Skip to main content

research: Wheat

African leaders rely on science and technology to improve food security

Rural areas in Africa are facing unprecedented challenges. From high levels of rural-urban migration to the need to maintain crop production and food security under the added stress of climate change, rural areas need investment and support. The recent Africa Food Security Leadership Dialogue brought together key regional actors to discuss the current situation as well as ways to catalyze actions and financing to help address Africa’s worsening food security crisis under climate change.

Heads of state, ministers of agriculture and finance, heads of international institutions and regional economic commissions, Nobel laureates, and eminent scientists took part in the dialogue in Kigali, Rwanda, on August 5 and 6, 2019.

This high-level meeting was convened by core partners including the African Union Commission (AUC), the African Development Bank (AfDB), the Food and Agriculture Organization of the United Nations (FAO), the International Fund for Agricultural Development (IFAD), and the World Bank.

The Director General of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, participated in a session entitled “Leveraging science to end hunger by 2025”, where he discussed the challenges to adapt Africa’s wheat sector to climate change, and what CIMMYT is doing to help. Demand for wheat is growing faster than any other commodity, and sub-Saharan Africa has tremendous potential to increase wheat production. People in Africa consume nearly 47 million tons of wheat a year. However, more than 80% of that — 39 million tons— is imported and used for human consumption, costing the countries billions of dollars. Kropff discussed the great strides CIMMYT has made in supporting wheat production on the continent despite biological challenges such as Ug99, a dangerous strain of wheat rust native to east Africa.

“The potential for wheat production in Africa is tremendous; existing varieties already realize very high yields but poor agronomic practices often result in low yields,” Kropff said. “The challenges we have to tackle together are as much in reshaping policies in favor of wheat and develop the wheat market and surrounding infrastructure. Africa’s environment is friendly for wheat production, but it needs the right supporting policies to develop a sustainable wheat market.”

Kropff highlighted Ethiopia’s case. “Ethiopia has decided to become self-sufficient in wheat by 2025. CIMMYT is already talking to the government and working with the national system to assure the best varieties and technologies will be used. We are ready to do this with every single African nation that is interested in producing quality wheat.”

Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)
Farmer Galana Mulatu harvests a wheat research plot in Ethiopia. (Photo: P.Lowe/CIMMYT)

Climate change is also posing dire threats to maize, a key staple crop in sub-Saharan Africa.

We talked to Cosmos Magorokosho, CIMMYT researcher and project leader of the Stress Tolerant Maize for Africa (STMA) project, who attended the dialogue, on what CIMMYT can do to better support farmers in Africa’s rural communities.

How can projects such as Stress Tolerant Maize for Africa contribute to protecting food security in Africa in the face of climate change?

Stress-tolerant maize varieties can contribute by cushioning farmers against total crop failures in case of drought and heat stress, among other stresses during the growing season. In addition, stress-tolerant varieties can also yield well under good growing conditions, therefore benefiting farmers both during difficult growing seasons as well as those seasons when conditions are favorable for maize growth.

What can be done to support rural areas and smallholder farmers in Africa to improve food security?

Rural areas and smallholder farmers need support with climate resilient crop varieties, supporting agronomic practices, environment conserving farming practices, labor and drudgery- reducing farm operations, access to affordable finance, and rewarding markets for their produce.

What role can international research organizations such as CIMMYT play in this?

International agricultural research can unlock the potential of small holder farmers through the generation of new appropriate technologies, testing and helping farmers adopt those technologies, refining and fine tuning of new technologies, as well as scaling up and out of farmer-demanded technologies. International agriculture research can influence policy across and within borders, political divide, religion, ecologies, and diversity of farmers.

What would it take for CIMMYT to effectively move science from the lab and package it into solutions that can be disseminated and adopted by majority of small family farms in Africa?

CIMMYT should keep and broaden its engagement with farmers, policy makers, and continue with capacity enhancement of partners to reach scale and bring new cutting-edge smallholder-farmer appropriate technologies to farmers’ fields in the shortest possible timeframe.

Scientists use DNA fingerprinting to gauge the spread of modern wheat in Afghanistan

Wheat is Afghanistan’s number-one staple crop, but the country doesn’t grow enough and must import millions of tons of grain each year to satisfy domestic demand.
Wheat is Afghanistan’s number-one staple crop, but the country does not grow enough and must import millions of tons of grain each year to satisfy domestic demand.

Despite the severe social and political unrest that constrain agriculture in Afghanistan, many farmers are growing high-yielding, disease resistant varieties developed through international, science-based breeding and made available to farmers as part of partnerships with national wheat experts and seed producers.

These and other findings have emerged from the first-ever large-scale use of DNA fingerprinting to assess Afghanistan farmers’ adoption of improved wheat varieties, which are replacing less productive local varieties and landraces, according to a paper published yesterday in the science journal BMC Genomics.

The study is part of an activity supported between 2003 and 2018 by the Australian Department of Foreign Affairs and Trade, through which the Agricultural Research Institute of Afghanistan and the International Maize and Wheat Improvement Center (CIMMYT) introduced, tested, and released improved wheat varieties.

“As part of our study, we established an extensive ‘reference library’ of released varieties, elite breeding lines, and Afghan wheat landraces,” said Susanne Dreisigacker, wheat molecular breeder at CIMMYT and lead author of the new paper.

“We then compared wheat collected on farmers’ fields with the reference library. Of the 560 wheat samples collected in 4 provinces during 2015-16, farmers misidentified more than 40%, saying they were of a different variety from that which our DNA analyses later identified.”

Wheat is the most important staple crop in Afghanistan — more than 20 million of the country’s rural inhabitants depend on it — but wheat production is unstable and Afghanistan has been importing between 2 and 3 million tons of grain each year to meet demand.

Over half of the population lives below the poverty line, with high rates of malnutrition. A key development aim in Afghanistan is to foster improved agronomic practices and the use of high quality seed of improved wheat varieties, which together can raise yields by over 50%.

“Fungal diseases, particularly yellow rust and stem rust, pose grave threats to wheat in the country,” said Eric Huttner, research program manager for crops at the Australian Centre for International Agricultural Research (ACIAR) and co-author of the present paper. “It’s crucial to know which wheat varieties are being grown where, in order to replace the susceptible ones with high-performing, disease resistant varieties.”

Varietal adoption studies typically rely on questionnaires completed by breeders, extension services, seed producers, seed suppliers, and farmers, but such surveys are complicated, expensive, and often inaccurate.

“DNA fingerprinting resolves uncertainties regarding adoption and improves related socioeconomic research and farm policies,” Huttner explained, adding that for plant breeding this technology has been used mostly to protect intellectual property, such as registered breeding lines and varieties in more developed economies.

This new study was commissioned by ACIAR as a response to a request from the Government of Afghanistan for assistance in characterizing the Afghan wheat gene bank, according to Huttner.

“This provided the reference library against which farmers’ samples could be compared,” he explained. “Accurately identifying the varieties that farmers grow is key evidence on the impact of introducing improved varieties and will shape our future research

Joint research and development efforts involving CIMMYT, ACIAR, the Food and Agriculture Organization (FAO) of the United Nations, the International Centre of Agricultural Research in Dry Areas (ICARDA), French Cooperation, and Afghanistan’s Ministry of Agriculture, Irrigation and Livestock (MAIL) and Agricultural Research Institute (ARIA) have introduced more than 400 modern, disease-resistant wheat varieties over the last two decades. Nearly 75% of the wheat grown in the areas surveyed for this study comes from these improved varieties.

“New sequencing technologies are increasingly affordable and their cost will continue to fall,” said Dreisigacker. “Expanded use of DNA fingerprinting can easily and accurately identify the wheat cultivars in farmers’ fields, thus helping to target breeding, agronomy, and development efforts for better food security and farmer livelihoods.”


For more information, or to arrange interviews with the researchers, please contact:

Marcia MacNeil, Wheat Communications Officer, CIMMYT
M.MacNeil@cgiar.org, +52 (55) 5804 2004, ext. 2070

Rodrigo Ordóñez, Communications Manager, CIMMYT
r.ordonez@cgiar.org, +52 (55) 5804 2004, ext. 1167

About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

About ACIAR
As Australia’s specialist international agricultural research for development agency, the Australian Centre for International Agricultural Research (ACIAR) brokers and funds research partnerships between Australian scientists and their counterparts in developing countries. Since 1982, ACIAR has supported research projects in eastern and southern Africa, East Asia, South and West Asia and the Pacific, focusing on crops, agribusiness, horticulture, forestry, livestock, fisheries, water and climate, social sciences, and soil and land management. ACIAR has commissioned and managed more than 1,500 research projects in 36 countries, partnering with 150 institutions along with more than 50 Australian research organizations.

About Afghanistan’s Ministry of Agriculture, Irrigation and Livestock
The Ministry of Agriculture, Irrigation and Livestock (MAIL) of the Islamic Republic of Afghanistan works on the development and modernization of agriculture, livestock and horticulture. The ministry launches programs to support the farmers, manage natural resources, and strengthen agricultural economics. Its programs include the promotion and introduction of higher-value economic crops, strengthening traditional products, identifying and publishing farm-tailored land technologies, boosting cooperative programs, agricultural economics, and export with marketing.

Global group of journalists find wheat research, comradery in Canada

A diverse group of agriculture, food security, environment and science journalists gathered in Saskatoon, Canada recently for an intensive course in innovative wheat research, interviews with top international scientists and networking with peers.

The occasion was the International Wheat Congress (IWC), which convened more than 900 wheat scientists and researchers in Saskatoon, in Canada’s biggest wheat-growing province, Saskatchewan, to discuss their latest work to boost wheat productivity, resilience and nutrition.

Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
Martin Kropff (right), Director General of the International Maize and Wheat Improvement Center (CIMMYT), speaks to the press at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

The seven journalists were part of a group of 11 who won a competitive sponsorship offered by the CGIAR Research Program on Wheat (WHEAT). Seven journalists attended the conference, while another four followed the proceedings and activities from home. The ten-day immersive training included multiple daily press briefings with top scientists in climate change modeling and resilience testing, innovative breeding techniques, analysis and protection of wheat diversity and many more topics, on top of a full schedule of scientific presentations.

“The scientists were so eager to talk to us, and patient with our many questions,” said Nkechi Isaac, from the Leadership newspaper group in Nigeria. “Even the director general of [the International Maize and Wheat Improvement Center] CIMMYT spoke with us for almost an hour.”

“It was a pleasant surprise for me.”

The journalists, who come from regions as diverse as sub-Saharan Africa and East Asia, offered support and encouragement from their travel preparations though their time in Saskatoon and beyond — sharing story ideas, interview and site visit opportunities, news clips and photos through a WhatsApp group.

Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)
Linda McCandless (center) of Cornell University and David Hodson (left) of CIMMYT were among the panelists sharing tips on wheat news coverage at the journalist roundtable. (Photo: Matt Hayes/Cornell)

“It is really helpful to be connected to colleagues around the world,” said Amit Bhattacharya of the Times of India. “I know we will continue to be a resource and network for each other through our careers.”

The week wasn’t all interviews and note-taking. The journalists were able to experience Saskatchewan culture, from a tour of a wheat quality lab and a First Nations dance performance to a visit to a local wheat farm, and even an opportunity to see Saskatoon’s newest modern art gallery.

The media sponsorship at IWC aimed to encourage informed coverage of the importance of wheat research, especially for farmers and consumers in the Global South, where wheat is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day.

The group also spoke with members of the many coalitions that facilitate the collaboration that makes innovative wheat research possible, including the International Wheat Yield Partnership (IWYP), the Heat and Drought Wheat Improvement Consortium (HeDWIC) and the G20-organized Wheat Initiative.

“This is the first time we’ve invested this heavily in journalist training,” said WHEAT program director Hans Braun. “We think the benefits – for the journalists, who gained a greater understanding of wheat research issues, and for developing country audiences, who will be more aware of the importance of improving wheat –– are worth it.”

Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)
Lominda Afedraru (center) from Uganda’s Daily Monitor shares her experience covering science with participants at the journalist roundtable. (Photo: Marcia MacNeil/CIMMYT)

A roundtable discussion with peers from Canadian news organizations and seasoned science communications professionals and a networking breakfast with CIMMYT scientists provided platforms for a candid exchange on the challenges and opportunities in communicating wheat science in the media.

A common refrain was the importance of building relationships between scientists and media professionals – because wheat science offers dramatic stories for news audiences, and an informed and interested public can in turn lead to greater public investment in wheat science. The journalists and scientists in Saskatoon have laid a solid foundation for these relationships.

The sponsored journalists are:

Amit Bhattacharya: Senior Editor at The Times of India, New Delhi, and a member of the team that produces the front page of India’s largest English daily. He writes on Indian agriculture, climate change, the monsoon, weather, wildlife and science. A 26-year professional journalist in India, he is a Jefferson Fellow on climate change at the East-West Center, Hawaii.

Emmanuelle Landais: Freelance journalist based in Dakar, Senegal, currently reporting for Deutsche Welle’s radio service in English and French on the environment, technology, development and youth in Africa. A former line producer for France 24 in Paris and senior environment reporter for the daily national English newspaper Gulf News in Dubai, she also reports on current affairs for the Africalink news program, contributes to Radio France International’s (RFI) English service, and serves as news producer for the Dakar-based West Africa Democracy Radio.

Julien Chongwang: Deputy Editor, SciDev.Net French edition. He is based in Douala, Cameroon, where he has been a journalist since 2002. Formerly the editor of the The Daily Economy, he worked on the French edition of Voice of America and Morocco economic daily LES ECO, and writes for Forbes Africa, the French edition of Forbes in the United States.

Lominda Afedraru: Science correspondent at the Daily Monitor newspaper, Uganda, part of the Nation Media Group. A journalist since 2004, she also freelances for publications in the United States, UK, Kenya and Nigeria among others and has received fellowships at the World Federation of Science Journalists, Biosciences for Farming in Africa courtesy of University of Cambridge UK and Environmental Journalism Reporting at Sauti University, Tanzania.

Muhammad Amin Ahmed: Senior Correspondent, Daily Dawn in Islamabad, Pakistan. He has been a journalist for more than 40 years. Past experience includes working at the United Nations in New York and Pakistan Press International. He received a UN-21 Award from former U.N. Secretary General Kofi Annan (2003).

Muhammad Irtaza: Special Correspondent with Pakistan’s English daily The Nation at Multan. A 10-year veteran journalist and an alumnus of the Reuters Foundation, he also worked as a reporter with the Evansville Courier and Press in Indiana, United States. He is an ICFJ-WHO Safety 2018 Fellow (Bangkok), Asia Europe Foundation Fellow (Brussels), and a U.S.-Pakistan Professional Partnership in Journalism Program Fellow (Washington). He teaches mass communications at Bahauddin Zakariya University Multan.

Nkechi Isaac: Deputy Editor, Leadership Friday in Nigeria. She is also the head, Science and Technology Desk of the Leadership Group Limited, publishers of LEADERSHIP newspapers headquartered in Abuja, Nigeria. She is a Fellow of Cornell University’s Alliance for Science.

Reaz Ahmad: Executive Editor of the Dhaka Tribune, Bangladesh’s national English newspaper. A journalist for 30 years, he is a Cochran Fellow of the U.S. Department of Agriculture and an adjunct professor of University of Dhaka (DU) and Independent University, Bangladesh.

Rehab Abdalmohsen: Freelance science journalist based in Cairo, Egypt who has covered science, health and environment for 10 years for such websites as the Arabic version of Scientific American, SciDev.net, and The Niles.

Tan Yihong: Executive Deputy Editor-in-Chief, High-Tech & Commercialization Magazine, China. Since 2008, she has written about science particularly agriculture innovation and wheat science. She has attended several Borlaug Global Rust Initiative (BGRI) Technical Workshops. In Beijing, she helped organize a BGRI communication workshop and media outreach.

Tony Iyare: Senior Correspondent, Nigerian Democratic Report. For more than 30 years, he has covered environment, international relations, gender, media and public communication. He has worked as a stringer for The New York Times since 1992, and freelanced for the Paris-based magazine, The African Report and the U.N. Development Programme publication Choices. He was columnist at The Punch and co-authored a book: The 11-Day Siege: Gains and Challenges of Women’s Non-Violent Struggles in Niger Delta.

Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)
Nigerian journalist Nkechi Isaac (center) tours a Saskatchewan wheat farm. (Photo: Julie Mollins)

The CGIAR Research Program on Wheat (WHEAT) is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner. Funding comes from CGIAR, national governments, foundations, development banks and other agencies, including the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID).

New platform rapidly diagnoses wheat rust

“Knowing which strain you have is critical information that can be incorporated into early warning systems and results in more effective control of disease outbreaks in farmer’s fields” said Dr. Dave Hodson, a rust pathologist at CIMMYT in Ethiopia and co-author of the paper “MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens.” Read more here.

Warmer night temperatures reduce wheat yields in Mexico, scientists say

As many regions worldwide baked under some of the most persistent heatwaves on record, scientists at a major conference in Canada shared data on the impact of spiraling temperatures on wheat.

In the Sonora desert in northwestern Mexico, nighttime temperatures varied 4.4 degrees Celsius between 1981 and 2018, research from the International Maize and Wheat Improvement Center (CIMMYT) shows. Across the world in Siberia, nighttime temperatures rose 2 degrees Celsius between 1988 and 2015, according to Vladimir Shamanin, a professor at Russia’s Omsk State Agrarian University who conducts research with the Kazakhstan-Siberia Network on Spring Wheat Improvement.

“Although field trials across some of the hottest wheat growing environments worldwide have demonstrated that yield losses are in general associated with an increase in average temperatures, minimum temperatures at night — not maximum temperatures — are actually determining the yield loss,” said Gemma Molero, the wheat physiologist at CIMMYT who conducted the research in Sonora, in collaboration with colleague Ivan Ortiz-Monasterio.

“Of the water taken up by the roots, 95% is lost from leaves via transpiration and from this, an average of 12% of the water is lost during the night. One focus of genetic improvement for yield and water-use efficiency for the plant should be to identify traits for adaptation to higher night temperatures,” Molero said, adding that nocturnal transpiration may lead to reductions of up to 50% of available soil moisture in some regions.

Wheat fields at CIMMYT's experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)
Wheat fields at CIMMYT’s experimental station near Ciudad Obregón, Sonora, Mexico. (Photo: M. Ellis/CIMMYT)

Climate challenge

The Intergovernmental Panel on Climate Change (IPCC) reported in October that temperatures may become an average of 1.5 degrees Celsius warmer in the next 11 years. A new IPCC analysis on climate change and land use due for release this week, urges a shift toward reducing meat in diets to help reduce agriculture-related emissions from livestock. Diets could be built around coarse grains, pulses, nuts and seeds instead.

Scientists attending the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province of Saskatchewan, agreed that a major challenge is to develop more nutritious wheat varieties that can produce bigger yields in hotter temperatures.

CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)
CIMMYT wheat physiologist Gemma Molero presents at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

As a staple crop, wheat provides 20% of all human calories consumed worldwide. It is the main source of protein for 2.5 billion people in the Global South. Crop system modeler Senthold Asseng, a professor at the University of Florida and a member of the International Wheat Yield Partnership, was involved in an extensive study  in China, India, France, Russia and the United States, which demonstrated that for each degree Celsius in temperature increase, yields decline by 6%, putting food security at risk.

Wheat yields in South Asia could be cut in half due to chronically high temperatures, Molero said. Research conducted by the University of New South Wales, published in Environmental Research Letters also demonstrates that changes in climate accounted for 20 to 49% of yield fluctuations in various crops, including spring wheat. Hot and cold temperature extremes, drought and heavy precipitation accounted for 18 to 4% of the variations.

At CIMMYT, wheat breeders advocate a comprehensive approach that combines conventional, physiological and molecular breeding techniques, as well as good crop management practices that can ameliorate heat shocks. New breeding technologies are making use of wheat landraces and wild grass relatives to add stress adaptive traits into modern wheat – innovative approaches that have led to new heat tolerant varieties being grown by farmers in warmer regions of Pakistan, for example.

More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)
More than 800 global experts gathered at the first International Wheat Congress in Saskatoon, Canada, to strategize on ways to meet projected nutritional needs of 60% more people by 2050. (Photo: Matthew Hayes/Cornell University)

Collaborative effort

Matthew Reynolds, a distinguished scientist at CIMMYT, is joint founder of the Heat and Drought Wheat Improvement Consortium (HeDWIC), a coalition of hundreds of scientists and stakeholders from over 30 countries.

“HeDWIC is a pre-breeding program that aims to deliver genetically diverse advanced lines through use of shared germplasm and other technologies,” Reynolds said in Saskatoon. “It’s a knowledge-sharing and training mechanism, and a platform to deliver proofs of concept related to new technologies for adapting wheat to a range of heat and drought stress profiles.”

Aims include reaching agreement across borders and institutions on the most promising research areas to achieve climate resilience, arranging trait research into a rational framework, facilitating translational research and developing a bioinformatics cyber-infrastructure, he said, adding that attracting multi-year funding for international collaborations remains a challenge.

Nitrogen traits

Another area of climate research at CIMMYT involves the development of an affordable alternative to the use of nitrogen fertilizers to reduce planet-warming greenhouse gas emissions. In certain plants, a trait known as biological nitrification inhibition (BNI) allows them to suppress the loss of nitrogen from the soil, improving the efficiency of nitrogen uptake and use by themselves and other plants.

CIMMYT's director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)
CIMMYT’s director general Martin Kropff speaks at a session of the International Wheat Congress. (Photo: Matthew Hayes/Cornell University)

Scientists with the BNI research consortium, which includes Japan’s International Research Center for Agricultural Sciences (JIRCAS), propose transferring the BNI trait from those plants to critical food and feed crops, such as wheat, sorghum and Brachiaria range grasses.

“Every year, nearly a fifth of the world’s fertilizer is used to grow wheat, yet the crop only uses about 30% of the nitrogen applied, in terms of biomass and harvested grains,” said Victor Kommerell, program manager for the multi-partner CGIAR Research Programs (CRP) on Wheat and Maize led by the International Maize and Wheat Improvement Center.

“BNI has the potential to turn wheat into a highly nitrogen-efficient crop: farmers could save money on fertilizers, and nitrous oxide emissions from wheat farming could be reduced by 30%.”

Excluding changes in land use such as deforestation, annual greenhouse gas emissions from agriculture each year are equivalent to 11% of all emissions from human activities. About 70% of nitrogen applied to crops in fertilizers is either washed away or becomes nitrous oxide, a greenhouse gas 300 times more potent than carbon dioxide, according to Guntur Subbarao, a principal scientist with JIRCAS.

Hans-Joachim Braun,
Director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, speaks at the International Wheat Congress. (Photo: Marcia MacNeil/CIMMYT)

Although ruminant livestock are responsible for generating roughly half of all agricultural production emissions, BNI offers potential for reducing overall emissions, said Tim Searchinger, senior fellow at the World Resources Institute and technical director of a new report titled “Creating a Sustainable Food Future: A Menu of Solutions to Feed Nearly 10 Billion People by 2050.”

To exploit this roots-based characteristic, breeders would have to breed this trait into plants, said Searchinger, who presented key findings of the report in Saskatoon, adding that governments and research agencies should increase research funding.

Other climate change mitigation efforts must include revitalizing degraded soils, which affect about a quarter of the planet’s cropland, to help boost crop yields. Conservation agriculture techniques involve retaining crop residues on fields instead of burning and clearing. Direct seeding into soil-with-residue and agroforestry also can play a key role.

CRP Wheat Annual Report 2018

The newly released CGIAR Research Program on Wheat (WHEAT) Annual Report 2018 highlights joint achievements that are making an invaluable contribution to global food security, especially for the 2.5 billion people who depend on wheat for their livelihoods.

The report describes work with national and global partners using state of the art technology to measure traits and performance for faster development of high-yielding, heat- and drought-tolerant varieties; rapidly diagnosing diseases in farmers’ fields; supporting gender equality in agricultural innovations, and much more.

With its national partners, WHEAT released 48 new CGIAR-derived wheat varieties to farmers in 2018, and developed 11 innovations related to farm management practices or social sciences.

Read the full report online

Download a PDF Version of the report

Download a PDF of the 2019 Technical Annual Report 

Strengthening wheat production in Africa

CIMMYT researcher Bekele Abeyo remarked at the International Wheat Congress that there are hardly any African countries self-sufficient in wheat, and that food security in Africa is dependent on wheat production.

Matthew Reynolds, CIMMYT researcher and head of the Heat and Drought Wheat Improvement Consortium (HeDWIC), noted that the consortium has already benefited nine African countries and stresses the importance of future work in this area.

Read more here.

Innovation rush aims to help farmers, rich and poor, beat climate change

Agricultural researchers, who have teamed up to boost harvests and fight the major blight of wheat rust are now forming an international consortium in a bid to make wheat stand up to worsening heat and drought.

“There was a real shift in terms of the intensity of what we do together when we became aware of climate change,” said Hans-Joachim Braun, who heads the global wheat program for the International Maize and Wheat Improvement Center (CIMMYT), based in Mexico. For each 1 degree Celsius global temperatures rise above pre-industrial times, wheat harvests drop 5-8%, he said. That means the world will likely see a 10% drop in harvests even if governments hold global warming to “well below” 2C, as they have agreed, he said – and that drop would come even as the world’s population grows and demand for food rises.

Finding ways to breed wheat that can cope better with heat could help farmers from Australia to India and China, as well as the people who depend on their grain, he said. “It doesn’t matter where you use this trait – it will have an impact,” Braun said. Read more here.

Scientist Bekele Abeyo details research in Africa with BBC

CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media. (Photo: Jérôme Bossuet/CIMMYT)
CIMMYT’s representative in Ethiopia, Bekele Abeyo, gives an interview for Ethiopian media. (Photo: Jérôme Bossuet/CIMMYT)

Most African countries have good potential for boosting wheat production if they are supported with technology, innovation and research, said Bekele Abeyo, a senior scientist with the International Maize and Wheat Improvement Center (CIMMYT).

Abeyo, who is based in Ethiopia, which is one of the top wheat-producing countries in Africa, was speaking to BBC Newsday from the International Wheat Congress in the city of Saskatoon in Canada’s western wheat growing province of Saskatchewan.

Interview starts at 31:00:
https://www.bbc.co.uk/sounds/play/w172wpkb45wc459

In Ethiopia, a third of local demand is satisfied by imports, Abeyo said, adding that to reduce import bills, the government is trying to expand wheat production and irrigation in the lowlands where there is high potential for wheat production.

Climate change in Ethiopia and across sub-Saharan Africa is affecting yields, so scientists are working on producing drought-tolerant varieties of wheat. They are also producing biofortified varieties of wheat to help meet nutritional demand for zinc and iron.

More than 800 delegates, including researchers from the CGIAR Research Program on Wheat, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Wheat Yield Partnership (IWYP), Cornell University’s Delivering Genetic Gain in Wheat project (DGGW), the University of Saskatchewan and many other organizations are discussing the latest research on wheat germplasm.

The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT), is a founding member of the G20 Wheat Initiative, a co-host of the conference.

Wheat provides 20% of all human calories consumed worldwide. In the Global South, it is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 a day. Wheat is central to conversations about the rural environment, agricultural biodiversity and global food security.

The new challenges of wheat improvement

CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)
CIMMYT scientist Velu Govindan (right) is interviewed by Michael Condon of ABC Rural at the International Wheat Conference in Sydney, Australia, 2015. (Photo: Julie Mollins/CIMMYT)

In the Green Revolution era, the focus for wheat breeders was on boosting yields to feed more people, but today the challenge is not only to increase production on smaller plots of land, but also to improve nutritional quality, said CIMMYT wheat breeder Velu Govindan, during an interview on BBC Newsday.

Interview starts at 43:23:
https://www.bbc.co.uk/sounds/play/w172wpkb45wcm4t

Govindan was speaking from the International Wheat Congress in the city of Saskatoon in Canada’s breadbasket province on the prairies, Saskatchewan.

Int’l Wheat Congress: Bangladesh’s success sung in Saskatoon

At the opening session of the International Wheat Congress 2019 in Saskatoon, the director general of the International Maize and Wheat Improvement Center (CIMMYT), Martin Kropff, told a gathering of 900 wheat scientists that, with CIMMYT support, Bangladesh developed blast resistant wheat in the quickest possible time. Read more here.

More with less: Research for intensified food production with scarcer resources and heating climates

Technical assistant Tigist Masresra examines breeding trials at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)
Technical assistant Tigist Masresra examines breeding trials at the Ambo Research Center in Ethiopia. (Photo: Peter Lowe/CIMMYT)

After declining for nearly a decade to around 770 million, in the last three years the number of hungry people has shot up to more than 850 million. At the same time, erratic weather and crop pests and diseases are ruining harvests, intensifying farmers’ risks, and threatening local and global food security.

In an article for Rural 21, I describe how plant breeding has changed over the last four decades and which methods the international research community is developing to master present and future challenges.

Read the full article

Top scientists from CGIAR to present latest research at International Wheat Congress in Canada

FOR IMMEDIATE RELEASE

SASKATOON, Canada (CIMMYT) — Amid global efforts to intensify the nutritional value and scale of wheat production, scientists from all major wheat growing regions in the world will gather from July 21 to 26, 2019 at the International Wheat Congress in Saskatoon, the city at the heart of Canada’s western wheat growing province, Saskatchewan. The CGIAR Research Program on Wheat (WHEAT), led by the International Maize and Wheat Improvement Center (CIMMYT), is a founding member of the G20 Wheat Initiative, a co-host of the conference.

Wheat provides 20% of all human calories consumed worldwide. In the Global South, it is the main source of protein and a critical source of life for 2.5 billion people who live on less than $2 (C$2.60) a day.

In spite of its key role in combating hunger and malnutrition, the major staple grain faces threats from climate change, variable weather, disease, predators and many other challenges. Wheat’s vital contribution to the human diet and farmer livelihoods makes it central to conversations about the rural environment, agricultural biodiversity and global food security.

More than 800 delegates, including researchers from the CGIAR Research Program on Wheat, CIMMYT, the International Center for Agricultural Research in the Dry Areas (ICARDA), the International Wheat Yield Partnership (IWYP), Cornell University’s Delivering Genetic Gain in Wheat project (DGGW), the University of Saskatchewan and many other organizations worldwide will discuss the latest research on wheat germplasm.

“We must solve a complex puzzle,” said Martin Kropff, CIMMYT’s director general. “Wheat must feed more people while growing sustainably on less land. Wheat demand is predicted to increase 60% in the next three decades, while climate change is putting an unprecedented strain on production.”

“The scientific community is tackling this challenge head-on, through global collaboration, germplasm exchange and innovative approaches. Researchers are looking at wheat’s temperature response mechanisms and using remote sensing, genomics, bio-informatics and other technologies to make wheat more tolerant to heat and drought,” Kropff said.

The congress is the first major gathering of the wheat community since the 2015 International Wheat Conference in Sydney, Australia.

CGIAR and CIMMYT scientists will share the latest findings on:

  • State-of-the-art approaches for measuring traits to speed breeding for heat and drought tolerance
  • Breeding durum (pasta) wheat for traits for use in bread products
  • New sources of diversity — including ancient wheat relatives — to create aphid-resistant wheat and other improved varieties
  • DNA fingerprinting to help national partners identify gaps in improved variety adoption

For more details on schedule and scientists’ presentations, click here.

Research shows that more than 60% of wheat varietal releases since 1994 were CGIAR-related.

Low- and middle-income countries are the primary focus and biggest beneficiaries of CGIAR wheat research, but high-income countries reap substantial rewards as well. In Canada, three-quarters of the wheat area is sown to CGIAR-related cultivars and in the United States almost 60% of the wheat area was sown to CGIAR-related varieties, according to the research.


WHEN

July 21-26, 2019

The opening ceremony and lectures will take place on
Monday, July 22, 2019 from 08:50 to 10:50 a.m.

WHERE

TCU Place
35 22nd Street East,
Saskatoon, SK S7K 0C8, Canada
https://g.page/TCUPlace


CONTACTS

For further information, or to arrange interviews, please contact:

Marcia MacNeil: m.macneil@cgiar.org

Julie Mollins: j.mollins@cgiar.org


About CGIAR

CGIAR is a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

About the CGIAR Research Program on Wheat

Joining advanced science with field-level research and extension in lower- and middle-income countries, the Agri-Food Systems CGIAR Research Program on Wheat (WHEAT) works with public and private organizations worldwide to raise the productivity, production and affordable availability of wheat for 2.5 billion resource-poor producers and consumers who depend on the crop as a staple food.  WHEAT is led by the International Maize and Wheat Improvement Center (CIMMYT), with the International Center for Agricultural Research in the Dry Areas (ICARDA) as a primary research partner.  Funding for WHEAT comes from CGIAR and national governments, foundations, development banks and other public and private agencies, in particular the Australian Centre for International Agricultural Research (ACIAR),  the UK Department for International Development (DFID) and the United States Agency for International Development (USAID). www.wheat.org

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of CGIAR and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies.

Francisco Pinto

Francisco Pinto is a remote sensing specialist with a background in agronomy and plant physiology. He is in charge of the high-throughput phenotyping platforms in the Global Wheat Program.

Pinto’s research focuses on the use remote sensing and image processing techniques for field phenotyping of wheat, aiming at improving genetic gains in yield and quantifying physiological traits. He is also interested in using remote sensing for understanding ecophysiological dynamics of crops at different spatio-temporal scales.

Carolina Rivera

Carolina Rivera is a wheat physiologist focused on the identification of novel anatomical stem traits associated with increases in harvest index. As a success case of the MasAgro-CIMMYT PhD program herself, she is responsible of the capacity building component of MasAgro Trigo.

In her role as IWYP Data Coordinator, Rivera manages the CIMMYT-IWYP Wheat Germinate database that hosts the most relevant outputs of the IWYP project and the IWYP Hub. She also leads the improvement of phenotypic data workflows in the Wheat Physiology group.