Skip to main content

research: Wheat

The case for rushing farmer access to BARI Gom 33

In 2016, the emergence of wheat blast, a devastating seed- and wind-borne pathogen, threatened an already precarious food security situation in Bangladesh and South Asia.

In a bid to limit the disease’s impact in the region, the Bangladesh Agricultural Research Institute (BARI) collaborated with the International Maize and Wheat Improvement Center (CIMMYT) and researchers from nearly a dozen institutions worldwide to quickly develop a long-term, sustainable solution.

The result is BARI Gom 33, a new blast-resistant, high-yielding, zinc-fortified wheat variety, which Bangladesh’s national seed board approved for dissemination in 2017. In the 2017-18 season, the Bangladesh Wheat Research Council provided seed for multiplication and the country’s Department of Agricultural Extension established on-farm demonstrations in blast prone districts.

However, the process of providing improved seed for all farmers can be a long one. In a normal release scenario, it can take up to five years for a new wheat variety to reach those who need it, as nucleus and breeder seeds are produced, multiplied and certified before being disseminated by extension agencies. Given the severity of the threat to farmer productivity and the economic and nutritional benefits of the seed, scientists at CIMMYT argue that additional funding should be secured to expedite this process.

According a new study on the economic benefits of BARI Gom 33, 58 percent of Bangladesh’s wheat growing areas are vulnerable to wheat blast. The rapid dissemination of seed can help resource-poor farmers better cope with emerging threats and changing agro-climatic conditions, and would play a significant role in combatting malnutrition through its increased zinc content. It could also have a positive effect on neighboring countries such as India, which is alarmingly vulnerable to wheat blast.

“Our simulation exercise shows that the benefits of disseminating BARI Gom 33 far exceed the seed multiplication and dissemination costs, which are estimated at around $800 per hectare,” explains Khondoker Mottaleb, CIMMYT socioeconomist and lead author of the study. Even in areas unaffected by wheat blast, scaling out BARI Gom 33 could generate a net gain of $8 million for farmers due to its 5 percent higher average yield than other available varieties. These benefits would nearly double in the case of an outbreak in blast-affected or blast-vulnerable districts.

More than 50 percent of Bangladesh’s wheat growing areas are vulnerable to wheat blast. (Source: Mottaleb et al.)

Based on these findings, the authors urge international development organizations and donor agencies to continue their support for BARI Gom 33, particularly for government efforts to promote the blast-resistant variety. The minimum seed requirement to begin the adoption and diffusion process in the 2019-20 wheat season will be 160 metric tons, which will require an initial investment of nearly $1 million for seed multiplication.

Read more study results and recommendations:
“Economic Benefits of Blast-Resistant Biofortified Wheat in Bangladesh: The Case of BARI Gom 33” in Crop Protection, Volume 123, September 2019, Pages 45-58.

This study was supported by the CGIAR Research Program on wheat agri-food systems (CRP WHEAT), the Australian Centre for International Agricultural Research (ACIAR), the CGIAR Research Program on Agriculture for Nutrition and Health (CRP-A4NH), and the HarvestPlus challenge program (partly funded by the Bill and Melinda Gates Foundation).

Xinyao He

Xinyao He joined CIMMYT in 2011 and since then his main research area has been Fusarium head blight (FHB) and its associated mycotoxins, including phenotypic screening for FHB resistance, breeding for FHB resistance, genetic dissection of resistance mechanisms, and integrated FHB management.

He has also been heavily involved in wheat blast research since 2016, including field disease screening, genetic studies and marker validation, as well as participating in research and breeding activities for other wheat diseases such as Septoria tritici blotch, Septoria nodorum blotch, spot blotch, tan spot and Karnal bunt.

Annual Report 2018 launched

Read or download the full report in PDF format

Read the web version of the report

In 2018, CIMMYT continued to innovate and forge strategic alliances to combat malnutrition, tackle the effects of climate change and respond to emerging threats.

Building on the release of a new wheat genome reference map, our researchers more precisely tagged genes for valuable traits, including disease resistance, heat tolerance, and grain quality, in more than 40,000 CIMMYT wheat lines.

In collaboration with our partners, CIMMYT released 81 maize and 48 wheat varieties. More than 40,000 farmers, scientists and technical workers across the world took part in over 1,500 training and capacity development activities. CIMMYT researchers published 338 journal articles.

As the maize-hungry fall armyworm spreads from Africa to Southeast Asia, CIMMYT joined with more than 40 partners in an international consortium to advance research against the devastating insect pest.

CIMMYT used a scaling approach to extend the benefits of crop research to more farmers and consumers in developing countries in transformative and lasting ways. Smallholder farmers in Mexico, Pakistan and Zimbabwe are benefitting from the use of appropriate machinery and implements for efficient and climate-smart agriculture. A manual developed with the Food and Agriculture Organization (FAO) of the United Nations offers technical and business advice for local entrepreneurs offering mechanized services, such as sowing or threshing, to smallholder farmers.

As part of taste tests in Ethiopia, Kenya, and Tanzania, consumers indicated their willingness to pay a premium for quality protein maize (QPM), which contains enhanced levels of the amino acids needed to synthesize protein.

A CIMMYT-led study on gender has explored the lives and viewpoints of 7,500 men and women from farming communities in 26 countries, providing invaluable information that will lead to better productivity and food security.

2018 showed us that the passion and values of staff and partners help CIMMYT to have major impact on the livelihoods of smallholders and the poor. This Annual Report pays tribute to them.

Read or download the full report in PDF format

Read the web version of the report

 

Mandeep Randhawa

Mandeep Randhawa is a Scientist, Wheat Breeder and Rust Pathologist with CIMMYT’s Global Wheat Program.

Research, innovation, partnerships, impact

On May 15, 2019, as part of the CGIAR System Council meeting held at the ILRI campus in Addis Ababa, Ethiopia, around 200 Ethiopian and international research and development stakeholders convened for the CGIAR Agriculture Research for Development Knowledge Share Fair. This exhibition offered a rare opportunity to bring the country’s major development investors together to learn and exchange about how CGIAR investments in Ethiopia help farmers and food systems be more productive, sustainable, climate resilient, nutritious, and inclusive.

Under the title One CGIAR — greater than the sum of its parts — the event offered the opportunity to highlight close partnerships between CGIAR centers, the Ethiopian government and key partners including private companies, civil society organizations and funding partners. The fair was organized around the five global challenges from CGIAR’s business plan: planetary boundaries, sustaining food availability, promoting equality of opportunity, securing public health, and creating jobs and growth. CGIAR and its partners exhibited collaborative work documenting the successes and lessons in working through an integrated approach.

There were 36 displays in total, 5 of which were presented by CIMMYT team members. Below are the five posters presented.

How can the data revolution help deliver better agronomy to African smallholder farmers?

This sustainability display showed scalable approaches and tools to generate site-specific agronomic advice, developed through the Taking Maize Agronomy to Scale in Africa (TAMASA) project in Nigeria, Tanzania and Ethiopia.

Maize and wheat: Strategic crops to fill Ethiopia’s food basket

This poster describes how CGIAR works with Ethiopia’s research & development sector to support national food security priorities.

Addressing gender norms in Ethiopia’s wheat sector

Research shows that restrictive gender norms prevent women’s ability to innovate and become productive. This significantly impacts Ethiopia’s economy (over 1% GDP) and family welfare and food security.

Quality Protein Maize (QPM) for better nutrition in Ethiopia

With the financial support of the government of Canada, CIMMYT together with national partners tested and validated Quality Protein Maize as an alternative to protein intake among poor consumers.

Appropriate small-scale mechanization

The introduction of small-scale mechanization into the Ethiopian agriculture sector has the potential to create thousands of jobs in machinery service provision along the farming value chain.

About the CGIAR System Council

The CGIAR System Council is the strategic decision-making body of the CGIAR System that keeps under review the strategy, mission, impact and continued relevancy of the System as a whole. The Council meets face-to-face not less than twice per year and conducts business electronically between sessions. Additional meetings can be held if necessary.

Related outputs from the Share Fair 2019

Space data applications for wheat and maize research

In 2017, a call for proposals from Copernicus Climate Change Service Sectoral Information Systems led the International Maize and Wheat Improvement Center (CIMMYT to collaborate with Wageningen University, the European Space Agency (ESA), and other research and meteorological organizations to develop practical applications in agricultural and food security for satellite-sourced weather data.

The project, which recently ended, opened the door to a wide variety of potential uses for this highly detailed data.

ESA collects extremely granular data on weather, churned out at an hourly rate. CIMMYT researchers, including Foresight Specialist Gideon Kruseman, reviewed this data stream, which generates 22 variables of daily and sub-daily weather data at a 30-kilometerlevel of accuracy, and evaluated how it could help generate agriculture-specific weather and climate data sets.

“For most people, the reaction would be, ‘What do we do with this?’ Kruseman said. “For us, this is a gold mine.”

For example, wind speed — an important variable collected by ESA satellites — is key for analyzing plant evaporation rates, and thus their drought tolerance. In addition, to date, information is available on ideal ago-climatic zones for various crop varieties, but there is no data on the actual weather conditions during a particular growing season for most sites.

By incorporating the information from the data sets into field trial data, CIMMYT researchers can specifically analyze maize and wheat cropping systems on a larger scale and create crop models with higher precision, meaning that much more accurate information can be generated from the trials of different crop varieties.

The currently available historic daily and sub-daily data, dating back to 1979, will allow CIMMYT and its partners to conduct “genotype by environment (GxE)” interaction analysis in much higher detail. For example, it will allow researchers to detect side effects related to droughts and heat waves and the tolerance of maize and wheat lines to those stresses. This will help breeders create specific crop varieties for farmers in environments where the impact of climate change is predicted to be more apparent in the near future.

“The data from this project has great potential fix this gap in information so that farmers can eventually receive more targeted assistance,” said Kruseman.

These ideas are just the beginning of the agricultural research and food security potential of the ESA data. For example, Kruseman would like to link the data to household surveys to review the relationship between the weather farmers experience and the farming decisions they make.

By the end of 2019, the data will live on an open access, user-friendly database. Eventually, space agency-sourced weather data from as far back as 1951 to as recent as five days ago will be available to researchers and weather enthusiasts alike.

Already CIMMYT scientists are using this data to understand the potential of a promising wheat line, for seasonal forecasting, to analyze gene-bank accessions and for a statistical analysis of maize trials, with many more high-impact applications expected in the future.

Biofortified maize and wheat can improve diets and health, new study shows

TEXCOCO, Mexico (CIMMYT) — More nutritious crop varieties developed and spread through a unique global science partnership are offering enhanced nutrition for hundreds of millions of people whose diets depend heavily on staple crops such as maize and wheat, according to a new study in the science journal Cereal Foods World.

From work begun in the late 1990s and supported by numerous national research organizations and scaling partners, more than 60 maize and wheat varieties whose grain features enhanced levels of zinc or provitamin A have been released to farmers and consumers in 19 countries of Africa, Asia, and Latin America over the last 7 years. All were developed using conventional cross-breeding.

Farmer and consumer interest has grown for some 60 maize and wheat varieties whose grain features enhanced levels of the essential micronutrients zinc and provitamin A, developed and promoted through collaborations of CIMMYT, HarvestPlus, and partners in 19 countries (Map: Sam Storr/CIMMYT).
Farmer and consumer interest has grown for some 60 maize and wheat varieties whose grain features enhanced levels of the essential micronutrients zinc and provitamin A, developed and promoted through collaborations of CIMMYT, HarvestPlus, and partners in 19 countries (Map: Sam Storr/CIMMYT).

“The varieties are spreading among smallholder farmers and households in areas where diets often lack these essential micronutrients, because people cannot afford diverse foods and depend heavily on dishes made from staple crops,” said Natalia Palacios, maize nutrition quality specialist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the study.

More than 2 billion people worldwide suffer from “hidden hunger,” wherein they fail to obtain enough of such micronutrients from the foods they eat and suffer serious ailments including poor vision, vomiting, and diarrhea, especially in children, according to Wolfgang Pfeiffer, co-author of the study and head of research, development, delivery, and commercialization of biofortified crops at the CGIAR program known as “HarvestPlus.”

“Biofortification — the development of micronutrient-dense staple crops using traditional breeding and modern biotechnology — is a promising approach to improve nutrition, as part of an integrated, food systems strategy,” said Pfeiffer, noting that HarvestPlus, CIMMYT, and the International Institute of Tropical Agriculture (IITA) are catalyzing the creation and global spread of biofortified maize and wheat.

“Eating provitamin A maize has been shown to be as effective as taking Vitamin A supplements,” he explained, “and a 2018 study in India found that using zinc-biofortified wheat to prepare traditional foods can significantly improve children’s health.”

Six biofortified wheat varieties released in India and Pakistan feature grain with 6–12 parts per million more zinc than is found traditional wheat, as well as drought tolerance and resistance to locally important wheat diseases, said Velu Govindan, a breeder who leads CIMMYT’s work on biofortified wheat and co-authored the study.

“Through dozens of public–private partnerships and farmer participatory trials, we’re testing and promoting high-zinc wheat varieties in Afghanistan, Ethiopia, Nepal, Rwanda, and Zimbabwe,” Govindan said. “CIMMYT is also seeking funding to make high-zinc grain a core trait in all its breeding lines.”

Pfeiffer said that partners in this effort are promoting the full integration of biofortified maize and wheat varieties into research, policy, and food value chains. “Communications and raising awareness about biofortified crops are key to our work.”

For more information or interviews, contact:

Mike Listman
Communications Consultant
International Maize and Wheat Improvement Center (CIMMYT)
m.listman@cgiar.org, +52 (1595) 957 3490

Carolina Saint Pierre

Carolina Saint Pierre is the Partner Network Coordinator for CIMMYT’s Global Wheat Program (GWP).

She has oversight of wheat international nurseries seed preparation and shipments, database representation, and resource allocation for the International Wheat Improvement Network. She is responsible for research agenda, sub-grant agreements, activity progress and reporting, training, and interactions with NARS and other institutions to generate high-quality phenotypic data on particular traits on field-based phenotyping platforms.

She fosters strong interactions with NARS and other institutions to maximize the use of high-quality phenotypic data and actively participates in ensuring and implementing an efficient data workflow and availability of data within CIMMYT and to partners. She represents GWP as Enterprise Breeding System Business Change Manager.

MARPLE team recognized for international impact

MARPLE team members Dave Hodson and Diane Saunders (second and third from left) stand for a photograph after receiving the International Impact award. With them is Malcolm Skingle, director of Academic Liaison at GlaxoSmithKline (first from left) and Melanie Welham, executive chair of BBSRC. (Photo: BBSRC)
MARPLE team members Dave Hodson and Diane Saunders (second and third from left) stand for a photograph after receiving the International Impact award. With them is Malcolm Skingle, director of Academic Liaison at GlaxoSmithKline (first from left) and Melanie Welham, executive chair of BBSRC. (Photo: BBSRC)

The research team behind the MARPLE (Mobile And Real-time PLant disEase) diagnostic kit won the International Impact category of the Innovator of the Year 2019 Awards, sponsored by the United Kingdom’s Biotechnology and Biological Sciences Research Council (BBSRC).

The team — Diane Saunders of the John Innes Centre (JIC), Dave Hodson of the International Maize and Wheat Improvement Center (CIMMYT) and Tadessa Daba of the Ethiopian Institute for Agricultural Research (EIAR) — was presented with the award at an event at the London Science Museum on May 15, 2019. In the audience were leading figures from the worlds of investment, industry, government, charity and academia, including the U.K.’s Minister of State for Universities, Science, Research and Innovation, Chris Skidmore.

The BBSRC Innovator of the Year awards, now in their 11th year, recognize and support individuals or teams who have taken discoveries in bioscience and translated them to deliver impact. Reflecting the breadth of research that BBSRC supports, they are awarded in four categories of impact: commercial, societal, international and early career. Daba, Hodson and Saunders were among a select group of 12 finalists competing for the four prestigious awards. In addition to international recognition, they received £10,000 (about $13,000).

“I am delighted that this work has been recognized,” Hodson said. “Wheat rusts are a global threat to agriculture and to the livelihoods of farmers in developing countries such as Ethiopia. MARPLE diagnostics puts state-of-the-art, rapid diagnostic results in the hands of those best placed to respond: researchers on the ground, local government and farmers.”

On-the-ground diagnostics

The MARPLE diagnostic kit is the first operational system in the world using nanopore sequence technology for rapid diagnostics and surveillance of complex fungal pathogens in the field.

In its initial work in Ethiopia, the suitcase-sized field test kit has positioned the country — one of the region’s top wheat producers — as a world leader in pathogen diagnostics and forecasting. Generating results within 48 hours of field sampling, the kit represents a revolution in plant disease diagnostics. Its use will have far-reaching implications for how plant health threats are identified and tracked into the future.

MARPLE is designed to run at a field site without constant electricity and with the varying temperatures of the field.

“This means we can truly take the lab to the field,” explained Saunders. “Perhaps more importantly though, it means that smaller, less-resourced labs can drive their own research without having to rely on a handful of large, well-resourced labs and sophisticated expertise in different countries.”

In a recent interview with JIC, EIAR Director Tadessa Daba said, “we want to see this project being used on the ground, to show farmers and the nation this technology works.”

The MARPLE team uses the diagnostic kit in Ethiopia. (Photo: JIC)
The MARPLE team uses the diagnostic kit in Ethiopia. (Photo: JIC)

Development of the MARPLE diagnostic kit was funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the CGIAR Platform for Big Data in Agriculture’s Inspire Challenge. Continued support is also provided by the BBSRC’s Excellence with Impact Award to the John Innes Centre and the Delivering Genetic Gain in Wheat project, led by Cornell University and funded by the UK’s Department for International Development (DFID) and the Bill & Melinda Gates Foundation.

More information on the award can be found on the JIC website, the BBSRC website and the website of the CGIAR Research Program on Wheat.

Velu Govindan

Velu Govindan is a senior wheat breeder at the CIMMYT’s Global Wheat Program in Mexico. He has been engaged in wheat improvement research for the past 15 years. During this period, he made significant contributions towards the development and release of more than 20 biofortified wheat varieties in South Asia with enhanced zinc and iron concentration, with tolerance to rusts & other foliar diseases and climate change-induced heat and drought stress.

Govindan is leading the two of the spring wheat breeding pipelines targeted to early maturing wheat environments with wheat yield potential, climate resilience and yield stability across diverse environments by combining traditional breeding and cutting-edge genomic tools. He is leading the CIMMYT breeding efforts towards mainstreaming grain Zn across elite wheat lines through accelerated breeding strategies. He has published more than 80 peer-reviewed journal articles and 15 book chapters. He received young scientist award from India.

Sridhar Bhavani

Sridhar Bhavani is a Senior Scientist, Head of Rust Pathology and Molecular Genetics working at CIMMYT HQ.

He is a passionate researcher leader with over 15 years of experience working on wheat traits especially rust diseases. He has demonstrated leadership in executing multiple international projects and established strong networks and linkages in East Africa, Asia and various global wheat partners.

As the Head of Rust Pathology, he oversees pathology, molecular genetics, and breeding strategy components in major projects such as: Accelerating Genetic Gains in Maize and Wheat (AGGMW) funded by BMGF; DFID, FCDO, BMGF & DFID funded Zn mainstreaming project; GRDC and ACRCP funded projects on delivering genetic tools and knowledge required to breed wheat and barley with resistance to leaf rust, stripe rust and stem rust; USAID funded project on wheat rust breeding; NMBU-Norway funded project on sustainable management of rust diseases in wheat; and a project led by Kansas State on New Sources of Genetic Disease Resistance.

Maria Itria Ibba

Maria Itria Ibba is the Head of the Wheat Quality Laboratory and a Cereal Chemist at CIMMYT.

Abdelfattah A. Dababat

Abdelfattah A. Dababat (Amer) is the CIMMYT Country Representative in Türkiye and the leader of the Soil Borne Pathogens.

In 2009, he received a second post doctorate offer from CIMMYT to work on the soil borne pathogens. More than 600 scientists/students were benefited from the symposiums, workshops, and courses which he has organized since 2010.

He has co-supervised/co-supervising more than 45 Master and PhD students from around the world and he has published more than 130 peer-reviewed articles and more than 150 proceedings, abstracts, and 2 manuals, books, and book chapters.

He obtained his BSc in 1996 from Al-Najah National University and his MSc in 1999 from the University of Jordan in Amman. From 2009 to 2013 he worked at the Palestinian Agriculture Research Center for a trilateral project among Germany, Israel, and Palestine. In 2003, he received a PhD scholarship offer from the German KAAD to complete his PhD studies at Bonn University where he also did his post doctorate from 2007 to 2009.