Skip to main content

research: Wheat

Could coronavirus drive farmers to adopt sustainable practices in India’s breadbasket?

June marks the start of the rice growing season in India’s breadbasket but on the quiet fields of Haryana and Punjab you wouldn’t know it.

Usually the northwestern Indian states are teeming with migrant laborers working to transplant rice paddies. However, the government’s swift COVID-19 lockdown measures in late March triggered reverse migration, with an estimated 1 million laborers returning to their home states.

The lack of migrant workers has raised alarms for the labor-dependent rice-wheat farms that feed the nation. Healthy harvests are driven by timely transplanting of rice and, consequently, by the timely sowing of the succeeding wheat crop in rotation.

Without political support for alternative farming practices, crop losses from COVID-19 labor disruptions could reach $1.5 billion and significantly diminish the country’s grain reserves, researchers from the International Maize and Wheat Improvement Center (CIMMYT) warned.

Researchers also fear delayed rice transplanting could encourage unsustainable residue burning as farmers rush to clear land in the short window between rice harvest and wheat sowing. Increased burning in the fall will exacerbate the COVID-19 health risk by contributing to the blanket of thick air pollution that covers much of northwest India, including the densely populated capital region of New Delhi.

The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Both farmers and politicians are showing increased interest in farm mechanization and crop diversification as they respond to COVID-19 disruptions, said M.L. Jat, a CIMMYT scientist who coordinates sustainable intensification programs in northwestern India.

“Farmers know the time of planting wheat is extremely important for productivity. To avoid production losses and smog-inducing residue burning, alternative farm practices and technologies must be scaled up now,” Jat said.

The time it takes to manually transplant rice paddies is a particular worry. Manual transplanting accounts for 95% of rice grown in the northwestern regions. Rice seedlings grown in a nursery are pulled and transplanted into puddled and leveled fields — a process that takes up to 30 person-days per hectare, making it highly dependent on the availability of migrant laborers.

Even before COVID-19, a lack of labor was costing rice-wheat productivity and encouraging burning practices that contribute to India’s air pollution crisis, said CIMMYT scientist Balwinder Singh.

“Mechanized sowing and harvesting has been growing in recent years. The COVID-19 labor shortage presents a unique opportunity for policymakers to prioritize productive and environmentally-friendly farming practices as long term solutions,” Singh said.

Sustainable practices to cope with labor bottlenecks

CIMMYT researchers are working with national and state governments to get information and technologies to farmers, however, there are significant challenges to bringing solutions to scale in the very near term, Singh explained.

There is no silver bullet in the short term. However, researchers have outlined immediate and mid-term strategies to ensure crop productivity while avoiding residue burning:

Delayed or staggered nursery sowing of rice:  By delaying nursery sowing to match delays in transplanting, yield potential can be conserved for rice. Any delay in transplanting rice due to labor shortage can reduce the productivity of seedlings. Seedling age at transplanting is an important factor for optimum growth and yield.

“Matching nursery sowing to meet delayed transplanting dates is an immediate action that farmers can take to ensure crop productivity in the short term. However, it’s important policymakers prioritize technologies, such as direct seeders, that contribute to long term solutions,” Singh said.

Direct drilling of wheat using the Happy Seeder: Direct seeding of wheat into rice residues using the Happy Seeder, a mechanized harvesting combine, can reduce the turnaround time between rice harvest and wheat sowing, potentially eliminating the temptation to burn residues.

“Identifying the areas with delayed transplanting well in advance should be a priority for effectively targeting the direct drilling of wheat using Happy Seeders,” said Jat. The average farmer who uses the Happy Seeder can generate up to 20% more profits than those who burn their fields, he explained. “Incentivizing farmers through a direct benefit transfer payment to adopt ‘no burn’ practices may help accelerate transitions.”

Directly sown rice: Timely planting of rice can also be achieved by adopting dry direct seeding of rice using mechanized seed-cum-fertilizer planters. In addition to reducing the labor requirement for crop establishment, dry direct seeding allows earlier rice planting due to its lower water requirement for establishment. Direct-seeded rice also matures earlier than puddled transplanted rice. Thus, earlier harvesting improves the chance to sow wheat on time.

“CIMMYT researchers are working with the local mechanical engineers on rolling out simple tweaks to enable the Happy Seeder to be used for direct rice seeding. The existing availability of Happy Seeders in the region will improve the speed direct rice sowing can be adopted,” Jat said.

Crop diversification with maize: Replacing rice with maize in the monsoon season is another option to alleviate the potential shortage of agricultural labor due to COVID-19, as the practice of establishing maize by machine is already common.

“Research evidence generated over the past decade demonstrates that maize along with modern agronomic management practices can provide a profitable and sustainable alternative to rice,” Jat explained. “The diversification of rice with maize can potentially contribute to sustainability that includes conserving groundwater, improving soil health and reducing air pollution through eliminating residue burning.”

A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)
A combine harvester equipped with the Super SMS (left) harvests rice while a tractor equipped with the Happy Seeder is used for direct seeding of wheat. (Photo: Sonalika Tractors)

Getting innovations into farmers’ fields

Rapid policy decisions by national and state governments on facilitating more mechanized operations in labor-intensive rice-wheat production regions will address labor availability issues while contributing to productivity enhancement of succeeding wheat crop in rotation, as well as overall system sustainability, said ICAR’s deputy director general for agricultural extension, AK Singh.

The government is providing advisories to farmers through multiple levels of communications, including extension services, messaging services and farmer collectives to raise awareness and encourage adoption.

Moving toward mechanization and crop diversity should not be viewed as a quick fix to COVID-19 related labor shortages, but as the foundation for long-term policies that help India in achieving the UN Sustainable Development Goals, said ICAR’s deputy director general for Natural Research Management, SK Chaudhari.

“Policies encouraging farming practices that save resources and protect the environment will improve long term productivity of the nation,” he said.

Northwestern India is home to millions of smallholder farmers making it a breadbasket for grain staples. Since giving birth to the Green Revolution, the region has continued to increase its food production through rice and wheat farming providing bulk of food to the country.

This high production has not come without shortfalls, different problems like a lowering water table, scarcity of labor during peak periods, deteriorating soil health, and air pollution from crop residue burning demands some alternative methods to sustain productivity as well as natural resources.

Cover photo: A farmer uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

Mechanized harvesting fuels rural prosperity in Nepal

In response to increasing labor scarcity and costs, growth in mechanized wheat and rice harvesting has fueled farm prosperity and entrepreneurial opportunity in the poorest parts of Nepal, researchers from the International Maize and Wheat Improvement Center (CIMMYT) have recorded.

Farmers are turning to two-wheeled tractor-mounted reaper-harvesters to make up for the lack of farm labor, caused by a significant number of rural Nepalese — especially men and youth — migrating out in search of employment opportunities.

For Nandalal Oli, a 35-year-old farmer from Bardiya in far-west Nepal, investing in a mechanized reaper not only allowed him to avoid expensive labor costs that have resulted from out-migration from his village, but it also provided a source of income offering wheat and rice harvesting services to his neighbors.

“The reaper easily attaches on my two-wheel tractor and means I can mechanically cut and lay the wheat and rice harvests,” said Oli, the father of two. “Hiring help to harvest by hand is expensive and can take days but with the reaper attachment it’s done in hours, saving time and money.”

Oli was first introduced to the small reaper attachment three years ago at a farmer exhibition hosted by Cereal Systems Initiative for South Asia (CSISA), funded through USAID. He saw the reaper as an opportunity to add harvesting to his mechanization business, where he was already using his two-wheel tractor for tilling, planting and transportation services.

Prosperity powers up reaper adoption

Number of 2-wheel tractor-attachable reaper-harvesters operational through service providers in Nepal’s Terai, 2014–2019
Number of 2-wheel tractor-attachable reaper-harvesters operational through service providers in Nepal’s Terai, 2014–2019

Over 4,000 mechanized reapers have been sold in Nepal with more than 50% in far and mid-west Nepal since researchers first introduced the technology five years ago. The successful adoption — which is now led by agricultural machinery dealers that were established or improved with CSISA’s support — has led nearly 24,000 farmers to have regular access to affordable crop harvesting services, said CIMMYT agricultural economist Gokul Paudel.

“Reapers improve farm management, adding a new layer of precision farming and reducing grain loss. Compared to manual harvesting mechanized reapers improve farming productivity that has shown to significantly increase average farm profitability when used for harvesting both rice and wheat,” he explained.

Nearly 65% of Nepal’s population works in agriculture, yet this South Asian country struggles to produce an adequate and affordable supply of food. The research indicated increased farm precision through the use of mechanized reapers boosts farm profitability by $120 a year when used for both rice and wheat harvests.

Oli agreed farmers see the benefit of his harvesting service as he has had no trouble finding customers. On an average year he serves 100 wheat and rice farmers in a 15 kilometer radius of his home.

“Investing in the reaper harvester worked for me. I earn 1,000 NRs [about $8] per hour harvesting fields and was able to pay off the purchase in one season. The added income ensures I can stay on top of bills and pay my children’s school fees.”

Farmers who have purchased reapers operate as service providers to other farms in their community, Paudel said.

“This has the additional benefit of creating legitimate jobs in rural areas, particularly needed among both migrant returnees who are seeking productive uses for earnings gained overseas that, at present, are mostly used for consumptive and unproductive sectors.”

“This additional work can also contribute to jobs for youth keeping them home rather than migrating,” he said.

The adoption rate of the reaper harvester is projected to reach 68% in the rice-wheat systems in the region within the next three years if current trends continue, significantly increasing access and affordability to the service.

Private and public support for mechanized harvester key to strong adoption

Achieving buy-in from the private and public sector was essential to the successful introduction and uptake of reaper attachments in Nepal, said Scott Justice, an agricultural and rural mechanization expert with the CSISA project.

Off the back of the popularity of the two-wheel tractor for planting and tilling, 22 reaper attachments were introduced by the researchers in 2014. Partnering with government institutions, the researchers facilitated demonstrations led by the private sector in farmers’ fields successfully building farmer demand and market-led supply.

“The reapers were introduced at the right place, at the right time. While nearly all Terai farmers for years had used tractor-powered threshing services, the region was suffering from labor scarcity or labor spikes where it took 25 people all day to cut one hectare of grain by hand. Farmers were in search of an easier and faster way to cut their grain,” Justice explained.

“Engaging the private and public sector in demonstrating the functionality and benefits of the reaper across different districts sparked rapidly increasing demand among farmers and service providers,” he said.

Early sales of the reaper attachments have mostly been directly to farmers without the need for considerable government subsidy. Much of the success was due to the researchers’ approach engaging multiple private sector suppliers and the Nepal Agricultural Machinery Entrepreneurs’ Association (NAMEA) and networks of machinery importers, traders, and dealers to ensure stocks of reapers were available at local level. The resulting competition led to 30-40% reduction in price contributing to increasing sales.

“With the technical support of researchers through the CSISA project we were able to import reaper attachments and run demonstrations to promote the technology as a sure investment for farmers and rural entrepreneurs,” said Krishna Sharma from Nepal Agricultural Machinery Entrepreneurs’ Association (NAMEA).

From 2015, the private sector capitalized on farmers’ interest in mechanized harvesting by importing reapers and running their own demonstrations and several radio jingles and sales continued to increase into the thousands, said Justice.

 Building entrepreneurial capacity along the value chain

Through the CSISA project private dealers and public extension agencies were supported in developing training courses on the use of the reaper and basic business skills to ensure long-term success for farmers and rural entrepreneurs.

Training was essential in encouraging the emergence of mechanized service provision models and the market-based supply and repair chains required to support them, said CIMMYT agricultural mechanization engineer Subash Adhikari.

“Basic operational and business training for farmers who purchased a reaper enabled them to become service providers and successfully increased the access to reaper services and the amount of farms under improved management,” he said.

As commonly occurs when machinery adoption spreads, the availability of spare parts and repairs for reapers lagged behind sales. Researchers facilitated reaper repair training for district sales agent mechanics, as well as providing small grants for spare parts to build the value chain, Adhikari added.

Apart from hire services, mechanization creates additional opportunities for new business with repair and maintenance of equipment, sales and dealership of related businesses including transport and agro-processing along the value chain.

The Cereal Systems Initiative for South Asia (CSISA) aims to sustainably increase the productivity of cereal based cropping systems to improve food security and farmers’ livelihoods in Nepal. CSISA works with public and private partners to support the widespread adoption of affordable and climate-resilient farming technologies and practices, such as improved varieties of maize, wheat, rice and pulses, and mechanization.

Cover photo: A farmer uses a two-wheel tractor-mounted reaper to harvest wheat in Nepal. (Photo: Timothy J. Krupnik/CIMMYT)

Annual Report 2019 launched

AR cover postcard

Read the web version of the Annual Report 2019

Download the Annual Report 2019 in PDF format 

Download the financial report 2019

In 2019, CIMMYT continued to perform groundbreaking crop research and forge powerful partnerships to combat hunger and climate change, preserve maize and wheat biodiversity, and respond to emerging pests and diseases.  

Bill Gates spoke about the “essential role of CGIAR research centers in feeding our future” and together with other stakeholders urged us to “do even better.” In his Gates Notes blog, he highlighted the great example of CIMMYT’s drought-tolerant maize, which helps resource-poor farmers withstand increasing climate risks. 

Over the course of the year, we supported our national partners to release 82 maize and 50 wheat varieties. More than 14,000 farmers, scientists, and technical workers across the world took part in over 900 training and capacity development activities. CIMMYT researchers published 386 peer-reviewed journal articles. 

In 2019, CIMMYT also marked the end of a decade of achievements in seed security. CIMMYT celebrated being the largest depositor at the Svalbard Global Seed Vault with 173,779 accessions from 131 countries. The most recent deposit included 15,231 samples of wheat and 332 samples of maize. 

Innovative solutions like DNA fingerprinting – a method used to identify individual plants by looking at unique patterns in their genome  brought state of the art research into farmer’s fields, providing valuable insights into the diversity of wheat varieties grown in Afghanistan and Ethiopia.   

CIMMYT also continued to play a key role in the battle against fall armyworm, coordinating a global research-fordevelopment consortium to build an evidence-based response against the pest in both Africa and Asia. 

Through the Cereal Systems Initiative for South Asia (CSISA), CIMMYT helped women find business opportunities and empowered female entrepreneurship with the help of mechanization solutions. 

The year 2019 showed us that while CIMMYT’s work may begin with seeds, our innovations support farmers at all stages of the value chain. The year ahead will be a challenging one as we continue to adjust to the “new normal” of life under COVID-19.  We hope you enjoy this Annual Report as we look back on the exciting year that was 2019.   

Read the web version of the Annual Report 2019

Download the Annual Report 2019 in PDF format 

Download the financial report 2019

Improved heat-resistant wheat varieties are identified

Wheat, in its own right, is one of the most important foods in the world. It is a staple food for more than 2.5 billion people, it provides 20% of the protein consumed worldwide and, according to the FAO, supplies more calories than any other grain. Its long-term productivity, however, is threatened by rising temperatures, among other factors. Stress from heat, an increasing trend due to climate change, affects its performance, a fact that requires urgent solutions bearing in mind that, according to some estimates, the world’s population will reach 9 billion by the year 2050.

Read more here: https://phys.org/news/2020-06-heat-resistant-wheat-varieties.html

Small but mighty

Nearly 65,000 farmers in Nepal, 40% of which were women, have benefited from the Agronomy and Seed Systems Scaling project, according to a comprehensive new report. This project is part of the Cereals Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT) and supported by USAID.

One of the project’s most recent successes has been in accelerating the adoption of the nutritious and stress-tolerant mung bean in rice-wheat farming systems.

Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)
Farmer Chhalu Bhattarai harvests her mung bean crop in Manikapur, Surkhet, Nepal. (Photo: P. Lowe/CIMMYT)

Rice-wheat is the dominant cropping system in the lowland region of Nepal. Farmers typically harvest wheat in March and transplant rice in July, leaving land fallow for up to 100 days. A growing body of evidence shows, however, that planting mung bean during this fallow period can assist in improving farmers’ farming systems and livelihoods.

“The mung bean has multiple benefits for farmers,” says Narayan Khanal, a researcher at CIMMYT. “The first benefit is nutrition: mung beans are very rich in iron, protein and are easily digestible. The second benefit is income: farmers can sell mung beans on the market for a higher price than most other legumes. The third benefit is improved soil health: mung beans fix the nitrogen from the atmosphere into the soil as well as improve soil organic content.”

Commonly used in dishes like dahl, soups and sprout, mung beans are a common ingredient in Asian cuisine. However, prior to the project, most farmers in Nepal had never seen the crop before and had no idea how to eat it. Encouraging them to grow the crop was not going to be an easy task.

Thanks to dedicated efforts by CIMMYT researchers, more than 8,000 farmers in Nepal are now cultivating mung bean on land that would otherwise be left fallow, producing over $1.75 million of mung bean per year.

The newfound enthusiasm for growing mung bean could not have been achieved without the help of local women’s farming groups, said Timothy J. Krupnik, CIMMYT senior scientist and CSISA project leader.

Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
Employees select and clean mung beans at Poshan Foods in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
An employee selects mung beans at Poshan Foods, in Butwal, Nepal. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
After mung bean is toasted, employees at Poshan Foods select the beans. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)
Poshan Foods uses mung bean for a wide range of products but has been particularly successful with baby food, which includes important nutrition advice for parents. (Photo: Merit Maharajan/Amuse Communication)

Bringing research and innovations to farmers’ fields

Introducing the mung bean crop to farmers’ fields was just one of the successes of Agronomy and Seed Systems Scaling, which was an added investment by USAID in the wider CSISA project, which began in 2014. The project aims to move agronomic and crop varietal research into real-world impact. It has helped farmers get better access to improved seeds and machinery and strengthened partnerships with the private sector, according to Khanal.

CSISA support in business mentoring and capacity building of seed companies to popularize newly released, biofortified and stress-tolerant wheat varieties has led to seed sales volumes tripling between 2014 to 2019. The project also led to a 68% increase in the number of new improved wheat varieties since the inception of the project.

Nepal’s National Wheat Research Program was able to fast track the release of the early maturing variety BL 4341, by combining data generated by the project through seed companies and the Nepal Agricultural Research Council (NARC) research station. Other varieties, including Borlaug 100 and NL 1327, are now in the pipeline.

Empowering women and facilitating women’s groups have been critical components of the project. Nepal has seen a mass exodus of young men farmers leaving the countryside for the city, leaving women to work the farms. CIMMYT worked with women farmer groups to expand and commercialize simple to use and affordable technologies, like precision seed and fertilizer spreaders.

Over 13,000 farmers have gained affordable access to and benefited from precision agriculture machinery such as two-wheel ‘hand tractors’ and ‘mini tillers.’ This is a major change for small and medium-scale farmers in South Asia who typically rely on low horsepower four-wheel tractors. The project also introduced an attachment for tractors for harvesting rice and wheat called the ‘reaper.’ This equipment helps to reduce the costs and drudgery of manual harvesting. In 2019, Nepal’s Terai region had almost 3,500 reapers, versus 22 in 2014.

To ensure the long-term success of the project, CSISA researchers have trained over 2,000 individuals from the private and public sector, and over 1,000 private organizations including machinery manufacturers and agricultural input dealers.

Researchers have trained project collaborators in both the public and private sector in seed systems, resilient varieties, better farming practices and appropriate agricultural mechanization business models. These partners have in turn passed this knowledge on to farmers, with considerable impact.

“The project’s outcomes demonstrates the importance of multi-year and integrated agricultural development efforts that are science-based, but which are designed in such a way to move research into impact and benefit farmers, by leveraging the skills and interests of Nepal’s public and private sector in unison,” said Krupnik.

“The outcomes from this project will continue to sustain, as the seed and market systems developed and nurtured by the project are anticipated to have long-lasting impact in Nepal,” he said.

Download the full report:
Cereal Systems Initiative for South Asia: Agronomy and Seed Systems Scaling. Final report (2014-2019)

The Cereal Systems Initiative for South Asia (CSISA) is led by the International Maize and Wheat Center (CIMMYT), implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.

Cover photo: A member of a women farmers group serves a platter of mung bean dishes in Suklaphanta, Nepal. (Photo: Merit Maharajan/Amuse Communication)

Interdrought 2020 congress proceedings now online

The critical global challenge of significantly increasing food production by 2050 is exacerbated by water limitations. Droughts and water scarcity affect crop production across the world and global climate warming is aggravating this effect. A central challenge for researchers and policymakers is to devise technologies that lend greater resilience to agricultural production in drier environments.

The Interdrought 2020 congress presents the latest developments to address this global challenge.

Interdrought 2020 was scheduled to be held in Mexico City in March 2020. As it was not possible to proceed with the congress as a face-to-face meeting due to the travel restrictions associated with the COVID-19 pandemic, the organizing committee has delivered the scientific program of the congress online. Congress proceedings are available at interdrought2020.cimmyt.org.

Today the organizing committee extended the reach of the congress proceedings to the global community by providing free online access to 43 presentations, 75 abstracts and 35 posters. The complete book of abstracts can also be downloaded. To date over 10,000 members of the scientific community have been invited to watch presentations and read the proceedings online.

Internationally recognized keynote speakers participated in the seven main sessions, supported by nine symposia convened by global experts, on topics ranging from breeding and management approaches to the basic science of plant–water relations.

State-of-the-art research and technology

Interdrought 2020 is an opportunity for scientific leaders from across the world to share the latest research and technology developments to advance plant production in water-limited situations. Interdrought 2020 embraces the philosophy of presenting and integrating results of both applied and basic research towards the development of solutions for improving crop production under drought-prone conditions.

Interdrought 2020, also known as Interdrought VI (IDVI) is the sixth congress in the series. It builds on the success of previous congresses held in Montpellier in 1995, Rome in 2005, Shanghai in 2009, Perth in 2013, and Hyderabad in 2017.

The congress was organized by the International Maize and Wheat Improvement Center (CIMMYT) and the University of Queensland. The organizers share a strong history of collaboration in crop research and agronomy that seeks to increase wheat’s tolerance to drought and its yield potential in hot conditions, such as those seen in Queensland, Australia, and Sonora, Mexico.

The organizers and the congress committee would like to thank major sponsors Corteva, the Grains Research and Development Corporation (GRDC), the University of Queensland, and supporting sponsors in silico Plants, the Journal of Experimental Botany, Illumina, Analitek, and LI-COR. Our sponsors’ belief in the value of the scientific content enabled us to deliver congress proceedings to not only delegates but the broader scientific community.


For more information, please contact

Professor Graeme Hammer
Chair of the Interdrought 2020 congress committee
g.hammer@uq.edu.au

About CIMMYT

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

QAAFI at the University of Queensland

The Queensland Alliance for Agriculture and Food Innovation (QAAFI) is a research institute of the University of Queensland supported by the Queensland Government via the Department of Agriculture and Fisheries. QAAFI is comprised of four inter-related research centres working across crops, horticulture, animals, and nutrition and food sciences, with a focus on addressing challenges in the tropical and subtropical systems. For more information visit www.qaafi.uq.edu.au/about.

New Publications: Cropping pattern zonation of Pakistan

The tremendous diversity of crops in Pakistan has been documented in a new publication that will foster more effective and targeted policies for national agriculture.

Using official records and geospatial modeling to describe the location, extent, and management of 25 major and minor crops grown in 144 districts of Pakistan, the publication “Cropping Pattern Zonation of Pakistan” offers an invaluable tool for resource planning and policymaking to address opportunities, challenges and risks for farm productivity and profitability, according to Muhammad Imtiaz, crop scientist and country representative in Pakistan for the International Maize and Wheat Improvement Center (CIMMYT).

“With rising temperatures, more erratic rainfall and frequent weather extremes, cropping pattern decisions are of the utmost importance for risk mitigation and adaptation,” said Imtiaz, a co-author of the new publication.

Featuring full-color maps for Pakistan’s two main agricultural seasons, based on area sown to individual crops, the publication was put together by CIMMYT and the Climate, Energy and Water Research Institute (CEWRI) of the Pakistan Agricultural Research Council (PARC), with technical and financial support from the Agricultural Innovation Program (AIP) for Pakistan, which is funded by the U.S. Agency for International Development (USAID).

Pakistan’s main crops–wheat, rice, cotton and sugarcane—account for nearly three-quarters of national crop production. Various food and non-food crops are grown in “Rabi,” the dry winter season, October-March, and “Kharif,” the summer season characterized by high temperatures and monsoon rains.

Typically, more than one crop is grown in succession on a single field each year; however, despite its intensity, farming in Pakistan is largely traditional or subsistence agriculture dominated by the food grains, according to Ms. Rozina Naz, Principal Scientific Officer, CEWRI-PARC.

“Farmers face increasing aridity and unpredictable weather conditions and energy shortage challenges that impact on their decisions regarding the type and extent of crops to grow,” said the scientist, who is involved in executing the whole study. “Crop pattern zoning is a pre-requisite for the best use of land, water and capital resources.”

The study used 5 years (2013-14 to 2017-18) of data from the Department of Agricultural Statistics, Economics Wing, Ministry of National Food Security and Research, Islamabad. “We greatly appreciate the contributions of scientists and technical experts of Crop Science Institute (CSI) and CIMMYT,” Imtiaz added.

View or download the publication:
Cropping Pattern Zonation of Pakistan. Climate, Energy and Water Research Institute, National Agricultural Research Centre, Pakistan Agricultural Research Council, and the International Maize and Wheat Improvement Center. 2020. CDMX: CEWRI, PARC, and CIMMYT.

See more recent publications from CIMMYT researchers:

1. Plant community strategies responses to recent eruptions of Popocatépetl volcano, Mexico. 2019. Barba‐Escoto, L., Ponce-Mendoza, A., García-Romero, A., Calvillo-Medina, R.P. In: Journal of Vegetation Science v. 30, no. 2, pag. 375-385.

2. New QTL for resistance to Puccinia polysora Underw in maize. 2019. Ce Deng, Huimin Li, Zhimin Li, Zhiqiang Tian, Jiafa Chen, Gengshen Chen, Zhang, X, Junqiang Ding, Yuxiao Chang In: Journal of Applied Genetics v. 60, no. 2, pag. 147-150.

3. Hybrid wheat: past, present and future. 2019. Pushpendra Kumar Gupta, Balyan, H.S., Vijay Gahlaut, Pal, B., Basnet, B.R., Joshi, A.K. In: Theoretical and Applied Genetics v. 132, no. 9, pag. 2463-2483.

4. Influence of tillage, fertiliser regime and weeding frequency on germinable weed seed bank in a subhumid environment in Zimbabwe. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Gandiwa, E., Thierfelder, C., Muposhi, V.K., Svotwa, E.In: South African Journal of Plant and Soil v. 36, no. 5, pag. 319-327.

5.  Identification and mapping of two adult plant leaf rust resistance genes in durum. 2019. Caixia Lan, Zhikang Li, Herrera-Foessel, S., Huerta-Espino, J., Basnet, B.R., In: Molecular Breeding v. 39, no. 8, art. 118.

6. Genetic mapping reveals large-effect QTL for anther extrusion in CIMMYT spring wheat. 2019. Muqaddasi, Q.H., Reif, J.C., Roder, M.S., Basnet, B.R., Dreisigacker, S. In: Agronomy v. 9 no. 7, art. 407.

7. Growth analysis of brachiariagrasses and ‘tifton 85’ bermudagrass as affected by harvest interval. 2019. Silva, V. J. da., Faria, A.F.G., Pequeno, D.N.L., Silva, L.S., Sollenberger, L.E., Pedreira, C. G. S. In: Crop Science v. 59, no. 4, pag. 1808-1814.

8. Simultaneous biofortification of wheat with zinc, iodine, selenium, and iron through foliar treatment of a micronutrient cocktail in six countries. 2019. Chunqin Zou, Yunfei Du, Rashid, A., Ram, H., Savasli, E., Pieterse, P.J., Ortiz-Monasterio, I., Yazici, A., Kaur, C., Mahmood, K., Singh, S., Le Roux, M.R., Kuang, W., Onder, O., Kalayci, M., Cakmak, I. In: Journal of Agricultural and Food Chemistry v. 67, no. 29, pag. 8096-8106.

9. Economic impact of maize stem borer (Chilo partellus) attack on livelihood of maize farmers in Pakistan. 2019. Ali, A., Issa, A.B. In: Asian Journal of Agriculture and Biology v. 7, no. 2, pag. 311-319.

10. How much does climate change add to the challenge of feeding the planet this century?. 2019. Aggarwal, P.K., Vyas, S., Thornton, P.K., Campbell, B.M. In: Environmental Research Letters v. 14 no. 4, art. 043001.

11. A breeding strategy targeting the secondary gene pool of bread wheat: introgression from a synthetic hexaploid wheat. 2019. Ming Hao, Lianquan Zhang, Laibin Zhao, Shoufen Dai, Aili Li, Wuyun Yang, Die Xie, Qingcheng Li, Shunzong Ning, Zehong Yan, Bihua Wu, Xiujin Lan, Zhongwei Yuan, Lin Huang, Jirui Wang, Ke Zheng, Wenshuai Chen, Ma Yu, Xuejiao Chen, Mengping Chen, Yuming Wei, Huaigang Zhang, Kishii, M, Hawkesford, M.J, Long Mao, Youliang Zheng, Dengcai Liu In: Theoretical and Applied Genetics v. 132, no. 8, pag. 2285-2294.

12. Sexual reproduction of Zymoseptoria tritici on durum wheat in Tunisia revealed by presence of airborne inoculum, fruiting bodies and high levels of genetic diversity. 2019. Hassine, M., Siah, A., Hellin, P., Cadalen, T., Halama, P., Hilbert, J.L., Hamada, W., Baraket, M., Yahyaoui, A.H., Legreve, A., Duvivier, M. In: Fungal Biology v. 123, no. 10, pag. 763-772.

13. Influence of variety and nitrogen fertilizer on productivity and trait association of malting barley. 2019. Kassie, M., Fantaye, K. T. In: Journal of Plant Nutrition v. 42, no. 10, pag. 1254-1267.

14. A robust Bayesian genome-based median regression model. 2019. Montesinos-Lopez, A., Montesinos-Lopez, O.A., Villa-Diharce, E.R., Gianola, D., Crossa, J. In: Theoretical and Applied Genetics v. 132, no. 5, pag. 1587-1606.

15. High-throughput phenotyping platforms enhance genomic selection for wheat grain yield across populations and cycles in early stage. 2019. Jin Sun, Poland, J.A., Mondal, S., Crossa, J., Juliana, P., Singh, R.P., Rutkoski, J., Jannink, J.L., Crespo-Herrera, L.A., Velu, G., Huerta-Espino, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 132, no. 6, pag. 1705-1720.

16. Resequencing of 429 chickpea accessions from 45 countries provides insights into genome diversity, domestication and agronomic traits. 2019. Varshney, R.K., Thudi, M., Roorkiwal, M., Weiming He, Upadhyaya, H., Wei Yang, Bajaj, P., Cubry, P., Abhishek Rathore, Jianbo Jian, Doddamani, D., Khan, A.W., Vanika Garg, Annapurna Chitikineni, Dawen Xu, Pooran M. Gaur, Singh, N.P., Chaturvedi, S.K., Nadigatla, G.V.P.R., Krishnamurthy, L., Dixit, G.P., Fikre, A., Kimurto, P.K., Sreeman, S.M., Chellapilla Bharadwaj, Shailesh Tripathi, Jun Wang, Suk-Ha Lee, Edwards, D., Kavi Kishor Bilhan Polavarapu, Penmetsa, R.V., Crossa, J., Nguyen, H.T., Siddique, K.H.M., Colmer, T.D., Sutton, T., Von Wettberg, E., Vigouroux, Y., Xun Xu, Xin Liu In: Nature Genetics v. 51, pag. 857-864.

17. Farm typology analysis and technology assessment: an application in an arid region of South Asia. 2019. Shalander Kumar, Craufurd, P., Amare Haileslassie, Ramilan, T., Abhishek Rathore, Whitbread, A. In: Land Use Policy v. 88, art. 104149.

18. MARPLE, a point-of-care, strain-level disease diagnostics and surveillance tool for complex fungal pathogens. 2019. Radhakrishnan, G.V., Cook, N.M., Bueno-Sancho, V., Lewis, C.M., Persoons, A., Debebe, A., Heaton, M., Davey, P.E., Abeyo Bekele Geleta, Alemayehu, Y., Badebo, A., Barnett, M., Bryant, R., Chatelain, J., Xianming Chen, Suomeng Dong, Henriksson, T., Holdgate, S., Justesen, A.F., Kalous, J., Zhensheng Kang, Laczny, S., Legoff, J.P., Lesch, D., Richards, T., Randhawa, H. S., Thach, T., Meinan Wang, Hovmoller, M.S., Hodson, D.P., Saunders, D.G.O. In: BMC Biology v. 17, no. 1, art. 65.

19. Genome-wide association study for multiple biotic stress resistance in synthetic hexaploid wheat. 2019. Bhatta, M.R., Morgounov, A.I., Belamkar, V., Wegulo, S.N., Dababat, A.A., Erginbas-Orakci, G., Moustapha El Bouhssini, Gautam, P., Poland, J.A., Akci, N., Demir, L., Wanyera, R., Baenziger, P.S. In: International Journal of Molecular Sciences v. 20, no. 15, art. 3667.

20.  Genetic diversity and population structure analysis of synthetic and bread wheat accessions in Western Siberia. 2019. Bhatta, M.R., Shamanin, V., Shepelev, S.S., Baenziger, P.S., Pozherukova, V.E., Pototskaya, I.V., Morgounov, A.I. In: Journal of Applied Genetics v. 60, no. 3-4, pag. 283-289.

21. Identifying loci with breeding potential across temperate and tropical adaptation via EigenGWAS and EnvGWAS. 2019. Jing Li, Gou-Bo Chen, Rasheed, A., Delin Li, Sonder, K., Zavala Espinosa, C., Jiankang Wang, Costich, D.E., Schnable, P.S., Hearne, S., Huihui Li In: Molecular Ecology v. 28, no. 15, pag. 3544-3560.

22. Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: evidence from Uganda. 2019. Simtowe, F.P., Amondo, E., Marenya, P. P., Rahut, D.B., Sonder, K., Erenstein, O. In: Land Use Policy v. 88, art. 104091.

23. Do market shocks generate gender-differentiated impacts?: policy implications from a quasi-natural experiment in Bangladesh. 2019. Mottaleb, K.A., Rahut, D.B., Erenstein, O. In: Women’s Studies International Forum v. 76, art. 102272.

24. Gender differences in the adoption of agricultural technology: the case of improved maize varieties in southern Ethiopia. 2019. Gebre, G.G., Hiroshi Isoda, Rahut, D.B., Yuichiro Amekawa, Hisako Nomura In: Women’s Studies International Forum v. 76, art. 102264.

25. Tracking the adoption of bread wheat varieties in Afghanistan using DNA fingerprinting. 2019. Dreisigacker, S., Sharma, R.K., Huttner, E., Karimov, A. A., Obaidi, M.Q., Singh, P.K., Sansaloni, C.P., Shrestha, R., Sonder, K., Braun, H.J. In: BMC Genomics v. 20, no. 1, art. 660.

Breaking Ground: Maria Itria Ibba and the lab that bakes bread

The rising and shifting demand for wheat, with rapid urbanization and increasingly globalized food markets, is pushing farmers more than ever to produce high-quality grain, according to the scientist who leads wheat quality research in the world’s foremost publicly-funded wheat breeding program.

“Wheat quality is becoming more and more important, as the industrial production of bread and other wheat-based foods increases to meet the demands of city dwellers, working women, and wheat consumers in wheat-importing countries,” said Maria Itria Ibba, head of the Wheat Chemistry and Quality Laboratory at the International Maize and Wheat Improvement Center (CIMMYT).

“Companies that produce and market food for such consumers demand high, consistent quality in grain they purchase and we have to help wheat farmers to meet stringent requirements.”

This is so important that CIMMYT’s Global Wheat Program — whose contributions figure in more than half of the wheat varieties released worldwide — directly uses lab data on milling, processing and end-use quality to decide which bread and durum wheat lines to move forward in its breeding programs, according to Ibba.

“Assessing quality is a huge task, because wheat is used to make hundreds of different foods, including all kinds of leavened bread, flat breads, pastas, noodles and steamed bread,” said Ibba. “Our lab is an integral part of breeding, analyzing thousands of grain samples from thousands of wheat lines each year for nearly a dozen quality parameters.”

Cut out for quality

A native of Viterbo, Italy, Ibba has led the Wheat Chemistry and Quality Laboratory since 2019 and is uniquely qualified for the job, with a bachelor’s degree in biotechnology, a master’s degree in biotechnology for the safety and quality of agricultural products — both from the University of Tuscia, Viterbo — and a doctorate in crop science from the Washington State University. Her Ph.D. dissertation addressed “low-molecular-weight glutenin subunit gene family members and their relationship with wheat end-use quality parameters.”

With a mother who studied medicine and a father who worked at the Italian Space Agency, Ibba said that in school she always enjoyed science subjects such as biology and chemistry. “They were easy for me to understand and I really liked how, after studying them, I was able to explain and understand many things around me.”

Ibba said the biggest challenges for her and her lab team are to understand wheat quality needs and conduct faster and better analyses.

“Several of the tests we do are expensive, time-consuming, and require skilled personnel and significant amounts of grain,” she explained, citing the use of exotically named devices such as the “Quadrumat Senior mill,” the “mixograph,” and the “alveograph,” to list a few. “We’re continuously looking for novel methods that are quicker, use smaller samples of grain, and with lower costs.”

Understanding the biochemical and genetic bases of wheat grain and flour quality traits is key to this, according to Ibba, but wheat quality traits are so complex genetically that DNA markers are of little help in breeding. “We’ve begun to explore whole genome selection for wheat quality traits, in collaboration with Kansas State University, but this will never completely replace the laboratory tests.”

Let’s talk health and nutrition

A staple of tours for the hundreds of visitors that come each year to CIMMYT in Mexico, the wheat quality laboratory combines the razzle-dazzle of high-tech devices with hands-on, sensory attractions such as inflating dough balls and freshly baked test loaves.

Ibba’s work includes talking to visitors about wheat, its important history and role in human nutrition and food, and concerns in the popular media regarding wheat and health.

“I think people know more now about what gluten is and its importance, but there is still the need to talk about gluten and wheat so that people can make informed decisions based on scientific facts,” she said. “I was happy to see the recent article from CIMMYT on a review study which, among many other things, showed there was no scientific evidence for the idea that eating refined flour is bad for your health.”

“Wheat provides about 20 percent of calories and protein for more than 4.5 billion people in developing countries,” Ibba pointed out. “There’s an increasing focus on understanding and improving the nutritional quality of wheat and its products because of the greater overall interest in diets and in the nutritional value of diverse foods.”

Ethiopian wheat farmers adopt quality seed and a vision for a more profitable future

Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)
Amarech Desta (left) is the chairwoman of Tembo Awtena, a womens’ seed producer association in the Angacha district of Ethiopia’s Southern Nations, Nationalities, and Peoples’ Region (SNNP). As part of the Wheat Seed Scaling project, the group received early-generation seed and a seed thresher from CIMMYT. “In 2016 we sold more than $7,400 worth of seed,” Desta said. “Our success attracted 30 additional women farmers in 2017, bringing the total membership to 133.” (Photo: Apollo Habtamu/CIMMYT)

High-yielding, disease-resistant wheat varieties used by Ethiopian wheat farmers between 2015 and 2018 gave them at least 20% more grain than conventional varieties, profits of nearly $1,000 per hectare when they grew and sold seed, and generally improved food security in participating rural households.

These are the result of a project to rapidly multiply and disperse high-quality seed of new improved varieties, and the work of leading Ethiopian and international research organizations. The outcomes of this project have benefitted nearly 1.6 million people, according to a comprehensive new publication.

“Grown chiefly by smallholders in Ethiopia, wheat supports the livelihoods of 5 million farmers and their families, both as a household food crop and a source of income,” said Bekele Abeyo, wheat scientist of the International Maize and Wheat Improvement Center (CIMMYT), leader of the project, and chief author of the new report. “Improving wheat productivity and production can generate significant income for farmers, as well as helping to reduce poverty and improve the country’s food and nutrition security.”

Wheat production in Ethiopia is continually threatened by virulent and rapidly evolving fungal pathogens that cause “wheat rusts,” age-old and devastating diseases of the crop. Periodic, unpredictable outbreaks of stem and stripe rust have overcome the resistance of popular wheat varieties in recent years, rendering the varieties obsolete and in urgent need of replacement, according to Abeyo.

“The eastern African highlands are a hot spot for rusts’ spread and evolution,” Abeyo explained. “A country-wide stripe rust epidemic in 2010 completely ruined some susceptible wheat crops in Oromia and Amhara regions, leaving small-scale, resource-poor farmers without food or income.”

The Wheat Seed Scaling project identified and developed new rust-resistant wheat varieties, championed the speedy multiplication of their seed, and used field demonstrations and strategic marketing to reach thousands of farmers in 54 districts of Ethiopia’s major wheat growing regions, according to Abeyo. The United States Agency for International Development (USAID) funded the project and the Ethiopian Institute of Agricultural Research (EIAR) was a key partner.

Using parental seed produced by 8 research centers, a total of 27 private farms, farmer cooperative unions, model farmers and farmer seed producer associations — including several women farmer associations — grew 1,728 tons of seed of the new varieties for sale or distribution to farmers. As part of the work, 10 national research centers took part in fast-track variety testing, seed multiplication, demonstrations and training. The USDA Cereal Disease Lab at the University of Minnesota conducted seedling tests, molecular studies and rust race analyses.

A critical innovation has been to link farmer seed producers directly to state and federal researchers who supply the parental seed — known as “early-generation seed”— according to Ayele Badebo, a CIMMYT wheat pathologist and co-author of the new publication. “The project has also involved laboratories that monitor seed production and that test harvested seed, certifying it for marketing,” Badebo said, citing those accomplishments as lasting legacies of the project.

Abeyo said the project built on prior USAID-funded efforts, as well as the Durable Rust Resistance in Wheat (DRRW) and Delivering Genetic Gain in Wheat (DGGW) initiatives, led by Cornell University and supported by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID).

Protecting crops of wheat, a vital food in eastern Africa, requires the collaboration of farmers, governments and researchers, according to Mandefro Nigussie, Director General of EIAR.

“More than 131,000 rural households directly benefited from this work,” he said. “The project points up the need to identify new resistance genes, develop wheat varieties with durable, polygenic resistance, promote farmers’ use of a genetically diverse mix of varieties, and link farmers to better and profitable markets.”

RELATED RESEARCH PUBLICATIONS:

Achievements in fast-track variety testing, seed multiplication and scaling of rust resistant varieties: Lessons from the wheat seed scaling project, Ethiopia.

INTERVIEW OPPORTUNITIES:

Bekele Abeyo, Senior Scientist, CIMMYT.

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Simret Yasabu, Communications officer, CIMMYT. s.yasabu@cgiar.org, +251 911662511 (cell).

PHOTOS AVAILABLE:

Seed scaling in Ethiopia

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

CIMMYT and Pakistan: 60 years of collaboration

A new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

Cover photo: A wheat field in Pakistan, ready for harvest. (Photo: Kashif Syed/CIMMYT)

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Crossing boundaries

Disclaimer: The views and opinions expressed in this article are those of the authors and do not necessarily reflect the official views or position of the International Maize and Wheat Improvement Center (CIMMYT).

Daily life as we know it has grinded to a halt and crop scientists are pondering next steps in face of the global COVID-19 crisis. Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Wheat, joins us for a virtual chat to discuss the need for increased investment in crop disease research as the world risks a food security crisis.

What have you learned from your work on contagious wheat diseases that we can take away during this time?

Wheat epidemics go back to biblical times. Wheat scientists now believe Egypt’s “seven bad years” of harvest referenced in the Bible were due to a stem rust outbreak.

So, we know what happens when we have a crop epidemic: diseases can completely wipe out a harvest. I have seen subsistence farmers stand in front of their swaying, golden wheat fields, but there is not a single grain inside the spikes. All because of wheat blast.

There are a lot of parallel issues that I see with COVID-19.

The epidemiology models for humans which we see now have a lot in common with plant epidemiology. For example, if you take a wheat field sown with a variety which is rust-resistant and then you get a spore which mutates and overcomes the resistance — like COVID-19 overcomes the human immune system — it then takes about two weeks for it to sporulate again and produce millions of these mutated spores. They sporulate once more and then you have billions and trillions of spores — then the wheat fields at the local, national and, in the worst case, regional level are severely damaged and in worst case are going to die.

The problem is that since we cannot quarantine wheat, if the weather is favorable these spores will fly everywhere and — just like with COVID-19 — they don’t need a passport to travel.

Could you elaborate on that? How can wheat diseases go global?

Usually it takes around 5 years, sometimes less, until a mutation in a rust spore can overcome the resistance of a wheat variety. Every so often, we see rust epidemics which cover an entire region. To monitor this movement, the Borlaug Global Rust Initiative of Cornell University and CIMMYT, funded by the Bill & Melinda Gates Foundation and DFID, established a global rust monitoring system that provides live data on spore movements.

For example, if you have a new race of stem rust in Yemen — and in Yemen wheat matures early — and then farmers burn the straw, their action “pushes” the spores up into the air, thus allowing them to enter the jet stream and cover 2,000 to 5,000 kilometers in a short period of time. Spores can also be carried on clothes or shoes by people who walked into an infected wheat field. Take Australia, for example, which has very strict quarantine laws. It is surrounded by sea and still eventually they get the new rust races which fly around or come with travelers. One just cannot prevent it.

Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)
Stem rust resistant (left) and susceptible (right) wheat plants at the stem rust phenotyping facility in Njoro, Nakuru County in Kenya. (Photo: Joshua Masinde/CIMMYT)

Could climate change exacerbate the spreading of crop diseases?

Yes, the climate and its variability have a lot to do with it. For example, in the case of yellow rust, what’s extremely important is the time it takes from sporulation to sporulation. Take a rust spore. It germinates, then it grows, it multiplies and then once it is ready it will disperse and infect wheat plants. From one dispersal to the next it takes about two weeks.

In the last decades, in particular for yellow rust, new races are better adapted to high temperature and are multiplying faster. In a Nature paper, we showed that 30 years ago yellow rust was not present in the Great Plains in the US. Today, it is the most important wheat disease there. So there really is something going on and changing and that’s why we are so concerned about new wheat disease races when they come up.

What could an epidemiologist specialized in human viruses take from this?

Well, I think human epidemiologists know very well what happens in a case like COVID-19. Ordinary citizens now also start to understand what a pandemic is and what its related exponential growth means.

Maybe you should ask what policymakers can learn from COVID-19 in order to prevent plant epidemics. When it comes to epidemics, what applies to humans applies to plants. If there is a new race of a given crop disease, in that moment, the plant does not have a defense mechanism, like humans in the case of COVID-19, because we haven’t developed any immunity. While in developed countries farmers can use chemicals to control plant diseases, resource-poor farmers do not have this option, due to lack to access or if the plant protective has not been registered in their country.

In addition to this, our lines of work share a sense of urgency. If “doomsday” happens, it will be too late to react. At present, with a human pandemic, people are worried about the supply chain from food processing to the supermarket. But if we have an epidemic in plants, then we do not have the supply chain from the field to the food processing industry. And if people have nothing to eat, they will go to the streets and we will see violence. We simply cannot put this aside.

What other lessons can policymakers and other stakeholders take away from the current crisis?

The world needs to learn that we cannot use economics as the basis for disease research. We need to better foresee what could happen.

Let’s take the example of wheat blast, a devastating disease that can destroy the wheat spike and was initially confined to South America. The disease arrived in Bangladesh in 2016 and caused small economic damage, maybe 30,000 tons loss in a small geographic area — a small fraction of the national production but a disaster for the smallholder farmer, who thus would have lost her entire wheat harvest. The disease is now controlled with chemicals. But what if chemical resistance is developed and the disease spreads to the 10 million hectares in the Indo-Gangetic Plains of India and the south of Pakistan. Unlikely? But what if it happens?

Agriculture accounts for 30% of the global GDP and the research money [going to agriculture] in comparison to other areas is small. Globally only 5% of R&D is invested in research for development related to agriculture. Such a discrepancy! A million U.S. dollars invested in wheat blast research goes a long way and if you don’t do it, you risk a disaster.

If there is any flip side to the COVID-19 disaster, it is that hopefully our governments realize that they have to play a much more serious role in many areas, in particular public health and disease control in humans but also in plants.

A Lloyd’s report concluded that a global food crisis could be caused by governments taking isolating actions to protect their own countries in response to a breadbasket failure elsewhere. I’m concerned that as the COVID-19 crisis continues, governments will stop exports as some did during the 2008 food price crisis, and then, even if there is enough food around, the 2008 scenario might happen again and food prices will go through the roof, with disastrous impact on the lives of the poorest.

This article was originally published by the CGIAR Research Program on Wheat (WHEAT):
Crossing boundaries: looking at wheat diseases in times of the COVID-19 crisis.

Cover photo: Hans Braun, Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), inspects wheat plants in the greenhouses. (Photo: Alfonso Cortés/CIMMYT)

Wheat curl mites: What are they and how can we fight them?

The wheat curl mite, a pesky wheat pest which can cause up to 100% yield losses, is a significant threat to wheat crops worldwide. The pest has been confirmed in Asia, Australia, Europe, North America and parts of South America. Almost invisible to the naked eye, the microscopic pest is one of the most difficult pests to manage in wheat due to its ability to evade insecticides.

We caught up with Punya Nachappa, an assistant professor at Colorado State University, at this year’s International Plant Resistance to Insects (IPRI) Workshop to discuss wheat curl mites and how to fight them. She explains how the mite cleverly avoids insecticides, how climate change is leading to increasing populations and why breeding for host plant resistance is the main defense against outbreaks.

From popcorn to roti

When asked to picture a food made of whole grains, your first thought might be a loaf of brown, whole-wheat bread. But wholegrain dishes come in all forms.

Take a virtual journey around the world to see the popular or surprising ways in which whole grains are eaten from Mexico to Bangladesh.

Popcorn, a wholegrain food and source of high-quality carbohydrates eaten across the world. (Photo: Alfonso Cortes/CIMMYT)
Popcorn, a wholegrain food and source of high-quality carbohydrates eaten across the world. (Photo: Alfonso Cortes/CIMMYT)
Roasted and boiled maize ears on sale in Xochimilco, in the south of Mexico City. (Photo: M. DeFreese/CIMMYT)
Roasted and boiled maize ears on sale in Xochimilco, in the south of Mexico City. (Photo: M. DeFreese/CIMMYT)
Maize-flour tortillas, a staple food eaten daily in Mexico and across Central America. (Photo: Alfonso Cortés/CIMMYT)
Maize-flour tortillas, a staple food eaten daily in Mexico and across Central America. (Photo: Alfonso Cortés/CIMMYT)
Githeri, a staple food made with maize and beans, Kenya. (Photo: CIMMYT)
Githeri, a staple food made with maize and beans, Kenya. (Photo: CIMMYT)
A loaf of whole-wheat bread, which could look brown or white in color, depending on how the wheat flour is processed. (Photo: Mattie Hagedorn)
A loaf of whole-wheat bread, which could look brown or white in color, depending on how the wheat flour is processed. (Photo: Mattie Hagedorn)
A woman in Bangladesh prepares roti, an unleavened whole wheat bread eaten across the Indian sub-continent. (Photo: S. Mojumder/Drik/CIMMYT)
A woman in Bangladesh prepares roti, an unleavened whole wheat bread eaten across the Indian sub-continent. (Photo: S. Mojumder/Drik/CIMMYT)
Tabbouleh, a Levantine salad made with a base of soaked bulgur wheat. (Photo: Moritz Guth)
Tabbouleh, a Levantine salad made with a base of soaked bulgur wheat. (Photo: Moritz Guth)
Granola, a popular breakfast food made with a base of rolled, whole oats. (Photo: Alfonso Cortes/CIMMYT)
Granola, a popular breakfast food made with a base of rolled, whole oats. (Photo: Alfonso Cortes/CIMMYT)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
Injera, an Ethiopian sourdough flatbread made from wholegrain teff flour. (Photo: Rod Waddington)
A plate of cooked brown rice will accompany a meal in the Philippines. (Photo: IRRI)
A plate of cooked brown rice will accompany a meal in the Philippines. (Photo: IRRI)
A basket contains an assortment of whole, unprocessed maize and wheat kernels. (Photo: Alfonso Cortes/CIMMYT)
A basket contains an assortment of whole, unprocessed maize and wheat kernels. (Photo: Alfonso Cortes/CIMMYT)