansas City, KS. The fellowship is named after Marie Clark Taylor, an educator, plant breeder, and former dean at Howard University. It honors a minority student dedicated to applying plant science and/or food science for the benefit of all socioeconomic groups.

Lauren Waller, an undergraduate studying plant science, presented her research at the CGF workshop, Opportunities and Risks: Wheat Milling, Baking Supply Chain and the Coalition for Grain Fiber. The event’s theme was “creating the roadmap to growing more fiber – using commercial wheats to improve diets.”

“In the U.S., where dietary fiber is critical for cardiometabolic health, over 90% of women and 97% of men fall short of recommendations,” said Ibba. “Leveraging natural variation in wheat’s major fiber components offers a promising solution without disrupting current habits. By addressing these issues, we can bridge health gaps, recognizing the link between socioeconomic status and chronic conditions.”

The Coalition for Grain Fiber seeks to improve the nutrition in staple foods without negatively impacting their taste, feel, or consumer price. It is dedicated simultaneously to establishing profit incentives for farmers and other food suppliers that deliver foods with increased nutrients. “The efforts of the Coalition for Grain Fiber are pivotal in weaving a healthier future for all, breaking the chains of disease in under-served communities around the world.” The program builds research ties that allow students at HBCUs and minority-serving institutions to develop a network of mentors and collaborators at land grant- and R1 universities around the U.S.

Ibba joined Rod Wallace of the Foundation for Innovation in Healthy Food (FIHF) and Dr. Katherine Frels of the University of Nebraska-Lincoln in presenting the award.

About the Coalition for Grain Fiber

The coalition is enrolling grain fiber in the fight against chronic disease. By improving the nutritional content of white and whole wheat flour, it seeks to save thousands of lives and dramatically reduce healthcare costs.

About the Foundation for Innovation in Healthy Food

FIHF builds coalitions of stakeholders that support increasing the nutritional value of the foods we consume, while preserving consumers’ food experiences.

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South,  through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries.

CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security and improving natural resources.

Advancing wheat breeding through rapid marker-selectable trait introgression

The experimental research station in Toluca, Mexico. (Photo: S. Herrera/CIMMYT)

In the ever-evolving field of agriculture, AGG-WHEAT is leading a transformative approach through rapid marker-selectable trait introgression in wheat breeding programs. This method aims to streamline the process of integrating desirable traits into various genetic backgrounds.

At the core of AGG-WHEAT’s strategy is the establishment of a centralized marker-selectable trait introgression pipeline. This initiative seeks to facilitate the transfer of specific genes from a centralized source into various genetic backgrounds within plant breeding programs. Molecular markers play a crucial role in efficiently identifying and selecting target traits.

The merits of a centralized trait introgression pipeline extend beyond convenience. This approach ensures a more uniform and controlled transfer of genetic material, enhancing the precision of trait introgressions across diverse breeding lines. Molecular markers streamline the selection process, improving the accuracy of desired trait incorporation into wheat varieties.

Speed breeding facilities in Toluca, Mexico

AGG-WHEAT’s marker-selectable trait introgression pipelines are implemented at the speed breeding facilities located at the CIMMYT research station in Toluca, Mexico. These facilities serve as the incubators for innovation, where new selection candidates are evaluated based on various criteria. The decision-making process involves an expert panel comprising geneticists, trait specialists, and breeders. This panel annually determines the selection candidates, considering factors such as trait demand, genetic diversity, evidence of Quantitative Trait Loci (QTL) effects, selection efficiency, and available funding.

The decision-making process involves a multifaceted evaluation of potential selection candidates. Documented trait pipelines and product profiles guide decision-making to ensure alignment with the overarching goals of wheat breeding programs. Considerations include the need for phenotypic variation and the existence of limited genetic diversity for the trait under consideration.

The decision-making process also explores existing in-house or external evidence of QTL effects and the underlying gene mechanisms. Selection efficiency, contingent on the availability of accurate molecular markers and a known purified donor parent, further refines the pool of potential candidates. Established phenotypic protocols for product testing and the crucial element of available funding complete the decision-making criteria.

Achievements

In a significant step towards innovation, the products of the first marker-selectable trait introgression pipelines entered yield trials in 2023. This marks a transition from conceptualization to tangible impact, reflecting the efficacy of AGG-WHEAT’s approach. A total of 97 F5-lines, cultivated through the marker-assisted backcross (MABC) scheme, now grace the fields.

These lines carry novel genes associated with fusarium head blight and rust resistance, derived from wheat genetic resources and wild relatives. The choice of these traits underscores AGG-WHEAT’s commitment to addressing challenges faced by wheat crops, ensuring improved resilience and sustainability in the face of evolving environmental conditions.

The success of these initial trait introgression pipelines represents more than a scientific achievement; it marks a pivotal moment in the trajectory of wheat breeding. The 97 F5-lines, standing as testaments to enhanced resistance traits, are poised to make a transition into mainstream breeding pipelines. This marks the commencement of a broader dissemination strategy, where these lines will be distributed for testing at National Agricultural Research and Extension Services (NARES).

The journey from the experimental fields to mainstream adoption involves a meticulous process. These lines, having undergone rigorous evaluation and selection, now hold the potential to catalyze changes in commercial wheat varieties. The lessons learned from their cultivation will shape future breeding strategies and contribute to the resilience of wheat crops in diverse agricultural landscapes.

Rapid marker table. (Photo: CIMMYT)

AGG-WHEAT’s lasting impact

AGG-WHEAT’s marker-selectable trait introgression stands as an innovative approach in wheat breeding. The centralized approach, the strategic use of molecular markers, and the meticulous decision-making process exemplify the commitment to excellence and precision. The journey from concept to reality—marked by the entry of 97 F5-lines into yield trials—signals a new era in wheat breeding.

As these lines traverse from experimental fields to mainstream adoption, they carry the promise of transforming the landscape of commercial wheat varieties. AGG-WHEAT’s lasting impact goes beyond the scientific realm; it extends to the fields where farmers strive for sustainable and resilient wheat crops. In the tapestry of agricultural progress, AGG-WHEAT has woven a thread of innovation that holds the potential to redefine the future of wheat cultivation.

Study links climate change with wheat blast; warns crop yield could drop by 75% in South America, Africa by 2050

CIMMYT’s latest study reveals climate change could significantly expand wheat blast’s reach by 2050, threatening a 13% drop in global wheat production. The research highlights the critical need for developing resistant wheat varieties and adapting farming practices to counter this growing threat to food security.

Read the full story.

East African wheat breeding pipeline and E&SSA network

Healthy wheat and wheat affected by Ug99 stem rust in farmer’s field, Kenya. (Photo: CIMMYT)

The East African wheat breeding pipeline aims to improve wheat varieties and contribute to regional food security by ensuring a stable and resilient wheat supply. In 2022, CIMMYT, in partnership with the Kenya Agriculture and Livestock Research Organization (KALRO) established a Joint Breeding Program in Njoro, a town southwest of the Rift Valley in Kenya. This was one of the first integrated breeding pipelines between CGIAR and National Agricultural Research and Extension Systems (NARES) partners.

Over the last three decades, genetic trials of over 77 varieties have been conducted in several regions. In East Africa, an expanded testing network that spans over multiple research institutes in Kenya and Ethiopia has been established for Stage 1 and Stage 2 trials in network countries. This makes the pipeline a powerful driver of positive impacts, rapidly enhancing both farm productivity and production in target regions. In Kenya specifically, a genetic gain trial was conducted at two sites in 2023 with the Stage 1 trials evaluated across eight locations. These are being distributed to NARES partners to establish correlations between the breeding site in Kenya and the Target Population of Environments (TPEs) in the E&SSA regions. This breeding pipeline demarcates the population improvement from product development. Other areas in the trials include the enhancement of genetic diversity to build resilience, adaptability, and quality enhancement to meet market and consumer demands.

The trial will continue in 2024 and 2025 to establish a baseline for genetic gains and to enable the assessment of the breeding pipeline’s progress in the coming years. The first cohort of pipeline materials (250 crosses) has been advanced to F2 generation and will be ready for distribution to E&SSA partners in 2025.

Accelerated breeding

The anticipation is that accelerated breeding techniques will be implemented in Kenya by incorporating a three-year rapid generation bulk advancement (RGBA) scheme aimed at diminishing the time necessary for variety development and release. This collaborative effort encompasses various activities, including joint crossing block, generation advancement, yield testing, and population improvement. The three-year RGBA scheme, coupled with data-driven selection utilizing advanced data analytics (GEBV, SI) and genomic selection approaches, is expected to play a pivotal role in facilitating informed breeding decisions in the East African region.

3-year RGBA scheme. (Photo: Sridhar Bhavani)

Varietal improvement

The project aims to develop and release improved wheat varieties that are well adapted to the East African agroecological conditions. The Kenyan environment closely mirrors wheat-growing conditions in Ethiopia, Tanzania, Uganda, Rwanda, and Burundi, and spillover impacts to sub-Saharan countries such as Zambia and Zimbabwe. This strategic alignment with local conditions and close cooperation with NARES partner organizations has proven to be very effective in addressing critical gaps, including high-yield potential, disease resistance, and climate resilience, and aligns with CIMMYT’s overall wheat strategy for Africa.

Enhanced disease resistance

Kenya stands out as a hotspot for rust diseases, showcasing notable diversity in stem rust variants (ug99) and yellow rust. The virulence spectrums of these diseases differ from those found in Mexico, posing challenges to effective breeding strategies. It is expected that the breeding pipeline will effectively tackle these challenges as well as those associated with fusarium, Septoria, and wheat blast, which are on the rise in African environments.

Climate adaptation

The East African wheat breeding pipeline is committed to breeding wheat varieties that can thrive in changing climatic conditions, including heat and drought tolerance, and expanding testing in marginal rainfed environments experiencing heat and drought stress.

Through the support of our partners and funders from the Bill and Melinda Gates Foundation, Foundation for Food and Agriculture Research (FFAR), and Foreign, Commonwealth and Development Office FCDO, the following achievements can be reported:

Regional collaboration and cooperation

For over four decades, the enduring collaboration with KALRO has yielded significant successes including the operation of the largest phenotyping platform for stem rust and various diseases. The Mexico-Kenya shuttle breeding program, incorporating Ug99 resistance, has successfully countered the threat of stem rust by releasing over 200 varieties in targeted regions and advancing the East African wheat breeding pipeline. The plan is to replicate these accomplishments in other target regions through the E&SSA network. To address limitations in KALRO’s breeding program and to conduct standardized trials, a strategic partnership with a private seed company Agventure Cereal Growers Association has been established. This collaboration will facilitate yield testing at multiple sites in Kenya to identify lines with superior performance for the East African region. So far, lines exhibiting high yield potential of up to 8 tons/ha, even under rain-fed environments, have been identified. The collaborative efforts are already making a noticeable impact, as evidenced by reports indicating increased adoption of zero-tillage practices among farmers. This shift has proven beneficial, especially during years marked by heat and drought challenges, resulting in higher returns for these farmers.

Increased capacity of national programs

From 1-13 October 2023, the AGGMW project held a training program on “Enhancing Wheat Disease Early Warning Systems, Germplasm Evaluation, Selection, and Tools for Improving Wheat Breeding Pipelines”. The course which brought together 33 participants from over 13 countries was held at the KALRO station in Njoro- Kenya. The comprehensive program covered a wide range of crucial subjects in the field of wheat breeding and research. Topics included breeding methodologies, experimental design, data collection, statistical analysis, and advanced techniques such as genomic selection. Participants also engaged in practical hands-on data analysis, explored rust pathology, and delved into early warning systems. Moreover, they had the opportunity for direct evaluation and selection of breeding materials. The course aimed to equip participants with a diverse skill set and knowledge base to enhance their contributions to the field of wheat breeding and research.

Other initiatives supporting the breeding pipeline include CGIAR programs, Accelerated Breeding and Crops to End Hunger. This multi-faceted approach within the breeding pipeline underpins the importance of fostering regional collaboration, knowledge sharing, and strategic investments in enhancing wheat production and addressing critical challenges in the region.

Enhancing wheat breeding efficiency in South Asia through early germplasm access

Wheat field. (Photo: CGIAR)

In the dynamic landscape of wheat breeding, early access to germplasm emerges as a strategic catalyst for accelerating variety turnover and meeting the evolving challenges faced by farmers in South Asia. Since its inception, the Accelerating Genetic Gains in Maize and Wheat (AGG) project has pioneered new tools to optimize the wheat breeding process. One such tool, the efficient and low-cost 3-year breeding cycle, has been fine-tuned in Mexico, using the Toluca screenhouse and field advancement in ObregĂłn, laying the groundwork for faster variety turnover.

The inaugural set of lines generated through this enhanced breeding cycle is already undergoing Stage 1 trials in the ObregĂłn 2023-24 season. However, the innovation doesn’t stop there; to expedite the variety release process and garner robust data from the Target Population of Environments (TPE), Stage 2 lines are being rigorously tested at over 20 sites in South Asia through collaboration with National Agricultural Research and Extension Services (NARES) partners. In the seasons spanning 2021-2024, a total of 918 Stage 2 lines underwent rigorous trials, aiming to provide early access to improved wheat lines for testing and release by NARES and establish a genetic correlation matrix between ObregĂłn selection environments and diverse sites across South Asia.

These extensive trials serve a dual purpose. Firstly, they facilitate early access to improved wheat lines for testing and release by NARES, bolstering the agricultural landscape with resilient and high-yielding varieties. Secondly, they contribute to the establishment of a genetic correlation matrix between the selection environments in ObregĂłn and the diverse sites across South Asia. This matrix becomes a guiding compass, aiding in selecting the most promising lines for broader TPEs in South Asia and beyond.

Transformative impact on wheat varieties in South Asia

Through the support of our partners and funders from the Bill & Melinda Gates Foundation, the Foundation for Food and Agriculture Research (FFAR), the UK Foreign, Commonwealth & Development Office (FCDO), and the US Agency for International Development (USAID), great achievements have been recorded throughout the region. India, a prominent player in wheat cultivation, stands as a testament to the transformative impact of early access to advanced lines. The top three varieties, namely DBW187, DBW303, and DBW 222, covering over 6 million hectares, trace their roots to CIMMYT varieties. Adopting a fast-track approach through early-stage testing of these advanced lines at BISA sites in India, supported by the Delivering Genetic Gain in Wheat (DGGW) project, facilitated the release of these varieties two years ahead of the regular testing process. This expedited varietal release was complemented by the innovative early seed multiplication and dissemination approach introduced by the Indian Council of Agricultural Research (ICAR). Recent additions to this accelerated channel include varieties such as DBW 327, DBW 332, DBW 370, and 371, promising further advancements in wheat cultivation.

Pakistan

In Pakistan, the early access to advanced lines has been a catalyst for releasing high-yielding, climate-resilient, and nutritious wheat varieties. In 2023 alone, 12 new varieties were released, with the renowned ‘Akbar-19,’ introduced in 2019, covering a substantial 42% of cultivated land in Punjab. Data released by the Ayub Agricultural Research Institute (AARI), shows that this variety, known for its high yield potential, disease resistance, and enriched zinc content, has significantly contributed to increased wheat production in the region.

Nepal

Guided by policy interventions in the national varietal testing process, Nepal has experienced the fast-track commercialization of high-yielding and climate-resilient wheat varieties. Allowing multilocation testing of CIMMYT nurseries and advanced elite lines, Nepal released six biofortified zinc wheat varieties in 2020. The expeditious seed multiplication of these released and pre-release varieties has facilitated the rapid spread of new and improved wheat varieties.

The strategic utilization of early access to wheat germplasm in South Asia holds promise in accelerating variety turnover, offering farmers resilient and high-performing wheat varieties. Collaborative efforts between research institutions, government bodies, and international organizations exemplify the power of innovation in transforming agriculture. With an ongoing dedication to refining breeding cycles, expanding testing initiatives, and fostering collaboration, the AGG project contributes to building a sustainable and resilient agricultural future in South Asia. Early access to wheat germplasm emerges as a practical approach in this scientific endeavor, laying the foundation for a climate-resilient and food-secure region. The successes witnessed in India, Pakistan, and Nepal underscore the transformative potential of this approach, offering tangible benefits for agricultural communities in South Asia and beyond. In navigating the complexities of a changing climate and growing food demand, early access to wheat germplasm remains a pragmatic ally, propelling agricultural innovation and resilience to new heights.

Building on fifty years of collaboration, a visit by Chinese politicians to CIMMYT in Mexico breeds new opportunities for tackling global agricultural challenges

Tang Renjian, former governor of Gansu province, China, and current Minister of Agriculture and Rural Affairs and CIMMYT Director General, Bram Govaerts. (Photo: CIMMYT)

The Minister of Agriculture and Rural Affairs for China, Tang Renjian, visited CIMMYT headquarters on Thursday, 11 January, along with dignitaries from the Ministry of Agriculture and Rural Affairs (MARA) and the Embassy of China. Tang, the former governor of Gansu province in China, attended the site with the aim of building on collaborative scientific work between his country and CIMMYT through the Joint Laboratory for Maize and Wheat Improvement in China.

CIMMYT was delighted to host Tang to showcase the benefits of the CIMMYT-China relationship for wheat and maize, and to identify opportunities for sustained collaboration. The highly regarded minister was able to hear about work including genetic analysis service for agriculture and methods to close the gap between farmers and research, as well as to observe CIMMYT’s facilities and field experiments. The meeting laid the foundations for potential future CIMMYT-China projects in areas such as germplasm exchange, molecular breeding, climate-resilient technology, and training.

Bram Govaerts, director general of CIMMYT, said, “Showcasing our science to Tang is an exciting chance for CIMMYT and China to grow what is already a fruitful partnership, impacting millions of people globally.”

Exemplifying impactful global partnerships

Since 1974, the CIMMYT-China relationship has improved the lives of millions of people via numerous evidence-based scientific projects, with support from the Chinese Academy for Agricultural Sciences (CAAS). Through five decades of partnership, the collaboration has resulted in up to 10.7 million additional tons of wheat for China’s national output with a value of US $3.4 million.

CIMMYT’s contribution to China’s wheat and maize is significant. In terms of wheat, 26% of wheat grown in China has been derived from CIMMYT germplasm since the year 2000, with Chinese scientists adding more than 1,000 accessions to the CIMMYT gene bank. CIMMYT maize varieties have been planted on more than 1 million hectares in China, with the partnership responsible for the release of 13 commercial varieties.

Renjian and Chinese dignitaries tour CIMMYT’s museum. (Photo: CIMMYT)

In 2023, the Joint Wheat Molecular Breeding International Lab (Joint Lab) launched as a collaborative project between China, Pakistan, and CIMMYT, with the aim of developing new high yield wheat varieties and enhancing capacity for crop breeding and production.

More recently, scientists have played an important role in the free exchange of germplasm between China and countries in Africa, which will help to mitigate against any gene pool loss caused by climate-induced extreme weather events and enable the development of more resilient crop varieties.

Tang said, “Witnessing first-hand the work of CIMMYT’s scientists in Mexico is inspiring. We look forward to exploring further how we can build on the excellent relationship between China and CIMMYT to address global agricultural challenges.”

Govaerts said, “We hope that this partnership continues in order to address the need for nutritious crops and to develop innovative solutions for smallholder farmers.”

Dragan Milic

Dragan Milic is responsible for providing support to the National Agriculture Research Systems (NARS) in Africa, assisting them in the development of breeding improvement plans aimed at delivering increased genetic gains for smallholder farmers. These enhancement strategies will specifically target product profiles, optimization of breeding schemes, utilization of genotyping, automation, mechanization, appropriate breeding software, and establishment of connections with seed producers.

Milić also extends support to national breeding teams in African countries, implementing a comprehensive internal breeding pipeline optimization plan supported by the Excellence in Breeding platform. Furthermore, he assists national partners in integrating and establishing breeding networks with CGIAR institutes and regional and national collaborators.

Before joining CIMMYT, Dragan Milić spent his professional career at the Institute of Field and Vegetable Crops (IFVCNS) in Novi Sad, Serbia. He served as the Head of the Forage Breeding team at IFVCNS and possesses over 20 years of experience in breeding, seed production, and leadership in conventional and molecular alfalfa/forage breeding. Dragan Milić has been a visiting scientist at the Samuel Roberts Noble Foundation and UC Davis through different scholarships funded by the Serbian and US governments.

His main expertise is related to forage and grain legumes breeding, field-based experiment phenotyping, legume genetics, and forage and grain legumes seed systems. He was involved in defining strategies based on conventional and molecular breeding efforts towards variety selection and the development of improved forage/alfalfa germplasm for Southern East Europe and Asia. Dragan is the author of many alfalfa/grain legumes varieties released in Serbia, Belarus, Morocco, Turkey, Ukraine, and the EU.

STEM the gap: Scientists reflect on women’s increasing participation and visibility in STEM careers

CIMMYT’s women in science are shaping the future of agriculture. (Photo: CIMMYT)

Much has changed since many CIMMYT scientists attended university. In the past decades, the STEM field was predominantly male, with far less representation from marginalized groups and communities. Challenged by societal prejudices, only a handful of young women pursued STEM subjects, which further influenced career choices made by them, reinforcing the gender gap.

The gender gap in STEM is still significant, but times are changing. “At CIMMYT, we are deeply committed to promoting the voice of youth, marginalized communities, and women to improve the rigor of science for sustainable development. This includes investment in mentorship, learning from champions and pioneers, and appropriate performance assessment guidelines,” said Program Director of CIMMYT’s Sustainable Agrifood Systems, Sieglinde Snapp. “It is a long journey with bumps along the way, but I am proud to be in solidarity with the Global South, where we champion gender and social inclusion every day.”

On International Day of Women and Girls in Science 2024, five CIMMYT scientists who inspire, support, and open doors for many young women and underrepresented groups with their scientific work and pay-it-forward commitment share their motivation behind charting a career in STEM and encourage more young women and make the field more inclusive.

Beyhan Akin, winter wheat breeding lead 

Beyhan Akin stands with wheat plants. (Photo: Beyhan Akin)

Hailing from a farming family, Beyhan Akin was always surrounded by the beauty and potential of agriculture. She wished to contribute to her farming community, so 35 years ago, she joined CIMMYT’s wheat research program. Akin reminisced about her early days, how there were few women scientists, and the realization that if she succeeded, she could motivate more to follow in her footsteps.

“Agriculture science is expanding beyond core crop science with huge potential for interdisciplinary research and innovation. I hope young women students and scientists get the opportunity to pursue and excel in these fields. Increased advocacy and investment—grants, fellowships—at an institutional level is crucial to motivating and supporting the aspirations of women in science,” said Akin. “It might have taken a long time for women scientists like us to be in positions of influence, but I hope we can ensure the path is far less challenging today for these young women pursuing agriculture science/STEM.”

Alison Laing, agroecology specialist

Alison Laing stands with women farmers. (Photo: Alison Laing)

“Search out mentors. Don’t be afraid to either ask for help when you need it or to promote your achievements. And build networks,” advises Alison Laing to young women scientists starting in the field. Based in Bangladesh and working across South and Southeast Asia for over 15 years, Laing hopes that girls have opportunities to choose science education and become women with rewarding careers in fields that interest them, especially in non-traditional STEM disciplines.

Laing remembers how her mentor early in her career, the late John Schiller, a rice agronomist at the International Rice Research Institute (IRRI), encouraged her enthusiasm for learning and research. “He taught me so much about doing research in Southeast Asia, and I am indebted to him for his motivation and support in showing me how rewarding and interesting a scientific career can be.” She hopes other young students and scientists will have such mentors in their lives.

Sabina Tiwari, assistant research associate 

Sabina Tiwari speaks at a NSAF planning meeting. (Photo: Sabina Tiwari)

Fascinated by nature, plants, and how they thrive in diverse environments, Sabina Tiwari’s journey in science led her to become a plant breeder. “The indefinite potential of agriculture to improve lives made me realize how powerful agricultural science can be. This led to the motivation that I could create a positive difference in the world by being part of crop science and technology while working alongside great scientific minds, both men and women. Today, to young girls aspiring to make a difference in the world, I recommend they empower their cause through science and innovations.”

According to Tiwari, mentorship programs, internships, and job-shadowing experiences that helped her career must be extended to young women to gain practical exposure and knowledge of the possibilities in agriculture science.

Mazvita Chiduwa, associate scientist  

Mazvita Chiduwa speaks with a farmer. (Photo: Mazvita Chiduwa)

For Mazvita Chiduwa, a career in agriculture science has been rewarding. “I love the adventure involved in discovery in agriculture. I am inquisitive, and this career allows me to ask questions and seek answers,” said Mazvita.

Chiduwa believes society needs to embrace the participation of women and girls in STEM education and careers and that stereotypes about women not being cut out for STEM, prevalent even today, must be done away with.

To young girls and women aspiring for a career in STEM, Chiduwa says, “Go for it. There is a need for your uniqueness to contribute a wholesome solution to our world’s challenges.”

Luisa Cabrera Soto, research associate  

Luisa Cabrera conducts an analysis at a CIMMYT laboratory. (Photo: CIMMYT)

“A feminine perspective and approach are needed to enrich research,” reminds Luisa Cabrera Soto. “In a society where almost half of the members are female, I hope equity and inclusion will help improve under-representation in STEM.”

According to Cabrera, it is essential that women in science continue to challenge the gender prejudices and stereotypes that still exist. “Don’t let the spark of your curiosity go out. As a food science professional, I can say that there are still discoveries to be made and, through it, the probability of finding innovative solutions to global challenges such as food security.”

Wheat blast spread globally under climate change modeled for the first time

Climate change poses a threat to yields and food security worldwide, with plant diseases as one of the main risks. An international team of researchers, surrounding professor Senthold Asseng from the Technical University of Munich (TUM), has now shown that further spread of the fungal disease wheat blast could reduce global wheat production by 13% until 2050. The result is dramatic for global food security.

With a global cultivation area of 222 million hectares and a harvest volume of 779 million tons, wheat is an essential food crop. Like all plant species, it is also struggling with diseases that are spreading more rapidly compared to a few years ago because of climate change. One of these is wheat blast. In warm and humid regions, the fungus magnaporthe oryzae has become a serious threat to wheat production since it was first observed in 1985. It initially spread from Brazil to neighboring countries. The first cases outside of South America occurred in Bangladesh in 2016 and in Zambia in 2018. Researchers from Germany, Mexico, Bangladesh, the United States, and Brazil have now modeled for the first time how wheat blast will spread in the future.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Regionally up to 75% of total wheat acreage affected

According to the researchers, South America, southern Africa, and Asia will be the regions most affected by the future spread of the disease. Up to 75% of the area under wheat cultivation in Africa and South America could be at risk in the future. According to the predictions, wheat blast will also continue to spread in countries that were previously only slightly impacted, including Argentina, Zambia, and Bangladesh. The fungus is also penetrating countries that were previously untouched. These include Uruguay, Central America, the southeastern US, East Africa, India, and eastern Australia. According to the model, the risk is low in Europe and East Asia—with the exception of Italy, southern France, Spain, and the warm and humid regions of southeast China. Conversely, where climate change leads to drier conditions with more frequent periods of heat above 35 °C, the risk of wheat blast may also decrease. However, in these cases, heat stress decreases the yield potential.

Wheat fields affected by wheat blast fungal disease in Passo Fundo, Rio Grande do Sul, Brazil. (Photo: Paulo Ernani Peres Ferreira)

Dramatic yield losses call for adapted management

The affected regions are among the areas most severely impacted by the direct consequences of climate change. Food insecurity is already a significant challenge in these areas and the demand for wheat continues to rise, especially in urban areas. In many regions, farmers will have to switch to more robust crops to avoid crop failures and financial losses. In the midwest of Brazil, for example, wheat is increasingly being replaced by maize. Another important strategy against future yield losses is breeding resistant wheat varieties. CIMMYT in collaboration with NARs partners have released several wheat blast-resistant varieties which have been helpful in mitigating the effect of wheat blast. With the right sowing date, wheat blast-promoting conditions can be avoided during the ear emergence phase. Combined with other measures, this has proven to be successful. In more specific terms, this means avoiding early sowing in central Brazil and late sowing in Bangladesh.

First study on yield losses due to wheat blast

Previous studies on yield changes due to climate change mainly considered the direct effects of climate change such as rising temperatures, changing precipitation patterns, and increased CO2 emissions in the atmosphere. Studies on fungal diseases have so far ignored wheat blast. For their study, the researchers focused on the influence of wheat blast on production by combining a simulation model for wheat growth and yield with a newly developed wheat blast model. Environmental conditions such as the weather are thus included in the calculations, as is data on plant growth. In this way, the scientists are modeling the disease pressure in the particularly sensitive phase when the ear matures. The study focused on the influence of wheat blast on production. Other consequences of climate change could further reduce yields.

Read the full article.

Further information:

The study was conducted by researchers from:

  • CIMMYT (Mexico and Bangladesh)
  • Technical University of Munich (Germany)
  • University of Florida (United States)
  • Brazilian Agricultural Research Corporation (Brazil)
  • International Fertilizer Development Center (United States)
  • International Food Policy Research Institute (United States)

Padma Shri for Kashi scientist Ravi Prakash Singh

Dr. Ravi Prakash Singh, associated with CIMMYT, is awarded the Padma Shri. He’s recognized for his global impact in agricultural science, notably developing over 730 climate-resilient, high-yield wheat varieties, benefiting small-holder farmers.

Read the full story.

New wheat varieties lauded for mitigating rust disease, increasing yield in Ethiopia

CIMMYT’s development and release of six new wheat varieties in Ethiopia, aimed at combating rust diseases and increasing yields, underscore its pivotal role in advancing agricultural self-sufficiency and productivity in the country. These varieties, covering the majority of Ethiopia’s wheat cultivation area, highlight CIMMYT’s significant contribution to enhancing food security and agricultural resilience.

Read the full story.

Marcelo Ortiz

Marcelo is an experienced graphic designer with over 20 years of graphic design experience for CIMMYT headquarters in Mexico. His main responsibilities include branding development, branding, design, and production of corporate reports and project reports. Developing designs for scientific articles, papers, abstracts, and serving as a liaison with the various vendors that provide a service for communications.

Kudzanai Chimhanda

Kudzanai is an experienced communications strategist and development researcher who currently supports communications for the CIMMYT Zimbabwe office. With a career spanning seven years, Kudzanai has been actively involved in impactful research at both local and international think tanks. Specializing in agricultural issues, Kudzanai’s expertise spans policy analysis, food systems, regional integration, and sustainability. As a dedicated professional, Kudzanai brings invaluable insights to the field, combining research acumen with effective communication strategies to drive positive change and promote informed decision-making in the field of agriculture and development.

CIMMYT scientists recognized for significant research impact

CIMMYT applies high quality science to develop more resilient agrifood systems. This year three scientists from CIMMYT are included in Clarivate’s 2023 Analysis of the most highly cited academic papers.

Jill Cairns participates at a plenary session. (Photo: Alfonso Cortés/CIMMYT)

While CIMMYT’s mission does explicitly require academic publication from its scientists, “the recognition reflects extensive networking with academia, opening doors for new technologies to benefit resource-poor farmers and consumers as well as lending scientific kudos to CIMMYT and underpinning fundraising efforts,” says Distinguished Scientist and Head of Wheat Physiology, Matthew Reynolds.

Maize Physiologist Jill Cairns and collaborators spearheaded the application of high throughput phenotyping for maize-breeding in sub-Saharan Africa, which she says, “would not have been possible without involving leading academic experts like JL Araus at Barcelona University.”

José Crossa chairs the session: adding value to phenotypic data. (Photo: Alfonso Cortés/CIMMYT)

Biometrician and Distinguished Scientist JosĂ© Crossa has pioneered wheat genetic analysis and use of artificial intelligence to solve crop research questions. “With machine learning tools like Deep Learning, there is a golden opportunity to understand the many complex dimensions of crop adaptation, so data-driven breeding models will have the necessary precision to target complex traits,” he explains. Crossa is widely respected by leading academics in biometrics for his insights on bridging statistical theory to solve real world problems.

Reynolds has built initiatives like the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the International Wheat Yield Partnership (IWYP) that transfer cutting-edge technologies—from many of the best academic institutions in the world—to application in breeding, helping to widen wheat gene pools globally.

Matthew Reynolds speaks at a workshop. (Photo: Alfonso Cortés/CIMMYT)

All three scientists achieved the same recognition last year. As in 2022, Reynolds was awarded for his contribution to scientific literature in plant and animal sciences, while Cairns and Crossa were awarded for their contributions to scientific literature across several fields of research (cross fields).

Since 2001, Clarivate’s Highly Cited Researchers list has identified global research scientists and social scientists who have demonstrated significant and broad influence in their field(s) of research. It recognizes exceptional research performance demonstrated by the production of multiple papers that rank in the top 1% by citations for field and year, according to the Web of Science citation indexing service.

In 2023, the list recognizes 6,849 individuals from more than 1,300 institutions across 67 countries and regions.