Skip to main content

research: Wheat

Ethiopia, great mobilization against wheat rust

To protect crops, a rapid alert system has been developed which is able to predict the spread of wheat rust and warns policy makers and farmers allowing timely and targeted interventions.

The project involved a multidisciplinary team – biologists, meteorologists, agronomists, IT and telecommunications experts – and the system was developed by the University of Cambridge, the Met Office of Great Britain, the Ethiopian Agricultural Research Institute (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT).

At the base of it all is the data. Read more here.

A step towards food security: German and Mexican researchers working jointly on the wheat of tomorrow

The International Maize and Wheat Improvement Center (CIMMYT) from Mexico and the German Julius KĂŒhn Institute (JKI) signed a Declaration of Intent to intensify joint research on disease-resistant and stress-tolerant wheat. Representatives of both institutions met in Berlin at the International Conference on Improving Drought Stress Tolerance of Crops.

Read more here.

Healthy diets feature both whole- and refined-grain foods, new study shows

Freshly baked rye bread is displayed next to wheat spikes and grains. (Photo: Marco Verch/Flickr)
Freshly baked rye bread is displayed next to wheat spikes and grains. (Photo: Marco Verch/Flickr)

Grain-based foods — both whole-grain and refined, from which the bran has been removed — are a key part of healthy diets, according to a study published in the science journal Advances in Nutrition.

The study, co-authored by Julie Miller Jones of St. Catherine University, Carlos Guzman of the Universidad de CĂłrdoba and Hans-Joachim Braun of the International Maize and Wheat Improvement Center (CIMMYT), reviewed findings of more than 100 research papers from nutrition and medical journals as well as national health recommendations. It presents evidence for positive health impacts from diverse diets that include not more than 50% carbohydrates and the right mix of grain-based foods.

“Epidemiological studies consistently show that eating three 30-gram portions of whole-grain foods — say, half a cup of oats — per day is associated with reduced chronic disease risk,” said Miller Jones, Professor Emerita at St. Catherine University and first author of the study. “But refined-grain foods — especially staple, enriched or fortified ones of the ‘non-indulgent’ type — also provide key vitamins and minerals that are otherwise lacking in people’s diets.”

“Cereal grains help feed the world by providing millions of calories per hectare and large amounts of plant-based protein,” said Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat. “They are affordable, shelf stable, portable, versatile, and popular, and will play a key role as the world transitions to plant-based diets to meet future food needs.”

Folate fortification of refined grains has helped reduce the incidence of spina bifida, anencephaly, and other birth defects, according to Miller Jones. “And despite contributing to high sugar intake, ready-to-eat breakfast cereals are typically consumed with nutritious foods such as milk, yogurt, and fruit,” she added.

All grain-based foods, refined and whole, are good sources of dietary fiber, which is essential for sound health but critically lacking in modern diets. “Only 4 percent of the U.S. population, for example, eats recommended levels of dietary fiber,” she said.

Obesity, Type 2 diabetes, high blood pressure, and other illnesses from unbalanced diets and unhealthy habits are on the rise in countries such as the U.S., driving up health care expenditures. The annual medical costs of obesity alone there have been estimated at nearly $150 billion.

“Dietary choices are determined partly by lifestyle but also co-vary with daily habits and personal traits,” Miller Jones explained. “People who eat more whole-grain foods are more likely to exercise, not smoke, and have normal body weights, as well as attaining higher levels of education and socioeconomic status.”

According to the study, recommendations for grain-based foods need to encourage a healthy number of servings and replacing half of refined-grain foods with whole-grain products, as well as providing clearer and unbiased definitions of both types of grain-based foods.


RELATED RESEARCH PUBLICATIONS:

Perspective: Whole and Refined Grains and Health — Evidence Supporting “Make Half Your Grains Whole”

INTERVIEW OPPORTUNITIES:

Hans Braun – Director of the Global Wheat Program, CIMMYT

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Communications Officer, CGIAR Research Program on Wheat, CIMMYT.
m.macneil@cgiar.org, +52 (55) 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT.
r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

This research is supported by CGIAR Fund Donors.

Four CIMMYT scientists among world’s most influential scholars, based on citations

Four scientists from the CIMMYT community have been included in the Highly Cited Researchers list for 2019, Published by the Web of Science Group, a Clarivate Analytics company.

The list identifies scientists and social scientists who have demonstrated significant influence through publication of multiple papers, highly cited by their peers, during the last decade. For the 2019 list, analysts surveyed papers published and cited during 2008-2018 which ranked in the top 1% by citations for their ESI field and year.

Researchers are selected for their exceptional research performance in one of 21 fields, or across several fields.

This year’s recipients affiliated with CIMMYT include:

  • JosĂ© Crossa: Cross-field category. CIMMYT Distinguished Scientist at the Biometrics and Statistics Unit with the Genetic Resources Program.
  • Julio Huerta: Cross-field category. CIMMYT-seconded INIFAP wheat breeder and rust geneticist.
  • Matthew Reynolds: Cross-field category. CIMMYT Distinguished Scientist, wheat physiologist and Mexican Academy of Sciences member.
  • Ravi Prakash Singh: Agricultural Sciences category. CIMMYT Distinguished Scientist and Head of Bread Wheat Improvement.

It is a significant honor to be part of this list, as it indicates that their peers have consistently acknowledged the influence of their research contributions in their publications and citations.

“Congratulations and thanks to these colleagues for effectively communicating their excellent science, multiplying CIMMYT’s impact by influencing thousands of readers in the international research community,” said CIMMYT Genetic Resources Program Director Kevin Pixley.

For more information, you can view the full Highly Cited Researchers 2019 list and information on the methodology.

CIMMYT is ready to support Ethiopia’s move toward — and beyond — wheat self-sufficiency

Ethiopia has huge potential and a suitable agroecology for growing wheat. However, its agriculture sector, dominated by a traditional farming system, is unable to meet the rising demand for wheat from increasing population and urbanization. Wheat consumption in Ethiopia has grown to 6.7 million tons per year, but the country only produces about 5 million tons per year on 1.7 million hectares. As a result, the country pays a huge import bill reaching up to $700 million per year to match supply with demand.

A new initiative is aiming to change this scenario, making Ethiopia wheat self-sufficient by opening new regions to wheat production.

“We have always been traditionally a wheat growing country, but focusing only in the highlands with heavy dependence on rain. Now that is changing and the government of Ethiopia has set a new direction for import substitution by growing wheat in the lowlands through an irrigated production system,” explained Mandefro Nigussie, director general of the Ethiopian Institute of Agricultural Research (EIAR). Nigussie explained that several areas are being considered for this initiative: Awash, in the Oromia and Afar regions; Wabeshebelle, in the Somali Region; and Omo, in the Southern Nations, Nationalities and Peoples Region (SNNPR).

A delegation from the International Maize and Wheat Improvement Center (CIMMYT) recently met Ethiopian researchers and policymakers to discuss CIMMYT’s role in this effort. Ethiopia’s new Minister of Agriculture and Natural Resources, Oumer Hussien, attended the meeting.

“We understand that the government of Ethiopia has set an ambitious project but is serious about it, so CIMMYT is ready to support you,” said Hans Braun, director of the Global Wheat Program at CIMMYT.

Hans Braun (center), director of CIMMYT’s Global Wheat Program, speaks at the meeting. (Photo: Simret Yasabu/CIMMYT)
Hans Braun (center), director of CIMMYT’s Global Wheat Program, speaks at the meeting. (Photo: Simret Yasabu/CIMMYT)

Strong collaboration

CIMMYT and the Ethiopian government have identified priority areas that will support the new government initiative. These include testing a large number of advanced lines to identify the right variety for the lowlands; developing disease resistant varieties and multiplying good quality and large quantity early generation initial seed; refining appropriate agronomic practices that improve crop, land and water productivity; organizing exposure visits for farmers and entrepreneurs; implementing training of trainers and researchers; and technical backstopping.

CIMMYT has been providing technical support and resources for wheat and maize production in Ethiopia for decades. As part of this support, CIMMYT has developed lines that are resistant to diseases like stem and yellow rust, stress tolerant and suitable for different wheat agroecologies.

“This year, for example, CIMMYT has developed three lines which are suitable for the lowlands and proposed to be released,” said Bekele Abeyo, wheat breeder and CIMMYT Country Representative for Ethiopia. “In India, the green revolution wouldn’t have happened without the support of CIMMYT and we would also like to see that happen in Ethiopia.”

“With our experience, knowledge and acquired skills, there is much to offer from the CIMMYT side,” Abeyo expressed. He noted that mechanization is one of the areas in which CIMMYT excels. Through a business service providers model, CIMMYT and its partners tested the multipurpose two-wheel tractors in Oromia, Amhara, Tigray and the southern regions. Good evidence for impact was generated particularly in Oromia and the south, where service providers generated income and ensured food security.

“Import versus export depends on a comparative advantage and for Ethiopia it is a total disadvantage to import wheat while having the potential [to grow more],” said Hussien. “The Ministry of Agriculture is thus figuring out what it can do together with partners like CIMMYT on comparative advantages.”

Hussien explained that the private sector has always been on the sidelines when it comes to agriculture. With the new initiative, however, it will be involved, particularly in the lowlands where there is abundant land for development under irrigation and available water resources, with enormous investment potential for the private sector. This, he noted, is a huge shift for the agricultural sector, which was mainly taken care of by the government and smallholder farmers, with support from development partners.

Ethiopia’s Minister of Agriculture, Oumer Hussien, speaks about the new initiative. (Photo: Simret Yasabu/CIMMYT)
Ethiopia’s Minister of Agriculture, Oumer Hussien, speaks about the new initiative. (Photo: Simret Yasabu/CIMMYT)

Thinking beyond the local market

As it stands now, Ethiopia is the third largest wheat producing country in Africa and has great market potential for the region. With more production anticipated under the new initiative, Ethiopia plans to expand its market to the world.

“We want our partners to understand that our thinking and plan is not only to support the country but also to contribute to the global effort of food security,” Hussien explained. However, “with the current farming system this is totally impossible,” he added. Mechanization is one of the key drivers to increase labor, land and crop productivity by saving time and ensuring quality. The government is putting forward some incentives for easy import of machinery. “However, it requires support in terms of technical expertise and knowledge transfer,” Hussien concluded.

Cover photo: A wheat field in Ethiopia. (Photo: Apollo Habtamu/ILRI)

Can Wheat Save the World?

“If we can put a man on the moon, we can solve 800 million people going to bed hungry every day. Wheat is a crucial part of that challenge,” said Martin Kropff, director-general of the International Maize and Wheat Improvement Center (CIMMYT) at the first International Wheal Congress held in Saskatoon.

Read more here.

CIMMYT wheat scientists receive top honors from US agricultural scientists

CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)
CIMMYT scientists Thomas Payne (left), Hans-Joachim Braun (third from left) and Alex Morgunov (right) celebrate their award with World Food Prize laureate and former CIMMYT wheat program director Sanjaya Rajaram. (Photo: Johanna Franziska Braun/CIMMYT)

Two scientists working in the world’s leading public wheat breeding program at the International Maize and Wheat Improvement Center (CIMMYT) have been recognized with awards and fellowships this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America.

Hans-Joachim Braun, director of CIMMYT’s Global Wheat Program and the CGIAR Research Program on Wheat, has been honored with the American Society of Agronomy’s International Agronomy Award.

Alexey Morgunov, CIMMYT principal scientist and head of the Turkey-based International Winter Wheat Improvement Program (IWWIP) received the distinction of Fellow from the Crop Science Society of America. Braun was also distinguished with this fellowship.

Excellence in agronomy

The American Society of Agronomy’s International Agronomy Award recognizes outstanding contributions in research, teaching, extension, or administration made outside of the United States by a current agronomist. Braun received the distinction during an awards ceremony and lecture on November 12, 2019. The award committee made its selection based on criteria including degrees, professional positions, and contributions and service to the profession such as publications, patents, and efforts to develop or improve programs, practices, and products.

The award recognizes Braun’s achievements developing and promoting improved wheat varieties and cropping practices that have benefited hundreds of millions of farmers throughout Central Asia, South Asia and North Africa. Nearly half the world’s wheat lands overall — as well as 70 to 80% of all wheat varieties released in Central Asia, South Asia, West Asia, and North Africa — are derived from the research of CIMMYT and its partners.

“I am honored to be recognized by my fellow agronomists,” Braun said. “This award highlights the importance of international research collaboration, because the food security challenges we face do not stop at national borders.”

Braun began his 36-year CIMMYT career in Mexico in 1983. From 1985 to 2005, he led the International Winter Wheat Improvement Program in Turkey, implemented by CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA). As director of CIMMYT’s Global Wheat Program since 2004 and the CGIAR Research Program on Wheat since 2014, he is responsible for the technical direction and implementation of a program that develops and distributes wheat germplasm to more than 200 collaborators in more than 100 countries, grown on over half the spring wheat area in developing countries.

Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Alex Morgunov (center) receives his Crop Science Society of America Fellow certificate. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (center) receives the Crop Science Society of America Fellow certificate onstage. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (center) receives the Crop Science Society of America Fellow certificate onstage. (Photo: Johanna Franziska Braun/CIMMYT)
Detail of the Crop Science Society of America Fellow certificate for Hans-Joachim Braun. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)
Hans-Joachim Braun (right) receives the International Agronomy Award from Gary Pierzynski, president of the American Society of Agronomy. (Photo: Johanna Franziska Braun/CIMMYT)

Crop fellows

Braun and Morgunov were also chosen as Fellows, the highest recognition bestowed by the Crop Science Society of America. Members of the society nominate worthy colleagues based on their professional achievements and meritorious service. Fellows are a select group: only three out of every 1,000 of the society’s more than 4,000 active and emeritus members receive the honor.

Morgunov joined CIMMYT in 1991 as a spring wheat breeder, working with former Global Wheat Program Director and World Food Prize laureate Sanjaya Rajaram. In 1994, he moved to Turkey to work as winter wheat breeder, and then to Kazakhstan, where he worked to develop and promote new wheat varieties for the Central Asia and the Caucasus region. He has led the International Winter Wheat Improvement Program in Turkey since 2006. In this role, he has been responsible for the release of more than 80 varieties in the region. He also completed a national inventory for wheat landraces in Turkey.

“I am pleased to be recognized as [a Crop Science Society of America] Fellow,” Morgunov said. “I hope this award brings more attention to the importance of finding, saving and using the vast diversity of crop varieties in the world, for resilient crops and healthy food for all.”

Braun and Morgunov were formally recognized as Fellows on November 13.

The annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field. This year’s meeting was held in San Antonio, Texas.

Thomas Payne honored at gathering of crop science peers

The Frank N. Meyer Medal for Plant Genetic Resources. (Photo: Kevin Pixley/CIMMYT)
The Frank N. Meyer Medal for Plant Genetic Resources. (Photo: Kevin Pixley/CIMMYT)

Thomas Payne, head of the Wheat Germplasm Bank at the International Maize and Wheat Improvement Center (CIMMYT), was awarded the Frank N. Meyer Medal for Plant Genetic Resources this morning at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America, held in San Antonio, Texas.

The Frank N. Meyer Medal recognizes contributions to plant germplasm collection and use, as well as dedication and service to humanity through the collection, evaluation or conservation of earth’s genetic resources. The award was presented by Clare Clarice Coyne, U.S. Department of Agriculture (USDA) research geneticist.

As an award recipient, Payne delivered a lecture that touched on the philosophy, history and culture surrounding plant genetic diversity and its collectors, and CIMMYT’s important role in conserving and sharing crop diversity.

The scientist has focused his career on wheat improvement and conservation. In addition to leading CIMMYT’s Wellhausen-Anderson Wheat Genetic Resources Collection, one of the world’s largest collection of wheat and maize germplasm, he manages the CIMMYT International Wheat Improvement Network. He is the current Chair of the Article 15 Group of CGIAR Genebank Managers, and has served as Secretary to the CIMMYT Board of Trustees. His association with CIMMYT began immediately after obtaining a PhD at the University of Nebraska–Lincoln in 1988, and he has held positions for CIMMYT in Ethiopia, Mexico, Syria, Turkey and Zimbabwe.

Thomas Payne delivers a presentation at the Crop Science Society of America’s annual Genetic Resources breakfast, where he received the award. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne delivers a presentation at the Crop Science Society of America’s annual Genetic Resources breakfast, where he received the award. (Photo: Kevin Pixley/CIMMYT)

“CIMMYT is the largest distributor of maize and wheat germplasm worldwide, with materials emanating from its research and breeding programs, as well as held in-trust in the germplasm bank. The Meyer Medal is a reflection of the impact CIMMYT makes in the international research community — and in farmers’ fields throughout the developing world,” Payne said.

Located at CIMMYT headquarters outside Mexico City, the CIMMYT Wheat Germplasm Bank contains nearly 150,000 collections of seed of wheat and related species from more than 100 countries. Collections preserve the diversity of unique native varieties and wild relatives of wheat and are held under long-term storage for the benefit of humanity, in accordance with the 2007 International Treaty on Plant Genetic Resources for Food and Agriculture. The collections are also studied and used as a source of diversity to breed for crucial traits such as heat and drought tolerance, resistance to crop diseases and pests, grain yield productivity, and grain quality. Seed is freely shared on request to researchers, students, and academic and development institutions worldwide.

In his remarks, Payne also highlighted the story of Frank N. Meyer, after whom the award is named. Meyer, an agricultural explorer for the USDA in the 1900s, spent a decade traveling under harsh conditions through China to collect new plant species suitable for production on the United States’s expanding farmland. Among more than 2,500 plants that he introduced to the U.S. — including varieties of soybeans, oats, wild pears, and asparagus — the Meyer lemon was named in his honor. As he pointed out, Meyer worked during a historical period of great scientific discoveries, including those by his contemporaries Marie Curie and the Wright brothers.

Among those attending the ceremony were Payne’s sister, Susan Payne, and CIMMYT colleagues Kevin Pixley, director of Genetic Resources; Denise Costich, head of the CIMMYT Maize Germplasm Bank; and Alexey Morgunov, head of the Turkey-based International Winter Wheat Improvement Program.

The head of CIMMYT’s Global Wheat Program Hans-Joachim Braun and CIMMYT scientist Alexey Morgunov are also receiving honors or awards this week at the annual meeting of the American Society of Agronomy, the Crop Science Society of America, and the Soil Science Society of America. The meeting convenes around 4,000 scientists, professionals, educators, and students to share knowledge and recognition of achievements in the field.

Thomas Payne (right) celebrates the award with his sister Susan Payne (center) and CIMMYT scientist Alexey Morgunov. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne (left) stands for a photo with CIMMYT’s Director of Genetic Resources Kevin Pixley.
Thomas Payne (left) stands for a photo with CIMMYT’s Director of Genetic Resources Kevin Pixley.
Thomas Payne (left) with Head of CIMMYT’s Maize Germplasm Bank Denise Costich. (Photo: Kevin Pixley/CIMMYT)
Thomas Payne (left) with Head of CIMMYT’s Maize Germplasm Bank Denise Costich. (Photo: Kevin Pixley/CIMMYT)

Scientists develop an early warning system that delivers wheat rust predictions directly to farmers’ phones

One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)
One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)

TEXCOCO, Mexico — Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported this week in Environmental Research Letters, the new early warning system, the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current situation and forecast wheat rust up to a week in advance.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT). It works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK).

This is complemented by crowd-sourced information from the ATA-managed Farmers’ Hotline. The University of Cambridge and the UK Met Office then provide automated 7-day advance forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and national authorities. The information also gets passed on to researchers and farmers.

Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)
Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)

Timely alerts

“If there’s a high risk of wheat rust developing, farmers will get a targeted SMS text alert from the Farmers’ Hotline. This gives the farmer about three weeks to take action,” explained Dave Hodson, principal scientist with CIMMYT and co-author of the research study. The Farmers’ Hotline now has over four million registered farmers and extension agents, enabling rapid information dissemination throughout Ethiopia.

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Wheat rusts are fungal diseases that can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time — a bit like the flu virus,” explained Hodson.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, but the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)
Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)

The cream of the crop

The early warning system puts Ethiopia at the forefront of early warning systems for wheat rust. “Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson. “It’s world-class science from the UK being applied to real-world problems.”

“This is an ideal example of how it is possible to integrate fundamental research in modelling from epidemiology and meteorology with field-based observation of disease to produce an early warning system for a major crop,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge and a co-author of the paper, adding that the approach could be adopted in other countries and for other crops.

“The development of the early warning system was successful because of the great collaborative spirit between all the project partners,” said article co-author Clare Sader-Allen, currently a regional climate modeller at the British Antarctic Survey.

“Clear communication was vital for bringing together the expertise from a diversity of subjects to deliver a common goal: to produce a wheat rust forecast relevant for both policy makers and farmers alike.”


RELATED PUBLICATIONS:

An early warning system to predict and mitigate wheat rust diseases in Ethiopia
https://doi.org/10.1088/1748-9326/ab4034

INTERVIEW OPPORTUNITIES:

Dave Hodson, Senior Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CIMMYT. m.macneil@cgiar.org, +52 (55) 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

ACKNOWLEDGEMENTS:

This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system. This research is supported by CGIAR Fund Donors.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE ETHIOPIAN INSTITUTE OF AGRICULTURAL RESEARCH (EIAR):

The Ethiopian Institute of Agricultural Research (EIAR) is one of the oldest and largest agricultural research institutes in Africa, with roots in the Ethiopian Agricultural Research System (EARS), founded in the late 1940s. EIAR’s objectives are: (1) to generate, develop and adapt agricultural technologies that focus on the needs of the overall agricultural development and its beneficiaries; (2) to coordinate technically the research activities of Ethiopian Agricultural Research System; (3) build up a research capacity and establish a system that will make agricultural research efficient, effective and based on development needs; and (4) popularize agricultural research results. EIAR’s vision is to see improved livelihood of all Ethiopians engaged in agriculture, agro-pastoralism and pastoralism through market competitive agricultural technologies.

New publications: Special collection on wheat genetics and breeding

Global wheat production is currently facing great challenges, from increasing climate variation to occurrence of various pests and diseases. These factors continue to limit wheat production in a number of countries, including China, where in 2018 unseasonably cold temperatures resulted in yield reduction of more than 10% in major wheat growing regions. Around the same time, Fusarium head blight spread from the Yangtze region to the Yellow and Huai Valleys, and northern China experienced a shortage of irrigated water.

In light of these ongoing challenges, international collaboration, as well as the development of new technologies and their integration with existing ones, has a key role to play in supporting sustainable wheat improvement, especially in developing countries. The International Maize and Wheat Improvement Center (CIMMYT) has been collaborating with China on wheat improvement for over 40 years, driving significant progress in a number of areas.

Notably, a standardized protocol for testing Chinese noodle quality has been established, as has a methodology for breeding adult-plant resistance to yellow rust, leaf rust and powdery mildew. More than 330 cultivars derived from CIMMYT germplasm have been released in the country and are currently grown over 9% of the Chinese wheat production area, while physiological approaches have been used to characterize yield potential and develop high-efficiency phenotyping platforms. The development of climate-resilient cultivars using new technology will be a priority area for future collaboration.

In a special issue of Frontiers of Agricultural Science and Engineering focused on wheat genetics and breeding, CIMMYT researchers present highlights from global progress in wheat genomics, breeding for disease resistance, as well as quality improvement, in a collection of nine review articles and one research article. They emphasize the significance of using new technology for genotyping and phenotyping when developing new cultivars, as well as the importance of global collaboration in responding to ongoing challenges.

In a paper on wheat stem rust, CIMMYT scientists Sridhar Bhavani, David Hodson, Julio Huerta-Espino, Mandeep Randawa and Ravi Singh discuss progress in breeding for resistance to Ug99 and other races of stem rust fungus, complex virulence combinations of which continue to pose a significant threat to global wheat production. The authors detail how effective gene stewardship and new generation breeding materials, complemented by active surveillance and monitoring, have helped to limit major epidemics and increase grain yield potential in key target environments.

In the same issue, an article by Caiyun Lui et al. discusses the application of spectral reflectance indices (SRIs) as proxies to screen for yield potential and heat stress, which is emerging in crop breeding programs. The results of a recent study, which evaluated 287 elite lines, highlight the utility of SRIs as proxies for grain yield. High heritability estimates and the identification of marker-trait associations indicate that SRIs are useful tools for understanding the genetic basis of agronomic and physiological traits.

Other papers by CIMMYT researchers discuss the history, activities and impact of the International Winter Wheat Improvement Program, as well as the ongoing work on the genetic improvement of wheat grain quality at CIMMYT.

Find the full collection of articles in Frontiers of Agricultural Science and Engineering, Volume 6, Issue 3, September 2019.

See more recent publications by CIMMYT researchers:

  1. Genetic diversity among tropical provitamin A maize inbred lines and implications for a biofortification program. 2019. Julius Pyton Sserumaga, Makumbi, D., Warburton, M.L., Opiyo, S.O., Asea, G., Muwonge, A., Kasozi, C.L. In: Cereal Research Communications v. 47, no. 1, p. 134-144.
  2. Diversity and conservation priorities of crop wild relatives in Mexico. 2019. Contreras-Toledo, A. R., Cortes-Cruz, M. A., Costich, D.E., Rico-Arce, M. de L., Magos Brehm, J., Maxted, N. In: Plant Genetic Resources: Characterisation and Utilisation v. 17, no. 2, p. 140-150.
  3. Global wheat production with 1.5 and 2.0°C above pre-industrial warming. 2019. Bing Liu, Martre, P., Ewert, F., Porter, J.R., Challinor, A.J., Muller, C., Ruane, A.C., Waha, K., Thorburn, P.J., Aggarwal, P.K., Mukhtar Ahmed, Balkovic, J., Basso, B., Biernath, C., Bindi, M., Cammarano, D., De Sanctis, G., Dumont, B., Espadafor, M., Eyshi Rezaei, E., Ferrise, R., Garcia-Vila, M., Gayler, S., Yujing Gao, Horan, H., Hoogenboom, G., Izaurralde, R.C., Jones, C.D., Kassie, B.T., Kersebaum, K.C., Klein, C., Koehler, A.K., Maiorano, A., Minoli, S., Montesino San Martin, M., Soora Naresh Kumar, Nendel, C., O’Leary, G.J., Palosuo, T., Priesack, E., Ripoche, D.,Rotter, R., Semenov, M.A., Stockle, C., Streck, T., Supit, I., Fulu Tao, Van der Velde, M., Wallach, D., Wang, E. |Webber, H., Wolf, J., Liujun Xiao, Zhao Zhang, Zhigan Zhao, Yan Zhu, Asseng, S. In: Global Change Biology v. 25, no. 4, p. 1428-1444.
  4. Marker Assisted Breeding to Develop Multiple Stress Tolerant Varieties for Flood and Drought Prone Areas. 2019. Sandhu, N., Dixit, S., Mallikarjuna Swamy, B.P., Raman, A.K., Kumar, S., Singh, S.P., Yadaw, R.B., Singh, O.N., Reddy, J.N., Anandan, A., Yadav, S., Venkataeshwarllu, C., Henry, A., Verulkar, S., Mandal, N.P., Ram, T., Badri, J., Vikram, P., Arvind Kumar In: Rice v. 12, no. 1, art. 8.
  5. Modeling Genotype × Environment Interaction Using a Factor Analytic Model of On-Farm Wheat Trials in the Yaqui Valley of Mexico. 2019. Vargas-HernĂĄndez, M., Ortiz-Monasterio, I., Perez-Rodriguez, P., Montesinos-Lopez, O.A., Montesinos-Lopez, A., Burgueño, J., Crossa, J. In: Agronomy Journal v. 111, no. 1, p. 1-11.
  6. Does Size Matter? A Critical Review of Meta-analysis in Agronomy. 2019. Krupnik, T.J., Andersson, J.A., Rusinamhodzi, L., Corbeels, M., Shennan, C., Gerard, B. In: Experimental Agriculture v. 55 no. Special issue 2, p. 200-229.
  7. Effects of tillage, crop establishment and diversification on soil organic carbon, aggregation, aggregate associated carbon and productivity in cereal systems of semi-arid Northwest India. 2019. Jat, H.S., Datta, A., Choudhary, M., Yadav, A.K., Choudhary, V., Sharma, P.C., Gathala, M.K., Jat, M.L., McDonald, A. In: Soil and Tillage Research v. 190, p. 128-138.
  8. Transgenic solutions to increase yield and stability in wheat: shining hope or flash in the pan? 2019. Araus, J.L., Serret, M.D., Lopes, M.S. In: Journal of Experimental Botany v. 70, no. 5, p. 1419-1424.
  9. Model-Driven Multidisciplinary Global Research to Meet Future Needs: The Case for “Improving Radiation Use Efficiency to Increase Yield.” 2019. Asseng, S., Martre, P., Ewert, F., Dreccer, M.F., Beres, B.L., Reynolds, M.P., Braun, H.J., Langridge, P., Gouis, J. Le., Salse, J., Baenziger, P.S. In: Crop Science v. 59, p. 1-7.
  10. Proteome analysis of biofilm produced by a Fusarium falciforme keratitis infectious agent. 2019. Calvillo-Medina, R.P., Reyes‐Grajeda, J.P., Barba‐Escoto, L., Bautista-Hernandez, L.A., Campos‐Guillen, J., Jones, G.H., Bautista‐de Lucio, V.M. In: Microbial Pathogenesis v. 130, p. 232-241.

Breaking Ground: Velu Govindan is mainstreaming zinc to combat hidden hunger

Velu Govindan will always remember his father telling him not to waste his food. “He used to say that rice and wheat are very expensive commodities, which most people could only afford to eat once a week during his youth,” recalls the wheat breeder, who works at the International Maize and Wheat Improvement Center (CIMMYT).

As in many parts of the world, the Green Revolution had a radical impact on agricultural production and diets in southern India, where Govindan’s father grew up, and by the late 1960s all farmers in the area had heard of “the scientist” from the USA. “Borlaug’s influence in India is so great because those new high-yielding varieties fed millions of people — including me.”

But feeding millions was only half the battle.

Today, at least two billion people around the world currently suffer from micronutrient deficiency, characterized by iron-deficiency anemia, lack of vitamin A and zinc deficiency.

Govindan works in collaboration with HarvestPlus to improve nutritional quality in cereals in addition to core traits like yield potential, disease resistance and climate tolerance. His area of focus is South Asia, where wheat is an important staple and many smallholder farmers don’t have access to a diversified diet including fruit, vegetables or animal products which are high in micronutrients like iron and zinc.

“It’s important that people not only have access to food, but also have a healthy diet,” says Govindan. “The idea is to improve major staples like rice, maize and wheat so that people who consume these biofortified varieties get extra benefits, satisfying their daily dietary needs as well as combatting hidden hunger.”

The challenge, he explains, is that breeding for nutritional quality is often done at the expense of yield. But varieties need high yield potential to be successful on the market because farmers in developing countries will not get a premium price simply for having a high micronutrient content in their grain.

Fast evolving wheat diseases are another issue to contend with. “If you release a disease-resistant variety today, in as little as three or four years’ time it will already be susceptible because rust strains keep mutating. It’s a continuous battle, but that’s plant breeding.”

Velu Govindan speaks at International Wheat Conference in 2015. (Photo: Julie Mollins/CIMMYT)
Velu Govindan speaks at International Wheat Conference in 2015. (Photo: Julie Mollins/CIMMYT)

Mainstreaming zinc

When it comes to improvement, breeding is only the first part of the process, Govindan explains. “We can do a good job here in the lab, but if our varieties are not being taken up by farmers it’s no use.”

Govindan and his team work in collaboration with a number of public and private sector organizations to promote new varieties, partnering with national agricultural research systems and advanced research institutes to reach farmers in India, Nepal and Pakistan. As a result, additional high-zinc varieties have been successfully marketed and distributed across South Asia, as well as new biofortified lines which are currently being tested in sub-Saharan Africa for potential release and cultivation by farmers.

Their efforts paid off with the development and release of more than half dozen competitive high-zinc varieties including Zinc-Shakthi, whose grain holds 40% more zinc than conventional varieties and yields well, has good resistance to rust diseases, and matures a week earlier than other popular varieties, allowing farmers to increase their cropping intensity. To date, these biofortified high-zinc wheat varieties have reached nearly a million households in target regions of South Asia and are expected to spread more widely in coming years.

The next step will be to support the mainstreaming of zinc, so that it becomes an integral part of breeding programs as opposed to an optional addition. “Hopefully in ten years’ time, most of the wheat we eat will have those extra benefits.”

There may be a long way to go, but Govindan remains optimistic about the task ahead.

Velu Govindan examines wheat in the field.
Velu Govindan examines wheat in the field.

Born into a farming family, he has fond memories of a childhood spent helping his father in the fields, with afternoons and school holidays dedicated to growing rice, cotton and a number of other crops on the family plot.

The region has undergone significant changes since then, and farmers now contend with both rising temperatures and unpredictable rainfall. It was a motivation to help poor farmers adapt to climate change and improve food production that led Govindan into plant breeding.

He has spent nearly ten years working on CIMMYT’s Spring Wheat Program and still feels honored to be part of a program with such a significant legacy. “Norman Borlaug, Sanjay Rajaram and my supervisor Ravi Singh — these people are legendary,” he explains. “So luckily we’re not starting from scratch. These people made life easy, and we just need to keep moving towards achieving continuous genetic gains for improved food and nutrition security.”

The man who fed the world

Norman Borlaug was awarded the Nobel Peace Prize in 1970 in recognition of his contributions to world peace through increasing food production. In the latest episode of the BBC radio show Witness History, Rebecca Kesby interviews Ronnie Coffman, student and friend of Norman Borlaug.

Among other stories, Coffman recalls the moment when Borlaug was notified about the Nobel Prize — while working in the wheat fields in Mexico — and explores what motivated Borlaug to bring the Green Revolution to India.

Genetics to feed the world

“We are talking about testing whether it is possible to use information available in the genome to predict how productive a variety of wheat will be, if it will be drought- or heat-resistant and what quality its grain will have,” explains Carlos GuzmĂĄn from the University of Cordoba who participated in the study via his work as head of the Chemistry and Wheat Quality Laboratory at CIMMYT in Mexico.

Read more here.

The cereals imperative of future food systems

Pioneering research on our three most important cereal grains — maize, rice, and wheat — has contributed enormously to global food security over the last half century, chiefly by boosting the yields of these crops and by making them more resilient in the face of drought, flood, pests and diseases. But with more than 800 million people still living in chronic hunger and many more suffering from inadequate diets, much remains to be done. The challenges are complicated by climate change, rampant degradation of the ecosystems that sustain food production, rapid population growth and unequal access to resources that are vital for improved livelihoods.

In recent years, a consensus has emerged among agricultural researchers and development experts around the need to transform global food systems, so they can provide healthy diets while drastically reducing negative environmental impacts. Certainly, this is a central aim of CGIAR — the world’s largest global agricultural research network — which views enhanced nutrition and sustainability as essential for achieving the Sustainable Development Goals. CGIAR scientists and their many partners contribute by developing technological and social innovations for the world’s key crop production systems, with a sharp focus on reducing hunger and poverty in low- and middle-income countries of Africa, Asia and Latin America.

The importance of transforming food systems is also the message of the influential EAT-Lancet Commission report, launched in early 2019. Based on the views of 37 leading experts from diverse research disciplines, the report defines specific actions to achieve a “planetary health diet,” which enhances human nutrition and keeps the resource use of food systems within planetary boundaries. While including all food groups — grains, roots and tubers, pulses, vegetables, fruits, tree nuts, meat, fish, and dairy products — this diet reflects important shifts in their consumption. The major cereals, for example, would supply about one-third of the required calories but with increased emphasis on whole grains to curb the negative health effects of cheap and abundant supplies of refined cereals.

This proportion of calories corresponds roughly to the proportion of its funding that CGIAR currently invests in the major cereals. These crops are already vital in diets, cultures, and economies across the developing world, and the way they are produced, processed and consumed must be a central focus of global efforts to transform food systems. There are four main reasons for this imperative.

Aneli ZĂĄrate VĂĄsquez (left), in Mexico's state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)
Aneli ZĂĄrate VĂĄsquez (left), in Mexico’s state of Oaxaca, sells maize tortillas for a living. (Photo: P. Lowe/CIMMYT)

1. Scale and economic importance

The sheer extent of major cereal production and its enormous value, especially for the poor, account in large part for the critical importance of these crops in global food systems. According to 2017 figures, maize is grown on 197 million hectares and rice on more than 167 million hectares, mainly in Asia and Africa. Wheat covers 218 million hectares, an area larger than France, Germany, Italy, Spain and the UK combined. The total annual harvest of these crops amounts to about 2.5 billion tons of grain.

Worldwide production had an estimated annual value averaging more than $500 billion in 2014-2016. The prices of the major cereals are especially important for poor consumers. In recent years, the rising cost of bread in North Africa and tortillas in Mexico, as well as the rice price crisis in Southeast Asia, imposed great hardship on urban populations in particular, triggering major demonstrations and social unrest. To avoid such troubles by reducing dependence on cereal imports, many countries in Africa, Asia and Latin America have made staple crop self-sufficiency a central element of national agriculture policy.

Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)
Women make roti, an unleavened flatbread made with wheat flour and eaten as a staple food, at their home in the Dinajpur district, Bangladesh. (Photo: S. Mojumder/Drik/CIMMYT)

2. Critical role in human diets

Cereals have a significant role to play in food system transformation because of their vital importance in human diets. In developing countries, maize, rice, and wheat together provide 48% of the total calories and 42% of the total protein. In every developing region except Latin America, cereals provide people with more protein than meat, fish, milk and eggs combined, making them an important protein source for over half the world’s population.

Yellow maize, a key source of livestock feed, also contributes indirectly to more protein-rich diets, as does animal fodder derived from cereal crop residues. As consumption of meat, fish and dairy products continues to expand in the developing world, demand for cereals for food and feed must rise, increasing the pressure to optimize cereal production.

In addition to supplying starch and protein, the cereals serve as a rich source of dietary fiber and nutrients. CGIAR research has documented the important contribution of wheat to healthy diets, linking the crop to reduced risk of type 2 diabetes, cardiovascular disease, and colorectal cancer. The nutritional value of brown rice compared to white rice is also well known. Moreover, the recent discovery of certain genetic traits in milled rice has created the opportunity to breed varieties that show a low glycemic index without compromising grain quality.

Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)
Golden Rice grain (left) compared to white rice grain. Golden Rice is unique because it contains beta carotene, giving it a golden color. (Photo: IRRI)

3. Encouraging progress toward better nutritional quality

The major cereals have undergone further improvement in nutritional quality during recent years through a crop breeding approach called “biofortification,” which boosts the content of essential vitamins or micronutrients. Dietary deficiencies of this kind harm children’s physical and cognitive development, and leave them more vulnerable to disease. Sometimes called “hidden hunger,” this condition is believed to cause about one-third of the 3.1 million annual child deaths attributed to malnutrition. Diverse diets are the preferred remedy, but the world’s poorest consumers often cannot afford more nutritious foods. The problem is especially acute for women and adolescent girls, who have unequal access to food, healthcare and resources.

It will take many years of focused effort before diverse diets become a reality in the lives of the people who need them most. Diversified farming systems such as rice-fish rotations that improve nutritional value, livelihoods and resilience are a step in that direction. In the meantime, “biofortified” cereal and other crop varieties developed by CGIAR help address hidden hunger by providing higher levels of zinc, iron and provitamin A carotenoids as well as better protein quality. Farmers in many developing countries are already growing these varieties.

A 2018 study in India found that young children who ate zinc-biofortified wheat in flatbread or porridge became ill less frequently. Other studies have shown that consumption of provitamin A maize improves the body’s total stores of this vitamin as effectively as vitamin supplementation. Biofortified crop varieties are not a substitute for food fortification (adding micronutrients and vitamins during industrial food processing). But these varieties can offer an immediate solution to hidden hunger for the many subsistence farmers and other rural consumers who depend on locally produced foods and lack access to fortified products.

Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)
Ruth Andrea (left) and Maliamu Joni harvest cobs of drought-tolerant maize in Idakumbi, Mbeya, Tanzania. (Photo: Peter Lowe/CIMMYT)

4. Wide scope for more sustainable production

Cereal crops show much potential not only for enhancing human heath but that of the environment as well. Compared to other crops, the production of cereals has relatively low environmental impact, as noted in the EAT-Lancet report. Still, it is both necessary and feasible to further enhance the sustainability of cereal cropping systems. Many new practices have a proven ability to conserve water as well as soil and land, and to use purchased inputs (pesticides and fertilizers) far more efficiently. With innovations already available, the amount of water used in current rice cultivation techniques, for example, can be significantly reduced from its present high level.

Irrigation scheduling, laser land leveling, drip irrigation, conservation tillage, precision nitrogen fertilization, and cereal varieties tolerant to drought, flooding and heat are among the most promising options. In northwest India, scientists recently determined that optimal practices can reduce water use by 40%, while maintaining yields in rice-wheat rotations. There and in many other places, the adoption of new practices to improve cereal production in the wet season not only leads to more efficient resource use but also creates opportunities to diversify crop production in the dry season. Improvements to increase cereal crop yields also reduces their environmental footprint; using less land, enhancing carbon sequestration and biodiversity and, for rice, reducing methane emissions per kilo of rice produced. Given the enormous extent of cereals cultivation, any improvement in resource use efficiency will have major impact, while also freeing up vast amounts of land for other crops or natural vegetation.

A major challenge now is to improve access to the knowledge and inputs that will enable millions of farmers to adopt new techniques, making it possible both to diversify production and grow more with less. Another key requirement consists of clear signals from policymakers, especially where land and water are limited, about the priority use of these resources — for example, irrigating low-value cereals to bolster food security versus applying the water to higher value crops and importing staple cereals.

Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)
Morning dew on a wheat spike. (Photo: Vadim Ganeyev/CIMMYT)

Toward a sustainable dietary revolution

Future-proofing the global food system requires bold steps. Policy and research need to support a double transformation, centered on nutrition and sustainability.

CGIAR works toward nutritional transformation of our food system through numerous global partnerships. We give high priority to improving cereal crop systems and food products, because of their crucial importance for a growing world population. Recognizing that this alone will not suffice for healthy diets, we also strongly promote greater dietary diversity through our research on various staple crops and production systems and by raising public awareness of more balanced and nutritious diets.

To help achieve a sustainability transformation, CGIAR researchers and partners have developed a wide array of techniques that use resources more efficiently, enhance the resilience of food production in the face of climate change and reduce greenhouse gas emissions, while achieving sustainable increases in crop yields. At the same time, we are generating new evidence on which techniques work best under what conditions to target the implementation of these solutions more effectively.

The ultimate impact of our work depends crucially on the growing resolve of developing countries to promote better diets and more sustainable food production through strong policies and programs. CGIAR is well prepared to help strengthen these measures through research for development, and we are confident that our work on cereals, with continued donor support, will have high relevance, generating a wealth of innovations that help drive the transformation of global food systems.

Martin Kropff is the Director General of the International Maize and Wheat Improvement Center (CIMMYT).

Matthew Morell is the Director General of the International Rice Research Institute (IRRI).