A baker makes the traditional wheat flatbread known as “naan roti” in Dinajpur, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
The developing world’s appetite for wheat is growing swiftly, driven in part by rising incomes, rapid urbanization and the expansion of families where both spouses work outside the house, according to a recent seminar by two international experts.
“Our research is picking up significant shifts in demand among cereals, including the increasing popularity of wheat in Asia and sub-Saharan Africa,” said Khondoker Mottaleb, socioeconomist for the International Maize and Wheat Improvement Center (CIMMYT), speaking at a seminar at the center on December 11, 2018.
In preliminary results of a study using household data from six countries in Asia and five in sub-Saharan Africa, Mottaleb and his associate, Fazleen Binti Abdul Fatah, senior lecturer at the University of Technology MARA, Malaysia, found that the households of both regions will eat more wheat by 2030, mainly in place of rice in Asia and of maize and other coarse grain cereals in Africa.
Speedy urbanization, higher incomes, population growth, and allied lifestyle changes are all driving this trend, said Fazleen. “Many urban women are working, so families are transitioning to bread and other convenient wheat-based foods and processed foods.”
A typical case according to Mottaleb is that of Bangladesh, a country whose population at 160 million is half that of the United States but with a geographical area equivalent to the US state of Ohio. The per capita GDP of Bangladesh grew from US$360 to US$1,516 during 2000-2017, and more than 35 percent of the country’s inhabitants now live in cities.
Meeting demand for wheat in Bangladesh
A 2018 paper by Mottaleb and fellow CIMMYT researchers shows that wheat consumption will increase substantially in Bangladesh by 2030 and the country needs to expand production or increase imports to meet the growing demand.
“The country purchases nearly 70 percent of its wheat at an annual cost near or exceeding US$1 billion, depending on yearly prices,” said Mottaleb. “Wheat prices are relatively low and wheat markets have been relatively stable, but if yields of a major wheat exporting country suddenly fall, say, from pest attacks or a drought, wheat markets would destabilize and prices would spike, as occurred in 2008 and 2011.”
In a 2018 study, the United Kingdom’s Agriculture and Horticulture Development Board (AHDB) cautioned that declining wheat cropping area worldwide and significant stockpiling by China — which holds nearly half the world’s wheat stocks but does not export any grain — were masking serious risk in global wheat markets.
A recent report ranked Bangladesh as the world’s fifth largest wheat importer. Since 2014-15 domestic wheat consumption there has increased by 57 percent from 4.9 million metric ton to 7.7 million metric tons. Last December, the Food and Agriculture Organization (FAO) of the United Nations forecast Bangladesh wheat import requirements of 6 million tons for this year — 34 percent above the previous five-year average following steady increases since 2012-13.
“The prevailing narrative has wealthier and more urban consumers shifting from basic foods to higher value foods, and this is doubtless occurring,” said Fazleen, “but our work shows a more nuanced scenario. In the traditional rice consuming economies in Asia, rural households are also eating more wheat, due to rapid dietary transformations.”
For Bangladesh, the researchers propose growing additional wheat on fallow and less-intensively-cropped land, as well as expanding the use of newer, high-yielding and climate-smart wheat varieties.
“Our work clearly shows the rising popularity of wheat across Asia and Africa,” said Mottaleb. “We urge international development agencies and policymakers to enhance wheat production in suitable areas, ensuring food security for the burgeoning number of people who prefer wheat and reducing dependence on risky wheat grain markets.”
This story, part of a series on the international agricultural research projects of recipients of the Crawford Fund’s International Agricultural Student Award, was originally posted on the Crawford Fund blog.
Researcher Tamaya Peressini performs disease evaluations 10 days post infection at CIMMYT’s glasshouse facilities.
In 2018, Tamaya Peressini, from the Queensland Alliance for Agriculture and Food Innovation (QAAFI), a research institute of the University of Queensland (UQ), travelled to CIMMYT in Mexico as part of her Honours thesis research, focused on a disease called tan spot in wheat.
Tan spot is caused by the pathogen Pyrenophora triciti-repentis (Ptr) and her project aimed to evaluate the resistance of tan spot in wheat to global races to this pathogen.
“The germplasm I’m studying for my thesis carries what is known as adult plant resistance (or APR) to tan spot, which has demonstrated to be a durable source of resistance in other wheat pathosystems such as powdery mildew,” Peressini said.
Symptoms of tan spot on wheat plants.
Tan spot is prevalent worldwide, and in Australia causes the most yield loss out of the foliar wheat diseases. In Australia, there is only one identified pathogen race that is prevalent, called Ptr Race 1. For Ptr Race 1, the susceptibility gene Tsn1 in wheat is the main factor that results in successful infection in Ptr strains that carry Toxin A. However, globally it is a more difficult problem, as there are seven other pathogen races that consist of different combinations of necrotrophic toxins. Hence, developing cultivars that are multi-race resistant to Ptr presents a significant challenge to breeders, as multiple resistant genes would be required for resistance to other pathogens.
“At CIMMYT, I evaluated the durability of APR I identified in plant material in Australia by inoculating with a local strain of Ptr and also with a pathogen that shares ToxA: Staganospora nodorum,” Peressini explained.
“The benefit of studying this at CIMMYT was that I had access to different strains of the pathogen which carry different virulence factors of disease, I was exposed to international agricultural research and, importantly, I was able to create research collaborations that would allow the APR detected in this population to have the potential to reach developing countries to assist in developing durably resistant wheat cultivars for worldwide deployment.”
Recent work in Dr Lee Hickey’s laboratory in Queensland has identified several landraces from the Vavilov wheat collection that exhibited a novel resistance to tan spot known as adult plant resistance (APR). APR has proven to be a durable and broad-spectrum source of resistance in wheat crops, namely with the Lr34 gene which confers resistance to powdery mildew and leaf stem rust of wheat.
“My research is focused on evaluating this type of resistance and identifying whether it is resistant to multiple pathogen species and other races of Ptr. This is important to the Queensland region, as the northern wheat belt is significantly affected by tan spot disease. Introducing durable resistance genes to varieties in this region would be an effective pre-breeding strategy because it would help develop crop varieties that would have enhanced resistance to tan spot should more strains reach Australia. Furthermore, it may provide durable resistance to other necrotrophic pathogens of wheat,” Peressini said.
The plant material Peressini studied in her honors thesis was a recombinant inbred line (RIL) population, with the parental lines being the APR landrace — carries Tsn1 — and the susceptible Australian cultivar Banks — also carries Tsn1. To evaluate the durability of resistance in this population to other strains of Ptr, this material along with the parental lines of the population and additional land races from the Vavilov wheat collection were sent to CIMMYT for Tamaya to perform a disease assay.
“At CIMMYT I evaluated the durability of APR identified in plant material in Australia by inoculating with a local strain of Ptr and also with a pathogen that shares ToxA: Staganospora nodorum. After infection, my plant material was kept in 100 per cent humidity for 24 hours (12 hours light and 12 hours dark) and then transferred back to regular glasshouse conditions. At 10 days post infection I evaluated the resistance in the plant material.”
From the evaluation, the APR RIL line demonstrated significant resistance compared to the rest of the Australian plant material against both pathogens. The results are highly promising, as they demonstrate the durability of the APR for both pre-breeding and multi-pathogen resistance breeding. Furthermore, this plant material is now available for experimental purposes at CIMMYT, where further trials can validate how durable the resistance is to other necrotrophic pathogens and also be deployed worldwide and be tested against even more strains of Ptr.
“During my visit at CIMMYT I was able to immerse myself in the Spanish language and take part in professional seminars, tours, lab work and field work around the site. A highlight for me was learning to prepare and perform toxin infiltrations for an experiment comparing the virulence of different strains of spot blotch,” Peressini said.
During her stay in Mexico, Peressini had a chance to visit the pyramids of Teotihuacán and other cultural landmarks.
“I also formed valuable friendships and research partnerships from every corner of the globe and had valuable exposure to the important research underway at CIMMT and insight to the issues that are affecting maize and wheat growers globally. Of course, there was also the chance to travel on weekends, where I was able to experience the lively Mexican culture and historical sites – another fantastic highlight to the trip!”
“I would like to thank CIMMYT and Dr Pawan Singh for hosting me and giving the opportunity to learn, grow and experience the fantastic research that is performed at CIMMYT and opportunities to experience parts of Mexico. The researchers and lab technicians were all so friendly and accommodating. I would also like to thank my supervisor Dr Lee Hickey for introducing this project collaboration with CIMMYT. Lastly, I would like to thank the Crawford Fund Queensland Committee for funding this visit; not only was I able to immerse myself in world class plant pathology research, I have been given valuable exposure to international agricultural research that will give my research career a boost in the right direction,” Peressini concluded.
In 2018, our editors continued to cover exciting news and events related to maize and wheat science around the world. Altogether, we published more than 200 stories.
It is impossible to capture all of the places and topics we reported on, but here are some highlights and our favorite stories of the year.
Thank you for being a loyal reader of CIMMYT’s news and features. We are already working on new stories and platforms for 2019. Stay tuned!
In response to the spread of the fall armyworm across Africa, CIMMYT and its partners published a technical guide for integrated pest management. Produced by international experts, it offers details on the best management practices to help smallholder farmers effectively and safely control the pest while simultaneously protecting people, animals and the environment.
This year we launched our new podcast, Cobs & Spikes, where you can listen to stories from the field, interviews and explainers.
The most popular episode so far was about blue maize, a distinctive feature of Mexico’s food culture. Valued for its rich flavor and texture, it is also catching the attention of some food processing companies and high-end culinary markets. CIMMYT researchers are helping Mexican farmers tap into two emerging markets that could boost incomes while conserving culture and biodiversity.
A review of scientific studies on cereal grains and health showed that gluten- or wheat-free diets are not inherently healthier for the general populace and may actually put individuals at risk of dietary deficiencies.
Based on a compilation of 12 reports, eating whole grains is actually beneficial for brain health and associated with reduced risk of diverse types of cancer, coronary disease, diabetes, hypertension, obesity and overall mortality.
Mechanized agricultural services have traditionally only been used by large-scale farmers who could afford them, but small and medium-sized machines are fast becoming affordable options for family farmers through the advent of service providers. An increasing number of young people across eastern and southern Africa are creating a stable living as entrepreneurs, providing agricultural mechanization services.
CIMMYT is offering training courses to promote mechanization in Ethiopia, Kenya, Tanzania and Zimbabwe. Trainings equip entrepreneurs with essential business skills and knowledge, tailored to rural environments, so they can support farmers with appropriate mechanization services that sustainably intensify their production.
After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
In a scientific breakthrough, the International Wheat Genome Sequencing Consortium presented an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. The research was published on Science.
Over 46 percent of children under five in Guatemala suffer from chronic malnutrition. More than 40 percent of Guatemala’s rural population is deficient in zinc, an essential micronutrient that plays a crucial role in pre-natal and post-natal development and is key to maintaining a healthy immune system.
CIMMYT is working with partners HarvestPlus and Semilla Nueva to reduce malnutrition and zinc deficiency in the country, through the development and deployment of Guatemala’s first biofortified zinc-enriched maize.
CIMMYT was present at the African Green Revolution Forum in Kigali, Rwanda. Leaders discussed practical ways to transform policy declarations into impact on the ground, at a time when farmers are facing the challenge of climate change and the threat of emerging pests and diseases.
On the occasion of this event, CIMMYT’s Director General, Martin Kropff, and the Regional Representative for Africa, Stephen Mugo, authored an op-ed on agricultural innovation in Africa, published by Thomson Reuters (in English) and Jeune Afrique (in French).
The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion “Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit.” (Photo: CIMMYT)
More than 280 delegates from 20 countries gathered in Ludhiana, in the Indian state of Punjab, for the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security.
Technical sessions and panel discussions covered topics such as novel tools and strategies for increasing genetic gains, stress-resilient maize, sustainable intensification of maize-based cropping systems, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.
Conference participants pose for a group photo at the field visit site during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat.
Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as two wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.
The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: Rocio Quiroz/CIMMYT)
A study in Ethiopia found that wheat grown in areas closer to the forest had more nutrients, like zinc and protein. Soils in these areas are rich in organic matter — about 1% higher — due to decomposing trees and plants, as well as manure of livestock grazed in the forest.
Increasing organic matter by 1 percent was associated with an increase in zinc equivalent to meet the daily needs of 0.2 additional people per hectare and an increase in protein equivalent to meeting the daily needs of 0.1 additional people per hectare. These modest increases in soil organic matter contribute a small, but important, increase in nutrients found in wheat.
Although these nutrient increases are not enough to address hidden hunger on their own, they reveal how healthy soils are an additional tool — alongside diet diversity and the biofortification of food — to fight malnutrition.
In 2018 we published our latest annual report, highlighting CIMMYT’s global work and collaboration with partners. It features infographics and case studies from Bangladesh, Ethiopia, Haiti, Mexico and Pakistan.
It is a good way to understand how CIMMYT’s science improves livelihoods around the world.
You can read the web version or the PDF of the report, or watch the video summary below.
Bangladesh farmer Raju Sarder sits on his recently acquired reaper. (Photo: iDE/Md. Ikram Hossain)
A man in his early 20s walked the winding roads of Sajiara village, Dumuria upazila, Khulna District in Bangladesh. His head hanging low, he noticed darkness slowly descending and then looked up to see an old farmer wrapping up his own daily activities. With traditional tools in hand, the farmer looked exhausted. The young man, Raju Sarder, considered that there had to be a better way to farm to alleviate his drudgery and that of others in the community.
Determined to act, Raju set out to meet Department of Agricultural Extension (DAE) officials the very next day. They informed him about the Mechanization and Irrigation project of the Cereal Systems Initiative for South Asia (CSISA MI). They also introduced him to the project’s most popular technologies, namely the power tiller operated seeder, reaper and axial flow pumps, all of which reduce labor costs and increase farming efficiency.
Raju found the reaper to be the most interesting and relevant for his work, and contacted a CSISA representative to acquire one.
The first challenge he encountered was the cost — the equivalent of $1,970 — which as a small-scale farmer he could not afford. CSISA MI field staff assured him that his ambitions were not nipped in the bud and guided him in obtaining a government subsidy and a loan of $1,070 from TMSS, one of CSISA MI’s micro financing partners. Following operator and maintenance training from CSISA MI, Raju began providing reaping services to local smallholder rice and wheat farmers.
He noticed immediately that he did not have to exert himself as much as before but actually gained time for leisure and his production costs dwindled. Most remarkably, for reaping 24 hectares Raju generated a profit of $1,806; a staggering 15 times greater than what he could obtain using traditional, manual methods and enough to pay back his loan in the first season.
“There was a time when I was unsure whether I would be able to afford my next meal,” said Raju, “but it’s all different now because profits are pouring in thanks to the reaper.”
As a result of the project and farmers’ interest, field labor in Raju’s community is also being transformed. Gone are the days when farmers toiled from dawn to dusk bending and squatting to cut the rice and wheat with rustic sickles. Laborious traditional methods are being replaced by modern and effective mechanization. Through projects such as CSISA MI, CIMMYT is helping farmers like Raju to become young entrepreneurs with a bright future. Once poor laborers disaffected and treated badly in their own society, these youths now walk with dignity and pride as significant contributors to local economic development.
Munfiat, a farmer from Nowshera district, Khyber Pakhtunkhwa province, Pakistan, is happy to sow and share seed of the high-yielding, disease resistant Faisalabad-08 wheat variety. (Photo: CIMMYT/Ansaar Ahmad)
Nearly 3,000 smallholder wheat farmers throughout Pakistan will begin to sow seed of newer, high-yielding, disease-resistant wheat varieties and spread the seed among their peers in 2019, through a dynamic initiative that is revitalizing the contribution of science-based innovation for national agriculture.
Some 73 tons of seed of 15 improved wheat varieties recently went out to farmers in the provinces of Baluchistan, Gilgit Baltistan, Khyber Pakhtunkhwa, Punjab and Sindh, as part of the Agricultural Innovation Program (AIP), an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) with funding from the US Agency for International Development (USAID).
“Our main goal is to help farmers replace outdated, disease-susceptible wheat varieties,” said Muhammad Imtiaz, CIMMYT scientist and country representative for Pakistan who leads the AIP. “Studies have shown that some Pakistan farmers grow the same variety for as long as 10 years, meaning they lose out on the superior qualities of newer varieties and their crops may fall victim to virulent, rapidly evolving wheat diseases.”
With support from CIMMYT and partners, participating farmers will not only enjoy as much as 20 percent higher harvests, but have agreed to produce and share surplus seed with neighbors, thus multiplying the new varieties’ reach and benefits, according to Imtiaz.
He said the new seed is part of AIP’s holistic focus on better cropping systems, including training farmers in improved management practices for wheat.
Wheat is Pakistan’s number-one food crop. Farmers there produce over 25 million tons of wheat each year — nearly as much as the entire annual wheat output of Africa or South America.
Annual per capita wheat consumption in Pakistan averages over 120 kilograms, among the highest in the world and providing over 60 percent of Pakistanis’ daily caloric intake.
The seed distributed includes varieties that offer enhanced levels of grain zinc content. The varieties were developed by CIMMYT in partnership with HarvestPlus, a CGIAR research program to study and deliver biofortified foods.
According to a 2011 nutrition survey, 39 percent of children in Pakistan and 48 percent of pregnant women suffer from zinc deficiency, leading to child stunting rates of more than 40 percent and high infant mortality.
The road to better food security and nutrition seems straighter for farmer Munsif Ullah and his family, with seed of a high-yielding, zinc-enhanced wheat variety. (Photo: CIMMYT/Ansaar Ahmad)
“I am very excited to be part of Zincol-16 seed distribution, because its rich ingredients of nutrition will have a good impact on the health of my family,” said Munsif Ullah, a farmer from Swabi District, Khyber Pakhtunkhwa province.
Other seed distributed includes that of the Pakistan-13 variety for rainfed areas of Punjab, Shahkar-13 for the mountainous Gilgit-Baltistan, Ehsan-16 for rainfed areas in general, and the Umeed-14 and Zardana varieties for Baluchistan.
All varieties feature improved resistance to wheat rust diseases caused by fungi whose strains are mutating and spreading quickly in South Asia.
CIMMYT and partners are training farmers in quality seed production and setting up demonstration plots in farmers’ fields to create awareness about new varieties and production technologies, as well as collecting data to monitor the varieties’ performance.
They are also promoting resource-conserving practices such as balanced applications of fertilizer based on infrared sensor readings, ridge planting, and zero tillage. These innovations can save water, fertilizer, and land preparation costs, not to mention increasing yields.
“CIMMYT’s main focus in Pakistan is work with national wheat researchers to develop and spread better wheat production systems,” Imtiaz explained. “This includes improved farming practices and wheat lines that offer higher yields, disease resistance, and resilience under higher temperatures and dry conditions, as well as good end-use quality.”
CIMMYT’s partners in AIP include the National Rural Support Program (NRSP), the Lok Sanjh Foundation, the Village Friends Organization (VFO), the Aga Khan Rural Support Program (AKRSP), the National Agricultural Research Council (NARC) Wheat Program, the Wheat Research Institute (WRI) Faisalabad and Sakrand centers, AZRI-Umarkot, Kashmala Agro Seed Company, ARI-Quetta, BARDC-Quetta, and Model Farm Services Center, KP.
Globally, wheat provides around 20 percent of the calories and protein in human diets. By mid-century, crop production must increase by 60 percent to meet global food demand and help reduce hunger, a challenge made even harder by climate change. “Climate Change Impact and Adaptation for Wheat Protein,” a study published in Global Change Biology in September 2018, examines why wheat grain protein concentration — a determinant of grain quality — is often overlooked in relation to improving global crop production in the face of climate change challenges.
“The impact of climate change on crops typically focuses on productivity; however, there are nutritional implications too,” says key contributor to the study Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT). “Since wheat also provides a significant proportion of protein in the diets of millions of resource-poor people, the negative impact of increased atmospheric CO2 on protein concentration in the grain is a disturbing fact,” stated Reynolds. “If not addressed, it could have a devastating impact on the health and livelihoods especially of marginalized people who cannot easily afford diverse sources of protein in their diet.”
Multi-location field trials, in addition to model testing, were used to systematically analyze the effects of increasing temperature, heat shocks, elevated atmospheric CO2 concentration, nitrogen, water deficiency and the combination of these factors on yield and wheat grain protein in the world’s main wheat producing regions. This study marked the first time that heat shock and high temperature interaction with elevated CO2 concentration was tested through an impact model. As noted in the study, “This is the most comprehensive study ever done of the effect of climate change on yield and the nutritional quality of one of the three major sources of human food security and nutrition.”
Five scientists from the CIMMYT community have been recognized with the Highly Cited Researcher award for 2018 for the influence of their research among their scientific peers.
The list, developed by Clarivate Analytics, recognizes exceptional research performance demonstrated by production of multiple papers that rank in the top 1 percent by citations for field and year, according to the Web of Science citation indexing service.
The honorees include:
Julio Huerta: CIMMYT-seconded INIFAP wheat breeder and rust geneticist;
Ravi Singh: CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement; and
Sybil Herrera-Foessel: Former CIMMYT Global Wheat Program rust pathologist.
It is a significant honor to be part of this list, as it indicates that their peers have consistently acknowledged the influence of their research contributions in their publications and citations.
“This is a tremendous achievement and is a very good indicator for the relevance and quality of [their] publications,” said Hans Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat (WHEAT).
The Ethiopian government announced recently that the country should become wheat self-sufficient over the next four years. Why is boosting domestic wheat production important for this country in the Horn of Africa, and could wheat self-sufficiency be attained in the next four years? The Ethiopian Institute for Agricultural Research (EIAR), with the support of International Maize and Wheat Improvement Center (CIMMYT), gathered agriculture and food experts from the government, research and private sectors on November 23, 2018, to draw the first outlines of this new Ethiopian wheat initiative.
The low-tech domestic wheat farming and price support issue
Despite a record harvest of 4.6 million metric tons in 2017, Ethiopia imported 1.5 million tons of wheat the same year, costing US$600 million. Population growth, continuous economic growth and urbanization over the last decade has led to a rapid change in Ethiopian diets, and the wheat sector cannot keep up with the growing demand for pasta, dabo, ambasha and other Ethiopian breads.
The majority of Ethiopia’s 4.2 million wheat farmers cultivate this cereal on an average of 1.2-hectare holdings, with three quarters produced in Arsi, Bale and Shewa regions. Most prepare the land and sow with draft animal power equipment and few inputs, dependent on erratic rainfall without complementary irrigation. Yields have doubled over the last 15 years and reached 2.7 tons per hectare according to the latest agricultural statistics, but are still far from the yield potential.
According to data from the International Food Policy Research Institute (IFPRI), wheat is preferred by wealthier, urban families, who consume 33 percent more wheat than rural households. Ethiopia needs to rethink its wheat price support system, which does not incentivize farmers and benefits mostly the wealthier, urban consumers. Wheat price support subsidies could, for instance, target bakeries located in poor neighborhoods.
Where to start to boost wheat productivity?
Ethiopia’s Minister of Agriculture and Natural Resources, Eyasu Abraha, welcomes conference participants. (Photo: Jérôme Bossuet/CIMMYT)
Ethiopia, especially in the highlands, has an optimum environment to grow wheat. But to make significant gains, the wheat sector needs to identify what limiting factors to address first. The Wheat initiative, led by Ethiopia’s Agricultural Transformation Agency (ATA), has targeted 2,000 progressive farmers across 41 woredas (districts) between 2013 and 2018, to promote the use of improved and recommended inputs and better cropping techniques within their communities. A recent IFPRI impact study showed a 14 percent yield increase, almost enough to substitute wheat imports if scaled up across the country. It is, however, far from the doubling of yields expected initially. The study shows that innovations like row planting were not widely adopted because of the additional labor required.
Hans Braun, WHEAT CGIAR research program and CIMMYT’s Global Wheat Program director, believes Ethiopian farmers can achieve self-sufficiency if they have the right seeds, the right agronomy and the right policy support.
One priority is to increase support for wheat improvement research to make wheat farmers more resilient to new diseases and climate shocks. Drought and heat tolerance, rust resistance and high yields even in low-fertility soils are some of the factors sought by wheat farmers.
International collaboration in durum wheat breeding is urgently needed as the area under durum wheat is declining in Ethiopia due to climate change, diseases and farmers switching to more productive and resilient bread wheat varieties. Braun advises that Ethiopia set up a shuttle breeding program with CIMMYT in Mexico, as Kenya did for bread wheat, to develop high-yielding and stress-resistant varieties. Such a shuttle breeding program between Ethiopia and Mexico would quickly benefit Ethiopian durum wheat farmers, aiming at raising their yields similar to those of Mexican farmers in the state of Sonora, who harvest more than 7 tons per hectare under irrigation. This would require a policy reform to facilitate the exchange of durum germplasm between Ethiopia and Mexico, as it is not possible at the moment.
Ethiopia also needs to be equipped to respond quickly to emerging pests and diseases. Five years ago, a new stem rust (TKTTF, also called Digalu race) damaged more than 20,000 hectares of wheat in Arsi and Bale, as Digalu — the popular variety used by local farmers — was sensitive to this new strain. The MARPLE portable rust testing lab, a fast and cost-effective rust surveillance system, is now helping Ethiopian plant health authorities quickly identify new rust strains and take preventive actions to stop new outbreaks.
CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media during the conference. (Photo: Jérôme Bossuet/CIMMYT)
Invest in soil health, mechanization and gender
In addition to better access to improved seeds and recommended inputs, better agronomic practices are needed. Scaling the use of irrigation would certainly increase wheat yields, but experts warn not to dismiss adequate agronomic research — knowing the optimal water needs of the crop for each agroecological zone — and the underlying drainage system. Otherwise, farmers are at risk of losing their soils forever due to an accumulation of salt.
‘’2.5 billion tons of topsoil are lost forever every year due to erosion. A long-term plan to address soil erosion and low soil fertility should be a priority,” highlights Marco Quinones, adviser at ATA. For instance, large-scale lime application can solve the important issue of acid soils, where wheat does not perform well. But it requires several years before the soil can be reclaimed and visible yield effects can be seen.
CIMMYT gender and development specialist Kristie Drucza talks about innovation barriers for female-headed households linked to gender norms in Ethiopia. (Photo: Jérôme Bossuet/CIMMYT)
Mechanization could also boost Ethiopian wheat production and provide youth with new job opportunities. Recent research showed smallholder farmers can benefit from six promising two-wheel tractor (2WT) technologies. Identifying the right business models and setting up adapted training programs and financial support will help the establishment of viable machinery service providers across the country.
Better gender equity will also contribute significantly to Ethiopia becoming self-sufficient in wheat production. Women farmers, especially female-headed households, do not have the same access to trainings, credit, inputs or opportunities to experiment with new techniques or seed varieties because of gender norms. Gender transformative methodologies, like community conversations, can help identify collective ways to address such inequalities, which cost over one percent of GDP every year.
‘’With one third better seeds, one third good agronomy and one third good policies, Ethiopia will be able to be wheat self-sufficient,” concluded Braun. A National Wheat Taskforce led by EIAR will start implementing a roadmap in the coming days, with the first effects expected for the next planting season in early 2019.
DNA is often referred to as the blueprint for life. It contains codes to make the proteins, molecules and cells essential for an organism’s growth and development. Over the last decade, scientists have been figuring out how specific sections of DNA in maize and wheat are associated with physical and genetic traits, such as grain size and drought resistance.
Quantitative geneticist Huihui Li with the International Maize and Wheat Improvement Center (CIMMYT) helps link this new genetic knowledge with traditional crop breeding, to speed up the development of improved maize and wheat varieties. Li’s research uses cutting-edge genomics, computational biology and statistical tools to turn data into useful information for plant breeders.
“Breeders always accumulate big amounts of data, most of the time they need efficient tools to mine the stories from this data. That’s part of our job in the Biometrics and Statistics Unit,” she explained.
Her research helps breeders more quickly and accurately predict which maize and wheat varieties in the CIMMYT gene bank have the traits they seek to create improved varieties. For example, if a plant breeder wanted to develop a hybrid maize variety with high protein levels and pest resistance, Li could help by identifying which parental varieties would have these traits.
It takes about ten years for crop breeders to develop a new hybrid. Removing some of the guesswork during the early stages of their experiments could reduce this time significantly. With increasing environmental pressures from climate change and population growth, releasing better crop varieties more quickly will be vital to ensure there is enough food in the future.
Li says her family and experience growing up in China greatly influenced her career choice.
“Through my grandfather’s experience as the head of the Bureau of Agriculture and Forestry, I learned that there were many people in China suffering from hunger, poverty and malnutrition,” she said.
Li realized that these issues were prevalent throughout the developing world when her mother left China for two years to serve as a foreign aid doctor in Cameroon.
“As a ten-year-old girl, I told myself that I should make my contribution to reduce hunger and poverty, and improve human nutrition in the future,” Li recalled. “I always ask myself, ‘What’s my value to humanity?”
She studied bio-mathematics and quantitative genetics at Beijing Normal University and Cornell University before joining CIMMYT in 2010 as a consultant.
“I wanted to join CIMMYT because it works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming,” Li explained. “Also, CIMMYT provided a platform where I could collaborate with scientists worldwide and receive academic and career-boosting trainings.”
She became staff in 2012 and is currently based out of the CIMMYT office in Beijing. In addition, Li is an adjunct associate professor with the Chinese Academy of Agricultural Sciences (CAAS). She helps CAAS scientists improve their experimental design and better incorporate genetic information into their crop breeding.
“I love doing research,” Li said. “I’m a curious person so if I can solve a problem, I feel very happy, but I really want my research to have value – not just for myself – but for the world.”
Huihui Li’s work contributes to Seeds of Discovery (SeeD), a multi-project initiative comprising: MasAgro Biodiversidad, a joint initiative of CIMMYT and the Mexican Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA) through the MasAgro (Sustainable Modernization of Traditional Agriculture) project and the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT).
EL BATAN, Mexico (CIMMYT) — Mexico’s most prestigious scientific association has welcomed Matthew Reynolds among its regular members after accepting the nomination presented by fellow member, Alfonso Larqué Saavedra from the Yucatan Scientific Research Center.
The Mexican Academy of Sciences is an independent and not-for-profit association formed by acknowledged scientists working in both Mexican and international organizations. Its main objective is to offer expert advice to address the most pressing issues and challenges confronting Mexico’s government and civil society.
“I am deeply honoured to be recognized by the Academy,” Reynolds said. “Mexico has a proud tradition of scientific achievements including those of its pre-Hispanic civilizations, and not least in crop science. It is my hope that I can continue to contribute to Mexican agriculture and capacity building, especially in helping to buffer the effects of climate change. I am also very grateful for my long association with Professor Larqué Saavedra with whom I jointly supervised my first Mexican graduate student at Colpos and who nominated me for this position.”
CIMMYT scientist Matthew Reynolds has been appointed a member of the Mexican Academy of Science.
Reynolds is a Wheat Physiologist at International Maize and Wheat Improvement Center (CIMMYT). His leadership of the Wheat component of the MasAgro project strengthened his nomination to the Academy. In this capacity, he has overseen the publication of 32 peer-reviewed articles in scientific journals that account for the progress achieved in the development of new high-yielding and resilient wheat varieties for Mexico and for other wheat-growing regions in the developing world.
Since 2011, MasAgro Trigo has characterized 71 thousand wheat lines in field trials designed to test yield potential under severe stress caused by heat and drought conditions. As a result, Reynolds and his team have formed the Wheat Yield Collaboration Yield Trial and the Stress Adaptive Traits Yield Nursery, two panels of elite lines that yield more grain in high temperatures and under limited water supply. Mexico’s agricultural research system INIFAP has recently incorporated 42 elite lines from these nurseries into its wheat-breeding program.
Reynolds has also mentored 12 Mexican students who have undertaken postgraduate studies under the supervision of renowned wheat scientists in American, Australian, British, Chilean and Spanish universities. Eight students have already achieved a PhD degree in different areas of wheat research. This new generation of scientists will further contribute to promote science and research in Mexico, one of the Academy’s main objectives.
ADDIS ABABA, Ethiopia (CIMMYT) — Ethiopia’s leading agriculture and policy specialists will craft a new strategy to dramatically raise national wheat production and achieve self-sufficiency for the crop by 2022, at a special conference organized by the Government of Ethiopia and the International Maize and Wheat Improvement Center (CIMMYT) for November 23, 2018.
Annual imports to satisfy Ethiopia’s demand for wheat — one of the country’s four key food crops — now cost more than $600 million and expose national food security to capricious global price shifts for grain, according to Mandefro Nigussie, Director General of the Ethiopian Institute of Agriculture (EIAR).
“Ethiopians now consume some 6.5 million tons per year but the country’s 4.2 million households grow only 4.6 million tons on 1.7 million hectares and demand for the crop is rising, as more people move to cities and change in life style,” Nigussie explained.
National wheat yields are steadily climbing but still average only 2.7 tons per hectare; well below global standards, according to Bekele Abeyo, CIMMYT wheat scientist and Ethiopia country representative.
“There’s great potential to expand irrigated wheat production, especially in the lowlands along the major river basins,” Nigussie said. “In the Ethiopian highlands, wheat’s traditional environment, more farmers need to use high-yielding, disease resistant seed and modern farming practices. Even modest levels of technology adoption can provide yields as high as 4 tons per hectare.” Wheat yield can also be increased significantly by treating acidic soils and by making broad-beds in vertisol soil areas.
Called “Wheat Self-Sufficiency in Ethiopia: Challenges and Opportunities,” the consultative workshop builds on recent successes and lessons in Ethiopia of the Wheat Initiative, an international partnership of private and public organizations that conducts wheat research for food security and to help wheat farmers in diverse environments to improve and stabilize their yields.
To be held in the Hiruy Meeting Hall at the headquarters of the Ethiopian Institute of Agricultural Research (EIAR), Addis Ababa, the event will draw some 70 participants, including representatives of Ethiopia’s ministries of agriculture, EIAR, regional agricultural research institutes, the Ethiopian Seed Enterprise, Oromia Seed Enterprise, and the Agricultural Transformation Agency. Adding their experience and ideas will be experts on wheat trade, irrigation and energy, finance and economic cooperation, along with representatives from the Regional Bureau of Agriculture, millers associations, funding agencies, and global organizations including the International Center for Agricultural Research in the Dry Areas (ICARDA) and the International Food Policy Research Institute (IFPRI).
“Aims will include strengthening wheat research and development partnerships, tapping into policies that foster competitive and profitable wheat farming, and supporting national efforts both to reduce imports and end poverty and food insecurity,” Abeyo explained. Kristie Drucza, Gender and Development Specialist at CIMMYT, also notes that, “We see striking opportunities to raise productivity by empowering women in wheat farming, fostering their access to knowledge, technology, and financial resources and their voice in decision making.”
Ethiopia and CIMMYT. Since 1970, Ethiopian farmers have had access to more than 100 high-yielding bread and durum wheat varieties developed and spread through collaboration among EIAR, Ethiopia’s regional agricultural research institutes, and CIMMYT, whose work has contributed to 70 percent of Ethiopia’s wheat varietal development. Use of these high-yielding, disease resistant varieties, along with supportive government policies and better cropping practices, have caused Ethiopia’s average annual wheat production to grow more than double since the early 2000s.
NAIROBI, Kenya (CIMMYT) — The CIMMYT family mourns the demise and honors the valuable contributions of Rwandan crop researcher Theodore Assimwe, who died on November 11, 2018.
An active and dedicated CIMMYT partner and one of eastern Africa’s most promising agricultural scientists, Assimwe was instrumental in Rwanda’s response to Maize Lethal Necrosis (MLN), coordinating pathogen surveillance and characterization and a key project for integrated management of the disease.
He was a pillar of the Rwanda Agriculture Board (RAB), with a well-recognized research track record in maize, cassava, and sweet potato. His capacity-building activities, together with those of CIMMYT, fostered the pursuit of advanced studies by numerous research colleagues.
His passion, commitment, and scientific rigor gained the respect of agricultural researchers, national plant protection organizations, and many other partners, including members of the global scientific community.
The CIMMYT community respectfully extends its sympathies and wishes for peace to the family of Assimwe.
EL BATAN, Mexico (CIMMYT) — Through pure coincidence, Susanne Dreisigacker fell into the world of agricultural science and landed in Mexico. Her interest in genetics and biology solidified when she arrived at the International Maize and Wheat Improvement Center (CIMMYT) through the University of Hohenheim in Germany to pursue her PhD work. Impressed by CIMMYT’s scientific endeavors and its mission, she found herself permanently back at the institution in 2005 as a resident scientist. Now, as the head of CIMMYT’s Wheat Molecular Breeding Lab, Dreisigacker ensures that wheat breeders use the appropriate wheat material to conduct gene profiling and genome sequencing.
Dreisigacker works to discover and validate molecular markers, or DNA segments, for traits of interest. This information helps breeders to develop improved crop varieties that feature those traits.
At its core, her position centers on defining best practices for genomic tool application in the wheat breeding program. These genomic tools serve as “…indirect selection criteria to ultimately assist breeders select improved outputs at the molecular level, such as disease resistance and enhanced nutritional quality in wheat,” explains Dreisigacker. Furthermore, her research amasses data on grain yield and its corresponding components — such as grain weight and other difficult traits to tackle in the wheat breeding world — to help breeders stabilize high yield rates.
On average, over 40,000 wheat lines a year are analyzed on behalf of breeders under Dreisigacker’s direction. The ultimate challenge is organizing this massive data outcome to effectively support the breeders.
Zooming out from the molecular level
Dreisigacker works to discover and validate molecular markers, or DNA segments, for traits of interest. (Photo: Darell Sison)
Working in an environment with interdisciplinary characteristics such as a breeding program, it can be difficult to prioritize which traits merit the bulk of her time. Dreisigacker stresses that teamwork is paramount, from breeders to pathologists to quality specialists, as they all share mutual goals, so their efforts “need to intersect in order to be beneficial.” Dreisigacker enjoys interacting among the disciplines and sharing her work with the international wheat community.
Progress in the application of genomic tools and the push for their usefulness inspires Dreisigacker to continue her work with wheat at CIMMYT. Her work in the laboratory is the backbone of the transmission of better quality germplasm from breeders to farmers. “There is a need to more efficiently integrate gene profiling and genome sequencing into breeding. The transition from upstream genomic research to the processes of application and adaptability are overlooked,” says Dreisigacker.
When she is not looking at wheat at the molecular level, you can find her spending time with her husband and young daughter or teaching exercise classes in CIMMYT’s gymnasium.
As part of their education, students worldwide learn about the formidable challenges their generation faces, including food shortages, climate change, and degrading soil health. Mentors and educators can either overwhelm them with reality or motivate them by real stories and showing them that they have a role to play. Every year the World Food Prize lives out the latter by introducing high school students to global food issues at the annual Borlaug Dialogue, giving them an opportunity to interact with “change agents” who address food security issues. The World Food Prize offers some students an opportunity to intern at an international research center through the Borlaug-Ruan International Internship program.
Tessa Mahmoudi
Plant Microbiologist Tessa Mahmoudi, a 2012 World Food Prize’s Borlaug-Ruan summer intern, says her experience working with CIMMYT researchers in Turkey when she was 16 years old profoundly changed her career and her life.
“For a summer I was welcomed to Turkey not as a child, but as a scientist,” says Mahmoudi, who grew up on a farm in southeast Minnesota, USA. “My hosts, Dr. Abdelfattah A. Dababat and Dr. Gül Erginbas-Orakci, who study soil-borne pathogens and the impact those organisms have on food supplies, showed me their challenges and, most importantly, their dedication.”
Mahmoudi explains she still finds the statistics regarding the global food insecurity to be daunting but saw CIMMYT researchers making real progress. “This helped me realize that I had a role to play and an opportunity to make positive impact.”
Among other things, Mahmoudi learned what it meant to be a plant pathologist and the value of that work. “I began to ask scientific questions that mattered,” she says. “And I went back home motivated to study — not just to get good grades, but to solve real problems.”
She says her outlook on the world dramatically broadened. “I realized we all live in unique realities, sheltered by climatic conditions that strongly influence our world views.”
According to Mahmoudi, her internship at CIMMYT empowered her to get out of her comfort zone and get involved in food security issues. She joined the “hunger fighters” at the University of Minnesota while pursuing a bachelor’s in Plant Science. “I was the president of the Project Food Security Club which focuses on bring awareness of global hunger issues and encouraging involvement in solutions.” She also did research on stem rust under Matthew Rouse, winner of the World Food Prize 2018 Norman Borlaug Award for Field Research and Application.
Pursuing a master’s in plant pathology at Texas A&M University under the supervision of Betsy Pierson, she studied the effects of plant-microbe interactions on drought tolerance and, specifically, how plant-microbe symbiosis influences root architecture and wheat’s ability to recover after suffering water stress.
Tessa Mahmoudi, plant microbiologist and 2012 World Food Prize Borlaug-Ruan summer intern, credits the mentorship of CIMMYT researchers in Turkey with changing her outlook on the potential of science to improve food security and health. (Photo: University of Minnesota)
Currently, Mahmoudi is involved in international development and teaching. As a horticulture lecturer at Blinn College in Texas, she engages students in the innovative use of plants to improve food security and global health.
Mahmoudi incorporates interactive learning activities in her class (see her website, https://reachingroots.org/). Her vision is to increase access to plant science education and encourage innovation in agriculture.
“As a teacher and mentor, I am committed to helping students broaden their exposure to real problems because I know how much that influenced me,” Mahmoudi says. “Our world has many challenges, but great teams and projects are making progress, such as the work by CIMMYT teams around the world. We all have a role to play and an idea that we can make a reality to improve global health.”
As an example, Mahmoudi is working with the non-profit Clean Challenge on a project to improve the waste system in Haiti. The initiative links with local teams in Haiti to develop a holistic system for handling trash, including composting organic waste to empower small holder farmers to improve their soil health and food security.
“Without my mentors, I would not have had the opportunity to be involved in these high impact initiatives. Wherever you are in your career make sure you are being mentored and also mentoring. I highly encourage students to find mentors and get involved in today’s greatest challenge, increasing food security.”
In addition to thanking the CIMMYT scientists who inspired her, Mahmoudi is deeply grateful for those who made her summer internship possible. “This would include the World Food Prize Foundation and especially Lisa Fleming, Ambassador Kenneth M. Quinn, the Ruan Family,” she says. “Your commitment to this high-impact, experiential learning opportunity has had lasting impact on my life.”
NJORO, Kenya (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT), in collaboration with Kenya Agricultural & Livestock Research Organization (KALRO) and Cornell University, recently trained 29 scientists from 13 countries on wheat rust disease diagnosis and management techniques, as well as innovative wheat breeding practices. The training, part of the Delivering Genetic Gains in Wheat (DGGW) project, took place on October 1-9, 2018, at the KALRO research station in Njoro, Kenya, where CIMMYT’s wheat breeding and rust screening facility is located.
More than 200 scientists have increased their capacity at these annual trainings since CIMMYT started organizing them ten years ago. The trainings focus particularly on studying resistance to black (stem) rust, yellow (stripe) rust and brown (leaf) rust. Future wheat champions in national agricultural research systems (NARS) get new skills on innovative and cost-effective wheat breeding. These trainings are also a chance for CIMMYT’s Global Wheat Program to establish new partnerships and to collaborate on emerging challenges related to wheat breeding in different farming regions.
“The focus of this year’s event was to train the scientists on how to identify and record notes for stem rust occurrences and how to evaluate wheat material in the field, to better understand how wheat rust pathogens keep evolving,” said Mandeep Randhawa, wheat breeder and wheat rust pathologist at CIMMYT.
Robert McIntosh from University of Sydney’s Plant Breeding Institute demonstrates stem rust inoculation using a syringe. (Photo: KALRO)
CIMMYT scientist Mandeep Randhawa indicates exact wheat plant stage for stem rust inoculation during the wheat stem rust training. (Photo: KALRO)
CIMMYT scientist Mandeep Randhawa explains trainees early booting stage for stem rust inoculation. (Photo: KALRO)
Participants of the wheat stem rust training pose for a group photograph. (Photo: KALRO)
Participants of CIMMYT’s annual wheat improvement training in Njoro, Kenya, attend a class session. (Photo: KALRO)
Despite its importance for global food security and nutrition, wheat remains susceptible to endemic and highly destructive rust diseases which can lead to 60-100 percent yield losses. Developing and distributing rust resistant wheat varieties is regarded as the most cost-effective and eco-friendly control measure, especially in developing countries, where the majority are resource-poor smallholder farmers with no access to fungicides to control the disease.
As a global leader in wheat and maize breeding systems, CIMMYT has sustained efforts to develop high-yielding, disease-resistant and stress-tolerant varieties. In partnership with KALRO, CIMMYT identified and released over 15 commercial wheat varieties since the establishment of the stem rust screening facility in Njoro in 2008. Despite the appearance of new devastating strains of stem rust over the period, most of these released wheat varieties are high-yielding with stem rust resistance, according to Randhawa.
“Adequate management practices, including timely planting and application of right fungicides, have kept some of the high-yielding varieties such as Kenya Korongo and Eagle10 in production,” Randhawa explained.
Several high-yielding rust resistant wheat lines are in pipeline for national evaluation to release as wheat varieties in Kenya, he said.
The development of a portable, real-time diagnostics tool for wheat yellow rust, namely the Mobile and Real-time Plant DisEase Diagnostics (MARPLE) was another breakthrough in identifying and combating wheat rust. This mobile plant health diagnosis tool helps identify rust strains in three days instead of months. This is a game changer for the wheat sector, as rust control measures could be deployed before new rust becomes a large-scale epidemic. Led by senior scientist David Hodson, MARPLE is the result of the collaboration between CIMMYT, the Ethiopian Institute of Agricultural Research (EIAR) and the John Innes Centre. There are plans to scale up this innovation in Ethiopia, where it is expected to provide five million wheat farmers a lifeline to control wheat yellow rust.
At the training, participants such as Zafar Ziyaev from Uzbekistan, were glad to gain deeper understanding on how to use modern tools for rust surveillance and the control measures. Others acknowledged the importance of sensitizing and supporting farmers to grow rust-resistant wheat varieties.
Emeritus Professor Robert McIntosh, one of the trainers from the Plant Breeding Institute at the University of Sydney, acknowledged the need for wheat scientists to remain vigilant on rust outbreaks globally and the evolving nature of the pathogens.
“As rust pathogens spread from country to country and region to region, such trainings allow national scientists to learn about the need for constant awareness, the basic principles of epidemiology and genetics that provide the basis of breeding for durable resistance, and what the Njoro rust testing platform can offer to the NARS,” McIntosh said.