Skip to main content

research: Wheat

Wheat breeding must account for warmer, wetter climates in North America and Russia, new study shows

A wheat crop in northern Kazakhstan. (Photo: Alexey Morgounov/CIMMYT)
A wheat crop in northern Kazakhstan. (Photo: Alexey Morgounov/CIMMYT)

FOR IMMEDIATE RELEASE           

MEXICO CITY — Breeders of spring wheat for North America and Russia need to adapt their varieties to the regions’ changing climates, which are bringing longer and wetter whegrowing seasons, according to a scientific paper published yesterday.

Published by a five-country team of wheat researchers, the study analyzed changes in wheat yields, along with air temperatures and precipitation, on farms and research stations in Canada, Kazakhstan, Russia, and the USA, from 1981 to 2015.

The 22 million hectare study area — nearly the size of the United Kingdom — accounts for as much as 10 percent of global wheat production and exports nearly all its wheat, making it a big contributor to world food markets, according to Alexey Morgounov, wheat scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the paper.

“June, when the grain-holding wheat spike begins to form, turned out to be the critical month for spring wheat,” Morgounov said. “Maximum temperatures for that month rose over the 35 years studied, which hurt yields, but average rainfall increased and boosted grain yield, offsetting the temperature effect.”

Still, breeding for adaptation to higher temperatures will be critical to increasing spring wheat yields, according to Morgounov, who added that there were substantial changes in the dates of planting and harvesting, normally leading to longer growing seasons in the regions studied. “New varieties should be able to take advantage of the longer wheat growing seasons that warming brings.”

Overall, climate changes were more favorable for spring wheat in North America than in Kazakhstan and Russia, with greater precipitation in Canada and the USA and less exposure to extreme, high temperatures. Growing season precipitation increased as much as 15 percent at North American locations.

The two regions covered in this study represent distinct environments. The Kazakhstan and Russia locations are more than 500 kilometers further north than the North American latitudes and experience colder winters, hotter summers, and less precipitation.

“Interestingly, the two regions appear to complement each other, over the period we studied,” Morgounov said. “Higher-than-average wheat yields in one were normally associated with lower yields in the other, helping to foster stability in grain markets.”

“The whole high-latitude, continental climate spring wheat area certainly presents a huge potential for global wheat production,” he added, “and both can benefit from germplasm exchange and cooperation, with emphasis on the climate change challenges and opportunities presented in this paper.”

Morgounov acknowledged contributions for the study from the Prairie Recommending Committee on Wheat, Rye and Triticale, Canada, and other Canadian partners; the USDA-ARS Plant Science Research Unit; the Samara Agricultural Research Institute, the Agricultural Research Institute of Southeast Saratov, the Altay Agricultural Research Institute at Barnaul, the Siberian Agricultural Research Institute at Omsk, the Shortandy Variety Testing Site, and the Siberian Crop  Production Research Institute at Novosibirsk, Russia; and the Karabalyk Agricultural Research Station, Kostanay, Kazakhstan. Finally, Morgounov thanked the CGIAR Research Program on Wheat for its support.

FOR MORE INFORMATION OR TO ARRANGE INTERVIEWS:

Courtney Brantley
Junior communications consultant
International Maize and Wheat Improvement (CIMMYT)
Email: c.brantley@cgiar.org
Tel: +52 55 5804 2004

 

Fighting hidden hunger from the ground up: the powerful link between soils and nutritious food

Conserving organic matter in soils improves vital nutrients in wheat, according to new study in Ethiopia. On World Food Day, CIMMYT Systems Agronomist Frédéric Baudron highlights the role of healthy soils as a tool for fighting malnutrition, in an article published on The Conversation.

The study by Baudron and Stephen A. Wood of The Nature Conservancy found that wheat grown on soils rich in organic matter, especially near the forest, had more essential nutrients like zinc and protein. Ethiopia faces varying levels of hidden hunger: a deficiency in vitamins and minerals in food, despite rising yields.

In Ethiopia and many low and middle-income countries, Nitrogen-based fertilizers are out of reach for farmers. But low-cost techniques like agroforestry, minimum tillage, and planting nitrogen-fixing legumes can help African farmers enhance soils, and have been successfully implemented in different African farming systems. The study found that wheat farms near forests had richer soils due to decomposing trees and plants, and more livestock manure, pointing to the benefits of an integrated approach.

1

2

The researchers conclude that healthy soils are an important tool for “feeding the world well” and achieving Zero Hunger, one of the Sustainable Development Goals. “The finding offers a new solution in addressing growing malnutrition,” writes Baudron.

Read the article: Study in Ethiopia links healthy soils to more nutritious cereals on The Conversation.

Original study: Wood SA and Baudron F. 2018. Soil organic matter underlies crop nutritional quality and productivity in smallholder agriculture. Agriculture, Ecosystems & Environment 266 (100-108). https://doi.org/10.1016/j.agee.2018.07.025

Cobs & Spikes podcast: Matthew Rouse discusses research on wheat diseases

This week the International Maize and Wheat Improvement Center (CIMMYT) launched a new podcast: Cobs & Spikes. This is a space where we’re going to break down complex science into bite-sized, audio-rich explainers. We’re going to have real conversations with experts from around the world who are innovating in the fields of agriculture, food security and nutrition. We’re also going to listen to stories that link CIMMYT’s research with real-world applications.

In this episode, we are celebrating World Food Day, October 16. Also this week, food experts and leaders from around the world are gathering in Iowa for the 2018 Borlaug Dialogue and the World Food Prize Laureate Award Ceremony.

Today we’re talking to the recipient of the World Food Prize 2018 Norman Borlaug Award for Field Research and Application.

Matthew Rouse is a researcher with the Agricultural Research Service of the United States Department of Agriculture. Rouse works on developing wheat varieties that are resistant to diseases, and he’s being recognized for his work on Ug99 — a devastating race of stem rust disease. Throughout his career, Rouse has collaborated with the International Maize and Wheat Improvement Center (CIMMYT).

Music credit: Loam by Podington Bear

You can subscribe to Cobs & Spikes on SoundCloud, iTunes, Stitcher and other podcast platforms.

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

CIMMYT shows partners in Kenya new breakthroughs in maize and wheat research

NAIROBI (Kenya) — Members of the International Maize Improvement Consortium (IMIC) and other partners had a chance to go on a field visit to the Kiboko and Naivasha research stations in Kenya on September 18 and 19, 2018. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to share the latest developments in maize and wheat research.

On the first day, CIMMYT invited IMIC researchers to evaluate Material Under Development at the Kiboko site. These maize lines are not publicly released yet but are available to IMIC partners, so they can select the most promising ones for their research and crop improvement work.

Each seed company was looking for certain traits to develop new hybrid varieties. For instance, Samit Fayek, from Fine Seeds Egypt was looking for ‘erect type’ maize, as he wants higher crop density and grains that look big. Christopher Volbrecht, from Lake Agriculture in South Africa, was looking for “cobs that stick out as this is what farmers want.” Josephine Okot, from Victoria Seeds in Uganda, said that “seed companies often look at drought tolerance only, but we need now to integrate resistance to Maize Lethal Necrosis.”

Using Doubled Haploid breeding in Kiboko

Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)
Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)

Next on the tour to Kiboko, partners visited various stress-tolerant breeding materials, sustainable intensification cropping demonstrations and the Doubled Haploid facility. Vijaya Chaikam, Maize Doubled Haploid Scientist, explained how CIMMYT uses this methodology to cut down breeding time from six to two cycles, which drastically reduces costs.

According to B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program MAIZE, doubled haploid breeding is possibly the biggest innovation to speed up genetic gain since the inception of hybrid technology a century ago. “In the next 4 or 5 years, CIMMYT aims at 80 percent use of double haploid lines for new hybrid development; breeding will be faster and much cheaper that way,” Prasanna said. “For now, breeders and seed companies need to know how to use double haploid lines to cost-efficiently crossbreed with their varieties for high-quality hybrids.”

At the end of the visit to Kiboko, CIMMYT officially opened a new maize seed storage cold room. This facility will serve to keep seeds in good condition and to better manage inventory. At the opening were the director of KALRO’s Food Crops Research Institute, Joyce Malinga, CIMMYT’s Africa Regional Representative, Stephen Mugo, and CIMMYT’s Technical Lead for the Global Maize Program, Aparna Das.

Fighting Maize Lethal Necrosis and rust in Naivasha

A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)
A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)

On the second day, partners visited the Naivasha research station. There, CIMMYT presented the latest efforts to contain Maize Lethal Necrosis (MLN), a devastating maize viral disease first reported in Kenya in 2011 which caused severe crop losses across Eastern Africa, causing severe crop losses. The Naivasha research station is home to a world-class facility to screen for Maize Lethal Necrosis, jointly managed by CIMMYT and KALRO.

At the facility, maize lines are evaluated for MLN resistance. The best lines and varieties are nominated for further development and shared with partners. National Agriculture Research partners can request MLN screening at no cost, while private seed companies are charged for the service. In the last four years, more than 150,000 germplasm have been screened.

CIMMYT wheat scientist Mandeep Randhawa explained how to recognize the different types of wheat rust diseases: stem, stripe and leaf rusts. He emphasized the Ug99 black stem rust strain, which appeared in Uganda in 1998 and has since severely impacted wheat production in the region and globally. Randhawa explained how CIMMYT develops varieties resistant to stem rust using a phenotyping platform and marker-assisted selection.

These two field days were a great opportunity to showcase progress in developing more resilient maize varieties in a fast and cost-effective way. This responsiveness is crucial as pests and diseases continue to threaten the livelihoods of African smallholders. Such impact could not happen without the strong collaboration between CIMMYT and KALRO.

The director of KALRO's Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT's Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)
The director of KALRO’s Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT’s Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)

The Doubled Haploid Facility in Kiboko and the Maize Lethal Necrosis screening facilty in Naivasha were opened in 2013 with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation.

The International Maize Improvement Consortium (IMIC) is a public-private partnership initiative launched in May 2018 as part of CIMMYT’s mission to ramp up seed breeding and production innovations.

New publications: What drives capacity to innovate?

Involving diverse segments of a target population in agricultural innovation interventions allows for more inclusive and equitable processes while stimulating local innovation and development outcomes. But what are the key characteristics of rural innovators? And how are their experiences similar for women and men, and how are they different?

To examine these questions, a team of researchers from CIMMYT, collaborating CGIAR centers, and Wageningen University and Research conducted individual interviews with 336 rural women and men known in their communities for trying out new things in agriculture. The results of this study are collected in 84 GENNOVATE community case studies from 19 countries across Africa, Asia, and Latin America.

Building on study participants’ own reflections and experiences with innovation in their agricultural livelihoods, the research team combined variable-oriented analysis with analysis of specific individuals’ lived experience. The study provides in-depth knowledge on how the characteristics and experiences of individual innovators interlink with the social setting to facilitate or impede innovation.

Results indicate that factors related to personality and agency are what most drive capacity to innovate. Access to resources is not a prerequisite but an important enabling aspect. Women have great potential for local innovation, but structural inequalities mean that men are often better positioned to access resources and leverage support – as a result when women challenge the status quo, men’s support is important.

Read the full article in the Journal of Gender, Agriculture and Food Security: “What drives capacity to innovate? Insights from women and men small-scale farmers in Africa, Asia, and Latin America”

This paper draws on data collected as part of GENNOVATE case studies funded by the CGIAR Research Programs on Wheat, Maize, Grain Legumes, Humid Tropics and Rice, as well as RTB (Roots, Tubers and Bananas), A4NH (Agriculture for Nutrition and Health) and FTA (Forests, Trees and Agroforestry).

Development of research design and field methodology was supported by the CGIAR Gender & Agricultural Research Network, the World Bank, the governments of Mexico and Germany, and the CGIAR Research Programs on Wheat and Maize. Data analysis was supported by the Bill & Melinda Gates Foundation.

Women farmers in Nepal use a mini tiller for direct seeding. Photo: CIMMYT/P. Lowe
Women farmers in Nepal use a mini tiller for direct seeding. (Photo: P.Lowe/CIMMYT)

Check out other recent publications by CIMMYT researchers below:

  1. Facilitating change for climate-smart agriculture through science-policy engagement. Dinesh, D., Zougmore, R., Vervoort, J., Totin, E., Thornton, P.K., Solomon, D., Shirsath, P.B., Pede, V.O., Lopez-Noriega, I., LÀderach, P., Korner, J., Hegger, D., Girvetz, E.H,. Friis, A.E., Driessen, P.P.J., Campbell, B.M. In: Sustainability v. 10, no. 8, art. 2616.
  2. Assessment of management options on striga infestation and maize grain yield in Kenya. Kanampiu, F., Makumbi, D., Mageto, E.K., Omanya, G., Waruingi, S., Musyoka, P., Ransom, J. K. In: Weed Science v. 66, no. 4, p. 516-524.
  3. Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Badji, A., Otim, M., Machida, L., Odong, T., Kwemoi, D.B., Okii, D., Agbahoungba, S., Mwila, N., Kumi, F., Ibanda, A., Mugo, S.N., Kyamanywa, S., Rubaihayo, P. In: Frontiers in Plant Science v. 9, art. 895.
  4. Gender and equitable benefit-sharing mechanisms through agricultural innovation platforms in Rwanda. Adam, R.I., Misiko, M.T., Dusengemungu, L., Rushemuka, P.N., Mukakalisa, Z. In:  Community Development vol. 49, no. 4, p. 380-397
  5. Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype × environment interaction on prediction accuracy in chickpea. Roorkiwal, M., Jarquín, D., Muneendra K. Singh., Pooran M. Gaur., Chellapilla Bharadwaj., Abhishek Rathore., Howard, R., Samineni Srinivasan., Ankit Jain., Vanika Garg., Sandip Kale., Annapurna Chitikineni., Shailesh Tripathi., Jones, E., Robbins, K., Crossa, J., Varshney, R. K. In: Scientific Reports v. 8, art. 11701.

New publications: Germplasm bank accessions add value to elite wheat lines

For the first time ever, a research team of more than 40 scientists has genetically characterized values of exotics in hexaploid wheat. CIMMYT scientists, together with partners in Demark, India, Mexico, Pakistan, and the UK, used next-generation sequencing and multi-environment phenotyping to study the contribution of exotic genomes to pre-breeding lines. Research required collaborative development, evaluation, and deployment of novel genetic resources to breeding programs addressing food security under climate change scenarios in India, Mexico, and Pakistan.

The team generated large-scale pre-breeding materials, which have been evaluated for important traits such as grain yield, quality, and disease resistance. Pre-breeding and haplotype-based approaches revealed useful genetic footprints of exotic lines in pre-breeding germplasm. Results of the study, recently published in Nature Scientific Reports, show that some DNA from exotic germplasm improved the biotic and abiotic stress tolerances of lines derived from crosses of exotics with CIMMYT’s best elite lines.

The practical successes of large-scale, impact-oriented breeding work will be useful to other wheat breeding programs around the world, and the information generated could be used to boost global wheat productivity.

Sukhwinder Singh, wheat lead on CIMMYT’s SeeD Project, explains that pre-breeding is in-demand and the resources developed through this study can serve as tools to address upcoming challenges in wheat production more efficiently, as desirable alleles from exotics have been mobilized into best elite genetic background. Breeding programs can now use this material to deliver outcomes in shorter timeframes by avoiding the lengthy process of searching for exotics first.

Read the full article in Nature Scientific Reports: “Harnessing genetic potential of wheat germplasm banks through impact-oriented-prebreeding for future food and nutritional security.”

This research was conducted as part of the Seeds of Discovery and MasAgro projects in collaboration with the Borlaug Institute for South Asia, and was made possible by generous support from Mexico’s Department of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA), the Government of Punjab, and the CGIAR Research Program on Wheat.

Wheat-seed-1

Check out other recent publications by CIMMYT researchers below:  

  1. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. GonzĂĄlez-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
  2. Bayesian functional regression as an alternative statistical analysis of high‑throughput phenotyping data of modern agriculture. Montesinos-LĂłpez, A., Montesinos-LĂłpez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-VĂĄzquez, F.J. In: Plant Methods v. 14, art. 46.
  3. Effect of ppd-a1 and ppd-b1 allelic variants on grain number and thousand-kernel weight of durum wheat and their impact on final grain yield. Arjona, J.M., Royo, C., Dreisigacker, S., Ammar, K., Villegas, D. In: Frontiers in Plant Science v. 9, art. 888.
  4. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
  5. Mexican tropical cream cheese yield using low-fat milk induced by trans-10, cis-12 conjugated linoleic acid: effect of palmitic acid. Granados-Rivera, L.D., Hernåndez-Mendo, O., Burgueño, J., Gonzalez-Munoz, S.S., Mendoza-Martinez, G.D., Mora-Flores, J.S.,  Arriaga-Jordan, C.M. In: CyTA-Journal of Food v. 16, no. 1, p. 311-315.

CIMMYT collaborator wins Norman Borlaug Award for Field Research and Application

Matthew Rouse, a researcher with the United States Department of Agriculture (USDA) Agricultural Research Service (ARS), has been named the winner of the 2018 Norman Borlaug Award for Field Research and Application. Rouse is recognized for his essential leadership efforts to contain and reduce the impact of Ug99, a devastating new race of the stem rust pathogen that poses a serious threat to the world’s wheat crops and food security.

The Norman Borlaug Award for Field Research and Application is presented annually to a young extension worker, research scientist or development professional who best emulates the dedication, perseverance, and innovation demonstrated by Norman Borlaug while working in the field with Mexican farmers in the 1940s and ’50s.

“When I learned that I was selected for the Borlaug Field Award, I was humbled by both the legacy of Norman Borlaug and by the fact that any impact I made was a part of collaborations with talented and hard-working individuals at USDA-ARS, the University of Minnesota, CIMMYT, the Ethiopian Institute of Agricultural Research, and other national programs,” Rouse said.

Rouse has been an essential collaborator for a wide range of crucial projects to protect the world’s wheat crops. His research supports more than 20 breeding programs in the U.S. and 15 wheat genetics programs around the world, including those at CIMMYT. As the coordinator of ARS’s spring wheat nursery project in Ethiopia and Kenya, he has provided Ug99 resistance genes to breeders worldwide, accelerating the process for incorporating enhanced stem rust protection into wheat varieties.

Rouse also collaborated with CIMMYT in 2013, when a race of stem rust unrelated to Ug99 caused an epidemic in Ethiopia. He rapidly assembled a team of scientists from CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and USDA-ARS, and developed a research plan to establish four stem rust screening nurseries. This led to the selection of promising new wheat breeding lines by Ethiopian and CIMMYT scientists and the rapid 2015 release of the variety ‘Kingbird’ in Ethiopia, which was shown to be resistant to four of the most dangerous races of stem rust in addition to Ug99.

Read the announcement of the award on the World Food Prize website.

Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)
Matthew Rouse shows how to score wheat seedlings for stem rust resistance, at the Njoro research station in Kenya in 2009. (Photo: Petr Kosina/CIMMYT)

 

See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.
See our coverage of the 2018 Borlaug Dialogue and the World Food Prize.

Over 100,000 genes

After 13 years of research, an international team of more than 200 scientists recently cracked the full genome of bread wheat. Considering that wheat has five times more DNA than humans, this is a significant scientific breakthrough. The complete sequencing provides researchers with a map for the location of more than 100,000 genes which, experts say, will help accelerate the development of new wheat varieties.

Philomin Juliana, a Post-Doctoral Fellow in wheat breeding at the International Maize and Wheat Improvement Center (CIMMYT) talks about the relevance of the new map for the center, whose genetics figures in the pedigrees of wheat varieties grown on more than 100 million hectares worldwide.

Are you already using this resource, and how?

We have anchored the genotyping-by-sequencing marker data for about 46,000 lines from CIMMYT’s first-year wheat yield trials (2013-2018) to the new, International Wheat Genome Sequencing Consortium (IWGSC) reference sequence (RefSeq v1.0) assembly of the bread wheat genome, with an overall alignment rate of 64%. This has provided valuable information on the location of key genome regions associated with grain yield, disease resistance, agronomic traits and quality in CIMMYT’s wheat germplasm, identified from genome-wide association mapping studies.

We have also used the new reference sequence to understand the impact of marker densities and genomic coverage on the genomic predictability of traits and have gained a better understanding of the contributions of diverse chromosome regions (distal, proximal, and interstitial) towards different phenotypes.

How will use of the new wheat reference sequence help CIMMYT and partners to develop improved wheat for traits of interest?

There are so many ways we can use this new tool! It provides valuable insights into trait genetics and genomics in bread wheat and will help us to more quickly identify candidate genes associated with traits of interest and to clone those genes. We will also be able to design molecular breeding strategies and precisely select and introgress target regions of the genome.

More generally, the reference sequence already has a range of markers — among them, simple sequence repeats (SSR), diversity array technologies (DArT) markers, and single nucleotide polymorphisms (SNPs) — anchored to it, which will facilitate comparisons between mapping studies and the quick development and validation of useful new markers.

It will also help to apply tools like gene-editing to obtain desired phenotypes and will allow us to better characterize the genetic diversity in CIMMYT’s wheat, to identify useful genes in key CIMMYT parent lines and rapidly introgress them into breeding lines.

With the annotated whole genome information, breeders can design crosses focused directly on desired combinations of genomic regions or predict the outcome of crosses involving gene combinations.

It will definitely speed varietal testing in partner countries through quick and accurate molecular screens for the presence of desired genes, instead of having to perform multiple generations of field testing.

Finally, it will help us to detect molecular-level differences between CIMMYT varieties released in different countries.

Which traits are being targeted by CIMMYT and partners?

We are using the new reference sequence to understand better the molecular bases of grain yield, heat and drought tolerance, rust resistance, flowering time, maturity, plant height, grain and flour protein, and various other quality traits.

Philomin Juliana

A recipient of Monsanto’s Beachell-Borlaug International Scholars Program Award, Juliana completed a Ph.D. in Plant Breeding and Genetics at Cornell University in 2016. Her work at CIMMYT seeks to identify the genetic bases of key traits in CIMMYT wheat germplasm and to assess high-throughput genotyping and phenotyping to increase the rate of genetic gain for yield in the center’s bread wheat breeding. In this work, she partners with the Cornell-led Delivering Genetic Gain in Wheat (DGGW) project and Jesse Poland of the United States Department of Agriculture (USDA) Agricultural Research Service (ARS) and Kansas State University. Her research also forms part of USAID’s Feed the Future projects.

Breaking Ground: Gemma Molero sheds light on wheat photosynthesis

Postcard_Gemma MoleroDespite the rising interest in advanced methods to discover useful genes for breeding in crops like wheat, the role of crop physiology research is now more important than ever, according to Gemma Molero, a wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT).

“Physiology starts with the physical, observable plant,” Molero said. “It attempts to understand plant traits and processes and, ultimately, to provide breeders with selectable traits. Take for example the plant’s ability to capture and use sunlight. This is a complex trait and there are no useful DNA markers for it, so we have to analyze how it works and then help breeders to select plants that use sunlight better and yield more grain.”

A key goal of breeders and physiologists is to boost wheat’s genetic yield potential dramatically. Progress through current breeding is less than 1 percent each year. Molero said that needs to go to 1.7 percent yearly, to meet the demand expected by 2050 from expanding and urbanizing populations.

“Science must also adapt wheat to rising temperatures, less water, and mutating disease strains, and physiology is contributing,” she added.

Applied science and fieldwork drew Molero to CIMMYT

Molero grew up near Barcelona, Spain, in a family that included a folk-healing grandmother and a grandfather whose potato fields and orchards she recalls helping to tend as a child, during summers in Granada.

“My family called me ‘santurrona’ — something like ‘goody-two-shoes’ in English — because I was always trying to help people around me,” Molero explained.

Molero completed bachelor’s and master’s degrees in biology at the University of Barcelona, Spain, by 2006. She then pursued a doctorate in eco-physiology under the supervision of JosĂ© Luis Araus, a University of Barcelona professor who was also working as a CIMMYT maize physiologist around the same time.

“Araus was an example of persistence and enthusiasm for me,” Molero explained. “He sent me to the CIMMYT research station near Ciudad Obregón, in northwestern Mexico, for fieldwork as part of my Ph.D. research. That sealed the deal. I said ‘This is the type of work where I can have impact, in an interdisciplinary setting, and with fieldwork.’ ”

She joined CIMMYT in 2011 as a post-doctoral fellow with Matthew Reynolds, a CIMMYT distinguished scientist who leads wheat physiology research.

Wheat spikes hold grain and catch light

Molero has quickly made a mark in CIMMYT wheat physiology research. Among other achievements, she has spearheaded studies on photosynthesis in wheat spikes — the small ears that hold the grain — to increase yield.

“In elite wheat varieties, spike photosynthesis adds an average 30 percent to grain yield,” she said. “In wheat wild relatives and landraces, that can go as high as 60 percent. This has put wheat spike photosynthesis in the science limelight.”

Practical outputs of this work, which involves numerous partners, include molecular markers and other tools that breeders can use to select for high spike photosynthesis in experimental lines. “We have a project with Bayer Crop Science to refine the methods,” Molero said.

Molero is also collaborating with plant biologists Stephen Long, University of Illinois, and Elizabete Carmo-Silva, Lancaster University, UK, to understand how quickly wheat returns to full photosynthesis after being shaded — for example, when clouds pass overhead. According to Molero, wheat varies greatly in its response to shading; over a long cropping season, quick recoveries can add 20 percent or more to total productivity.

“This is a breakthrough in efforts to boost wheat yields,” explained Molero, who had met Long through his participation in the International Wheat Yield Partnership (IWYP), an initiative that aims to raise wheat’s genetic yield potential by 50 percent over the next two decades. “I was fortunate to arrive at CIMMYT at just the right time, when IWYP and similar global partnerships were being formalized.”

Training youth and improving conditions for young women

From a post-doctoral fellow to her current position as a full scientist at CIMMYT, Molero has supervised 13 Ph.D. students and post-doctoral fellows, as well as serving as an instructor in many training courses.

“During my first crop cycle at Ciudad Obregón, I was asked to coordinate the work of five Ph.D. students,” she said. “I’d arrive home exhausted from long days and fall asleep reading papers. But I love supervising students and it’s a great way to learn about diverse facets of wheat physiology.”

Regarding the challenges for women and youth in the scientific community, Molero believes a lot needs to change.

“Science is male-dominated and fieldwork even more,” she observed. “It’s challenging being a woman and being young — conditions over which we have no control but which can somehow blind peers to our scientific knowledge and capacity. Instances of what I call ‘micro-machismo’ may appear small but they add up and, if you push back, the perceived ‘feminism’ makes some male scientists uncomfortable.”

Molero also believes young scientists need ample room to develop. “The most experienced generation has to let the new generation grow and make mistakes.”

Wheat blast screening and surveillance training in Bangladesh

Researchers take part in Wheat Blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)
Researchers take part in Wheat Blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

Fourteen young wheat researchers from South Asia recently attended a screening and surveillance course to address wheat blast, the mysterious and deadly disease whose surprise 2016 outbreak in southwestern Bangladesh devastated that region’s wheat crop, diminished farmers’ food security and livelihoods, and augured blast’s inexorable spread in South Asia.

Held from 24 February to 4 March 2018 at the Regional Agricultural Research Station (RARS), Jessore, as part of that facility’s precision phenotyping platform to develop resistant wheat varieties, the course emphasized hands-on practice for crucial and challenging aspects of disease control and resistance breeding, including scoring infections on plants and achieving optimal development of the disease on experimental wheat plots.

Cutting-edge approaches tested for the first time in South Asia included use of smartphone-attachable field microscopes together with artificial intelligence processing of images, allowing researchers identify blast lesions not visible to the naked eye.

Workshop participants learned how to use the latest in technology to identify and keep track of the deadly Wheat Blast disease. Photo: CIMMYT archives.

“A disease like wheat blast, which respects no borders, can only be addressed through international collaboration and strengthening South Asia’s human and institutional capacities,” said Hans-Joachim Braun, director of the global wheat program of the International Maize and Wheat Improvement Center (CIMMYT), addressing participants and guests at the course opening ceremony. “Stable funding from CGIAR enabled CIMMYT and partners to react quickly to the 2016 outbreak, screening breeding lines in Bolivia and working with USDA-ARS, Fort Detrick, USA to identify resistance sources, resulting in the rapid release in 2017 of BARI Gom 33, Bangladesh’s first-ever blast resistant and zinc enriched wheat variety.”

Cooler and dryer weather during the 2017-18 wheat season has limited the incidence and severity of blast on Bangladesh’s latest wheat crop, but the disease remains a major threat for the country and its neighbors, according to P.K. Malaker, Chief Scientific Officer, Wheat Research Centre (WRC) of the Bangladesh Agricultural Research Institute (BARI).

“We need to raise awareness of the danger and the need for effective management, through training courses, workshops, and mass media campaigns,” said Malaker, speaking during the course.

The course was organized by CIMMYT, a Mexico-based organization that has collaborated with Bangladeshi research organizations for decades, with support from the Australian Center for International Agricultural Research (ACIAR), Indian Council of Agricultural Research (ICAR), CGIAR Research Program on Wheat (WHEAT), the United States Agency for International Development (USAID), and the Bangladesh Wheat and Maize Research Institute (BWMRI).

Speaking at the closing ceremony, N.C.D. Barma, WRC Director, thanked the participants and the management team and distributed certificates. “The training was very effective. BMWRI and CIMMYT have to work together to mitigate the threat of wheat blast in Bangladesh.”

Zhonghu He

Zhonghu He serves as a Distinguished Scientist and Country Representative in China for CIMMYT and a Research Professor at the Chinese Academy of Agricultural Science. Research areas include quality improvement of Chinese products and disease resistance, molecular marker development and application, and cultivar development.

Major contributions include the development and validation of 50 functional markers, the release of 36 improved cultivars, author/coauthor of more than 400 papers in refereed journals including 180 publications in international journals, and training more than 80 postgraduates and visiting scientists.

Received the First-Class Award and Prestigious Award in Science and Technology Progress from State Council in 2008 and 2015, selected as Fellow of Crop Science Society of America in 2009 and Fellow of American Society of Agronomy in 2013, the Guanghua Award from Chinese Academy of Engineering in 2010, the China Agriculture Elite Award in 2012, and the National Labor Medal in 2020.

Susanne Dreisigacker

Susanne Dreisigacker seeks to understand the genetic basis of key traits in wheat breeding, and use this information in applying genomics-assisted breeding approaches in wheat improvement.

In close collaboration with the CIMMYT wheat breeders, she implements classical molecular breeding approaches such as marker-assisted selection and marker-assisted backcrossing. She’s also involved in developing proof of concept applications of new genomics strategies such as whole genome-association mapping and genomic selection. She gives wheat breeders access to the newest genotyping technologies and is involved in key initiatives in the area of molecular breeding like the International Wheat Genome Sequencing Consortium and the Genomic and Open-source Breeding Informatics Initiative.

Pawan Kumar Singh

Pawan Kumar Singh is a senior scientist who heads CIMMYT’s wheat pathology group, where he researches wheat diseases with emphasis on Fusarium head blight, Septoria tritici blotch, tan spot, spot blotch, Stagonospora nodorum blotch and wheat blast.

As part of his work, Singh collects, isolates and characterizes different fungal isolates from naturally infected wheat spikes or leaves, and those with high aggressiveness are used in disease screening nurseries. He then characterizes wheat germplasm for reaction to different diseases, then selects promising lines with resistance and good agronomical traits to be compiled in international disease resistance nurseries. He also conducts genetic studies using bi-parental populations or association mapping panel to decipher underlying resistance factors, and identify linked molecular markers that could be used in marker-assisted selection.

Matthew Reynolds

Matthew Reynolds develops and transfers technologies to increase productivity of wheat cropping systems worldwide, primarily focusing on less developed countries. At CIMMYT he’s helped create a new generation of advanced lines based on physiological breeding approaches to widen the wheat genepool, increase understanding of yield potential and adaptation of wheat to drought and heat stress, develop high throughput phenotyping methodologies and train other researchers.

To further these goals, Reynold’s is developing global collaborations to tap into the expertise of plant scientists worldwide, such as the International Wheat Yield Partnership, and coordinates the formation of the Heat and Drought Wheat Improvement Consortium. He’s also leading the community of practice on crop modeling for the CGIAR Big Data platform.

Reynolds has published widely in the area of crop physiology and genomics, and mentored graduate students through affiliations with universities worldwide.

Karim Ammar

Karim Ammar is a principal scientist and head of durum wheat and triticale breeding at CIMMYT. He conducts a globally-focused, extensive and proactive breeding effort to produce improved germplasm of high value and relevance to collaborators worldwide.

Durum wheat profitability requires sustained gains in genetic yield potential, adaptation to a wide range of water availability and temperature conditions, durable genetic protection against major pathogens and quality attributes that allow harvests to be marketed readily.

In addition, Ammar is involved in research that widens the genetic bases of resistance to rusts and septoria diseases, develops molecular tools to select more durable resistance, enhances breeding capacity for effective drought and heat tolerance, and to diversify quality characteristics of durum wheat grain. He also focuses on improving and promoting triticale as an input saving, low production cost feed and forage option in livestock-cereals operations.