Skip to main content

research: Wheat

Naeela Qureshi

Naeela Qureshi is a wheat rust pathologist and molecular geneticist at CIMMYT in Mexico, facilitating extensive research on wheat rust in Mexico and Kenya. Her role is critical in supporting the breeding and physiology teams of CIMMYT’s Global Wheat Program. She also focuses on unraveling the genetic components of rust resistance through Quantitative Trait Loci (QTL) mapping. Naeela uses advanced bi-parental recombinant inbred line (RIL) populations and develops molecular markers linked to rust resistance genes and QTL to improve marker-assisted breeding strategies.

Previously, Naeela was a Research Scientist-Molecular Genetics at Agriculture Victoria Research, Australia, specializing in next-generation sequencing (NGS) technologies such as targeted genotyping by sequencing (tGBS), RNA sequencing, and amplicon resequencing across diverse genetic populations and lines. She received her Ph.D. from the University of Sydney, Australia.

Revised market segmentation for spring wheat—achieving alignment between ICARDA and CIMMYT

CIMMYT, in collaboration with ICARDA and the CGIAR Initiative on Market Intelligence, has revised the market segmentation for spring wheat to align breeding efforts using a unified “crop view” approach. This initiative resolves duplication challenges, provides objective crop prioritization, and aligns Target Product Profiles (TPPs) to meet the needs of farmers, consumers, and processors. By establishing a consistent application of eight market segmentation criteria, the effort standardizes the process and lays a foundation for future discussions on market segment prioritization and TPP alignment, ensuring all relevant market requirements are prioritized in breeding programs.

Read the full story.

Climate-proofing India’s daily bread: The race for resilient wheat

CIMMYT collaborates with Indian research institutions like IIWBR to develop climate-resilient wheat varieties, supplying essential genetic materials and leveraging global research initiatives, advanced breeding techniques, and technological tools. This partnership accelerates the creation and distribution of resilient crops, supporting local scientists and smallholder farmers through training, capacity-building programs, and knowledge sharing to ensure sustainable agriculture and enhanced food security in the face of climate change.

Read the full story.

CIMMYT scientist recognized with research leader award

Distinguished Scientist and Head of Wheat Physiology at CIMMYT, Matthew Reynolds, received the Research.com Plant Science and Agronomy in Mexico Leader Award 2024 for placing 53rd in the world and 1st in Mexico in the Research.com ranking of Best Plant Science and Agronomy Scientists 2023.

“Being recognized with this award highlights the far-reaching influence of the wheat science taking place in Mexico and its impact on the development of agronomy around the world,” said Reynolds. “Sharing outputs as international public goods with scientists globally has positive benefits for smallholder farmers and their communities. Widening genetic diversity for key traits helps to improve yield and climate resilience -including resistance to biotic and abiotic stresses, providing reliable harvests and food security.”

Matthew Reynolds

This marks the third consecutive year that Reynolds has received the award, having held the top position in plant science and agronomy in Mexico since 2022. His most cited papers include ‘Physiological breeding’ (2016), ‘Raising Yield Potential in Wheat (2009)’, and Drought-adaptive traits derived from wheat wild relatives and landraces (2007).

Specializing in technologies to increase the productivity of wheat cropping systems around the world, Reynolds has helped to create a new generation of advanced lines at CIMMYT through physiological breeding approaches that widen the genepool, increasing understanding of yield potential and adapting wheat to drought and heat, developing high throughput phenotyping methodologies, and training other researchers.

Reynolds developed and led the Heat and Drought Wheat Improvement Consortium (https://hedwic.org/) and initiated a global academic network that led to the International Wheat Yield Partnership (https://iwyp.org/), where he champions collaboration that brings together plant science expertise from around the globe to boost yield and climate resilience.

Other CIMMYT scientists in the top 100 world rankings include Distinguished Scientist and former Head of Global Bread Wheat Improvement Ravi P. Singh in 57th place globally and 2nd in Mexico, and Distinguished Scientist in the Biometrics and Statistics Unit, José Crossa, who ranked 59th globally and 3rd in Mexico.

This is the third edition of Research.com positioning scholars based on their research output in plant science and agronomy. Rankings are allocated based on a detailed study of 166,880 scientists in bibliometric data sources, with up to 10,700 people analyzed for this field of work.

Wheat cultivation in Africa at risk of fungal disease

A study by the Technical University of Munich (TUM) warns that the wheat blast fungus Magnaporthe oryzae threatens up to 75% of Africa’s wheat cultivation. The disease, spread by windborne spores and exacerbated by climate change, worsens food insecurity. While Zimbabwe remains unaffected, preventive measures are in place. The Zambia Agriculture Research Institute (ZARI), with CIMMYT’s collaboration, is building regional capacity to combat the disease. The study emphasizes the need for resistant wheat varieties and enhanced global and regional cooperation to protect wheat production and ensure food security.

Read the full story.

Building global capacity to combat wheat blast

Researchers and experts from 15 countries convened in Zambia, between 4-15 March 2024, for an international training on wheat blast disease screening, surveillance, and management.

Wheat blast, caused by pathogen Magnaporthe oryzae pathotype triticum, is threatening global wheat production especially in warmer and humid regions. The disease was first observed in Parana state of Brazil in 1985 and subsequently spread to Bolivia, Paraguay, and Argentina. Outside of South America, wheat blast incidences were recorded for the first time in Bangladesh in 2016 and in Zambian wheat fields in 2018.

To mitigate the impact of this potential plant pandemic, the Zambia Agriculture Research Institute (ZARI), in collaboration with CIMMYT and other partners, organized a comprehensive training for building research capacity and raising awareness within the local and international community, especially in at-risk countries.

“This collaborative effort, supported by various international partners and funders, underscores the importance of global cooperation in addressing agricultural challenges such as wheat blast. The objective of the training was to empower researchers with knowledge and tools for enhanced wheat production resilience in regions vulnerable to this destructive disease,” said Pawan Kumar Singh, principal scientist and project leader at CIMMYT. Singh collaborated with Batiseba Tembo, wheat breeder at ZARI-Zambia, to coordinate and lead the training program.

Thirty-eight wheat scientists, researchers, professors, policymakers, and extension agents from countries including Bangladesh, Brazil, Ethiopia, India, Kenya, Mexico, Nepal, South Africa, Sweden, Tanzania, United Kingdom, Uruguay, Zambia, and Zimbabwe convened at the Mt. Makulu Central Research Station in Chilanga, Zambia.

“Wheat blast is a devastating disease that requires concerted efforts to effectively manage it and halt further spread. The disease is new to Africa, so developing capacity amongst country partners before the disease spreads more widely is critical,” said Tembo.

Participants at the International Training on Wheat Blast Screening and Surveillance. (Photo: CIMMYT)

Highlights from the training: discussions, lab exercises, and field visits

During the training, participants engaged in lectures, laboratory exercises, and field visits. There were insightful discussions on key topics including the fundamentals of wheat blast epidemiology, disease identification, molecular detection of the wheat blast pathogen, isolation and preservation techniques for the pathogen, disease scoring methods, disease management strategies, and field surveillance and monitoring.

The course also provided practical experience in disease evaluation at the Precision Phenotyping Platform (PPP) screening nursery located in Chilanga research station. This involved characterization of a diverse range of wheat germplasm with the aim of releasing resistant varieties in countries vulnerable to wheat blast. Additionally, participants undertook field visits to farmers’ fields, conducting surveillance of wheat blast-infected areas. They collected samples and recorded survey data using electronic open data kit (ODK) capture tools.

Participants listen to a lecture by B.N. Verma, director of Zambia Seed Co., on the history of wheat production in Zambia. (Photo: CIMMYT)

“The killer disease needs to be understood and managed utilizing multi-faceted approaches to limit the expansion and damages it can cause to global wheat production. The Bangladesh Wheat and Maize Research Institute (BWMRI) is willing to share all the strategies it deployed to mitigate the effect of wheat blast,” said Golam Faruq, BWMRI’s director general.

Participants visited seed farms to gain practical insights into seed production processes and quality assurance measures. These visits provided first-hand knowledge of seed selection, breeding techniques, and management practices crucial for developing resistant wheat varieties. Participants also visited research sites and laboratories to observe advanced research methodologies and technologies related to wheat blast management. These visits exposed them to cutting-edge techniques in disease diagnosis, molecular analysis, and germplasm screening, enhancing their understanding of effective disease surveillance and control strategies.

Field visit. (Photo: CIMMYT)

“The training and knowledge sharing event was a significant first step in developing understanding and capacity to deal with wheat blast for partners from several African countries. It was wonderful to see the efforts made to ensure gender diversity among participants,” said Professor Diane Saunders from the John Innes Centre, UK.

New heat-tolerant wheat varieties prove fruitful for Ethiopia’s irrigated lowlands

Ethiopia is the largest wheat producer in Africa, accounting for around 65% of the total wheat production in sub-Saharan Africa. Despite the old tradition of rainfed wheat cultivation in the highlands, irrigated production in the dry, hot lowlands is a recent practice in the country.

In the irrigated lowlands of Afar and Oromia, situated along the Awash River Basin, CIMMYT and the Ethiopian Institute of Agricultural Research (EIAR) have been supporting small scale farming households to improve yields since 2021. The Adaptation, Demonstration and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project supports research centers to identify new technologies suitable for target planting areas through adaptation and development, which are then released to farmers. Funded by Germany’s Federal Ministry for Economic Development (BMZ) and Deutsche Gesellschaft fuer Internationale Zusammenarbeit (GIZ) GMBH, EIAR leads on implementation while CIMMYT provides technical support and coordination.

In the Afar and Oromia regions of Ethiopia, farmers observe wheat trials of the new varieties released in partnership with CIMMYT and EIAR. (Photo: Ayele Badebo)

So far, several bread and durum wheat varieties and agronomic practices have been recommended for target areas through adaptation and demonstration. The seeds of adapted varieties have been multiplied and distributed to small scale farmers in a cluster approach on seed loan basis.

Cross-continent collaboration

The Werer Agricultural Research Center (WRC) run by EIAR has released two wheat varieties: one bread wheat line (EBW192905) and one durum wheat line (423613), both suitable for agroecology between 300-1700 meters above sea level.

Both varieties were selected from the CIMMYT wheat breeding program at its headquarters in Mexico. The new bread wheat variety exceeded the standard checks by 17% (Gaámabo and Kingbird) and 28% (Mangudo and Werer). 

The lines were trialed through multi-location testing in Afar and Oromia, with both lines displaying tolerance to biotic and abiotic stresses. Accelerated seed multiplication of these varieties is in progress using main and off seasons.

The ADAPT-Wheat project, working in the region since 2021, has released two new varieties for use in the Ethiopian lowlands. (Photo: Ayele Badebo)

“These new varieties will diversify the number of adapted wheat varieties in the lowlands and increase yields under irrigation” said Geremew Awas, a CIMMYT research officer working for the ADAPT project in Ethiopia. Hailu Mengistu, EIAR wheat breeder at WRC, also indicated the need for fast seed delivery of climate resilient wheat varieties on farmers’ hands to realize genetic gain and increase income and food security of the households.

These new varieties will be provided with a local name by breeders to make it easy for farmers and other growers to identify them and will be introduced to farmers through demonstrations and field days. Eligible seed growers who are interested in producing and marketing the basic and certified seeds of these varieties can access early generation seeds from the WRC.

Re-imagining heat tolerance traits in wheat – part 2

CIMMYT, along with other institutions, is enhancing wheat’s heat tolerance through four GRDC investments. These projects focus on identifying heat tolerance traits and developing scalable phenotyping technologies. Utilizing advanced tools like High Performance Liquid Chromatography (HPLC), the Dualex flavonoid meter, and hyperspectral technology, these initiatives aim to create heat-tolerant wheat varieties to ensure resilience against climate change.

Read the full story.

New innovative crops could significantly reduce agriculture’s climate change impact and environmental footprint

As the global population approaches the 10 billion mark, the reliance on fertilisers to boost agricultural production has become an essential, yet environmentally challenging, practice. A Century-long dependence on these additives has allowed food production to keep pace with the growth in human population. However, the use of fertilisers across various farming systems is now causing severe ecological stress. The leaching of nitrogen into natural ecosystems, coupled with the release of greenhouse gases, is pushing the Earth’s environmental limits to a critical threshold.

To address this, an ambitious new research initiative aims to shrink the nitrogen footprint of agriculture by developing a breakthrough technology based on nature’s own solutions: a natural process called biological nitrification inhibition (BNI). The Novo Nordisk Foundation has awarded CIMMYT a grant of up to USD 21.1 million to lead an innovation research initiative called CropSustaiN that is designed to reduce the nitrogen footprint of wheat cultivation.

“Success in this initiative could lead to a major shift in agricultural practices globally, benefiting both the planet and farmers’ livelihoods. In addition to using less fertiliser, cost for the farmer will be minimal because all the components are already in the seed. This initiative could, potentially, be extended from wheat cultivation to include other staple crops like maize and rice,” says Claus Felby, Senior Vice President, Biotech, Novo Nordisk Foundation.

“BNI could be a part of how we revolutionise nitrogen management in agriculture. It represents a genetic mitigation strategy that not only complement existing methods but also has the potential to decrease the need for synthetic fertilisers substantially. The mitigation potential of better nitrogen fertiliser management could be as impactful for the Global South as the Green Revolution,” explains Bram Govaerts, Director General, CIMMYT.

Revolutionary mitigation approach

Rooted in a seed-based genetic strategy, BNI leverages a plant’s innate ability to suppress soil nitrification through the release of natural compounds. This approach potentially promises to curb the use and leaching of synthetic nitrogen fertilisers—a significant contributor to greenhouse gas emissions and water pollution—without compromising wheat yield or soil vitality. The BNI-method contrasts with synthetic nitrification inhibitors and could offer a more scalable and cost-effective solution, potentially reducing nitrogen fertiliser usage by 20%, depending on regional farming conditions.

By harnessing the power of genetics in plant seeds, CropSustaiN leverages the natural process of BNI to develop new wheat varieties that require significantly less nitrogen fertiliser. Using conventional breeding, genes from wild crop relatives like wild rye, which have inherently better nitrogen use efficiency, are incorporated. CIMMYT makes such breeding products available to its global network of partners for the international public good.

The agenda for CropSustaiN includes validating BNI efficacy across diverse climates and integrating the technology into mainstream agricultural protocols. While the venture carries success risks, the potential rewards—ranging from widespread BNI adoption to valuable insights into nitrogen management—position it as a pioneering initiative. By ensuring that the seeds developed through this program are accessible to all farmers without exclusive patent rights, the Novo Nordisk Foundation is leading an inclusive approach to agricultural innovation.

CropSustaiN builds on the joint research by the Japan International Research Center for Agricultural Sciences (JIRCAS) and CIMMYT that started in 2015. The initiative has already yielded BNI wheat lines tested over three farming seasons. These innovative crops are now poised for further development and for scaling worldwide, indicating a potential paradigm shift in agricultural practices.

The Novo Nordisk Foundation has already laid the groundwork for CropSustaiN by funding related BNI research at CIMMYT, the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Aarhus University, the University of Aberdeen, and the University of Copenhagen -thus fostering an ecosystem for research innovation.

About the Novo Nordisk Foundation

Established in Denmark in 1924, the Novo Nordisk Foundation is an enterprise foundation with philanthropic objectives. The vision of the Foundation is to improve people’s health and the sustainability of society and the planet. The Foundation’s mission is to progress research and innovation in the prevention and treatment of cardiometabolic and infectious diseases as well as to advance knowledge and solutions to support a green transformation of society.

www.novonordiskfonden.dk/en

About CIMMYT

CIMMYT is a cutting edge, non-profit, international organization dedicated to solving tomorrow’s problems today. It is entrusted with fostering improved quantity, quality, and dependability of production systems and basic cereals such as maize, wheat, triticale, sorghum, millets, and associated crops through applied agricultural science, particularly in the Global South, through building strong partnerships. This combination enhances the livelihood trajectories and resilience of millions of resource-poor farmers, while working towards a more productive, inclusive, and resilient agrifood system within planetary boundaries. CIMMYT is a core CGIAR Research Center, a global research partnership for a food-secure future, dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources. For more information, visit staging.cimmyt.org.

Further information 

Jakob Stein, Communications Specialist, jse@novo.dk

CIMMYT and China join forces to tackle wheat disease in Africa

While wheat acreage has been increasing across the whole of Africa, the sub-Saharan countries account for a significant proportion of the total growth and yield, equaling an area of approximately 3.1 million hectares and a production of more than 9 million tons. However, in recent years, Fusarium head blight (FHB) or head scab has become a major disease in the region, causing significant reductions in yield and quality due to the lack of resistant varieties and management tools.

In China, a successful wheat shuttle breeding program by the Chinese Academy of Agricultural Sciences (CAAS) and CIMMYT for improving FHB has existed since the 1980s. Additionally, CIMMYT and the Jiangsu Academy of Agricultural Sciences (JAAS) have provided an FHB screening station in Nanjing since 2019. With a wealth of experience in confronting the disease, this ongoing partnership can help to solve the challenges currently faced by farmers in Africa.

To this end, CAAS, JAAS, and CIMMYT organized a training workshop on FHB management for Africa, which took place with financial support from China Aid in Beijing and Nanjing, China, between 10 and 23 April 2024. Twenty participants, 45% of which were women, attended the workshop, with specialists in wheat breeding, pathology, seed quarantine, and other related fields at public institutions in Ethiopia, Zambia, and Lesotho.

“This is the first time China has worked with an international organization to conduct an agricultural training workshop for sub-Saharan Africa,” said Zhonghu He, CIMMYT distinguished scientist and country liaison officer in China.

A hands-on demonstration at the Jiangsu Academy of Agricultural Sciences (JAAS) and CIMMYT Fusarium head blight (FHB) precision phenotyping platform helps scientists in Africa to better understand and fight the wheat disease. (Photo: Liu Xiyan/CAAS)

Practical tools to target FHB

Experts from China and CIMMYT shared their successful experiences of FHB management, including breeding resistant varieties. The trainees benefitted from hands-on experience of FHB identification, disease screening (including inoculum preparation, inoculation, and scoring), mycotoxin quantification techniques, and wheat breeding.

At the end of the workshop, the participants were extremely pleased to observe the impressive progress made in China on wheat FHB both on breeding and disease control, and they expressed strong willingness to contribute to collaboration between Africa, China, and CIMMYT on more wheat breeding and research. Netsanet Bacha Hei from the Ethiopian Institute of Agricultural Research (EIAR) was impressed with the scientific and technical expertise provided in the training and mentioned that sub-Saharan Africa needs similar practical trainings to mitigate the threat of FHB. Similar opinions were echoed by Doreen Malekano Chomba from the Zambian Plant Quarantine and Phytosanitary Service (PQPS), who discussed the need to have an effective in-country surveillance and monitoring to assess and manage FHB in the region.

Participants gather for the opening ceremony of the workshop at the Chinese Academy of Agricultural Sciences (CAAS) in Beijing. (Photo: Li Simin/CAAS)

Xu Zhang, who heads the FHB research program at JAAS, is very appreciative of the collaborative work that has been going on for several decades between CIMMYT and China, highlighting that the workshop represents another step in understanding and managing FHB in sub-Saharan Africa and beyond, Zhang said, JAAS and CIMMYT has grown together through strong partnership.

“This training lays firm groundwork for future China-Africa-CIMMYT collaboration on mitigating the threat of FHB and improving wheat production and food security in sub-Saharan African countries,” said He.

Rebel Seeds’ Borlaug gets Hard wheat classification

Australia’s smallest seed company, Rebel Seeds, has achieved a significant milestone with the Australian Hard classification for Borlaug 100, a wheat variety introduced in 2015 through the CIMMYT-Australia-ICARDA Germplasm Evaluation (CAIGE) project. This classification allows Borlaug 100 to be delivered into H2 segregations at bulk-handling sites across Queensland and northern New South Wales, benefiting local growers with better prices and enhancing its export potential. The success of Borlaug 100 underscores CIMMYT’s crucial role in providing resilient, high-yielding wheat varieties suited to diverse growing conditions globally.

Read the full story.

Enhanced radiation use efficiency and grain filling rate as the main drivers of grain yield genetic gains in the CIMMYT elite spring wheat yield trial

CIMMYT’s Bread Wheat Breeding Program analyzed top wheat genotypes over 14 years, aiming to boost grain yield (GY) and stability. Results at the Norman E. Borlaug Research Station in Mexico showed an annual GY gain of 0.96%, driven by enhancements in biomass, grain filling rate, and radiation use efficiency. This underscores CIMMYT’s success in delivering high-yielding wheat varieties globally and suggests potential future gains through diverse genotype intercrossing.

Read the full story.

Indian scientists visit Türkiye for soil and root health training program

Soil is the foundation of agriculture, and healthy soil is critical to the entire ecosystem. However, soil health is under threat today as many factors make soil unhealthy, leading to significant losses in farming. CIMMYT in India has been addressing these issues in partnership with national and international institutions, while CIMMYT’s SBP program in Türkiye aims to deliver high-yielding wheat germplasm that is resistant to SBP and supports the International Soil-Borne Pathogens Research & Development Center (ISBPRDC) of Türkiye. It also facilitates knowledge exchange and technology transfer to support joint research and development activities to improve soil health.

On arrival, the group of scientists and professors from Bihar was welcomed by Metin Türker, director general of Agricultural Research and Policies (TAGEM). Talking about the intricate nexus of agriculture, climate, and technology, Türker emphasized varietal developments to irrigation advancements and engaged in lively discussions with the group, fueled by a shared vision for agricultural sustainability.

Led by Abdelfattah A. Dababat, CIMMYT country representative in Türkiye and the leader of the SBD program, the scientists and professors from India ventured into the heart of research institutions, immersing themselves in the latest innovations in wheat improvement and plant pathology. Their journey took them from Ankara to Eskisehir and ended at the Abant Izzet Baysal University, Bolu, where they were greeted by passionate experts eager to share their knowledge. Bonds were forged amid lectures and laboratory demonstrations, and ideas ignited, paving the way for future collaborations.

Visit to Ankara Province

The participants visited the Field Crops Central Research Institute and were introduced to the TAGEM Seed Gene Bank and Herbarium. Participants were acquainted with seed processing and preservation methods with live demonstrations. Following that, participants visited the Plant Protection Central Research Institute in Ankara, where its Director Ayse Ozdem gave an overview of the institute’s mandates and research work. Participants had the opportunity to explore the plant pathology laboratory and learn about major crop diseases in Türkiye and their control measures.

Participants later visited winter wheat trial sites at the research station in Haymana, a district of Ankara province. The group then interacted with Mesut Keser, ICARDA’s wheat breeder who specializes in winter and facultative wheat while working on the International Winter Wheat Improvement Program (IWWIP). This was followed by a visit to the pathology field experiments, a breeder seed production area, and an experimental trial for evaluating Syngenta TYMIRIUM® technology at the research station.

Visit to TZARI in Eskisehir

Scientists also had a chance to visit the Transitional Zone Agricultural Research Institute located in the Central Anatolian Plateau of Türkiye. The institute’s director Sabri Cakir welcomed the participants and briefed them about the ongoing research activities of the institute and its relevance to agriculture in Türkiye. Savas Belen gave a general overview of the institute and the breeding program, while Abdullah Tane Kilinc presented a glimpse of the activities of the Department of Plant Pathology. Professor Halil Toktay gave an overview of plant parasitic nematodes in wheat and potato, followed by Gül Erginbas Orakci who discussed the importance of managing soil-borne pathogens.

Beyhan Akin, wheat breeder at CIMMYT, gave a presentation on CIMMYT’s breeding activities in Türkiye, and Oğuz Önder presented fertilizer application on the quality of Bread Wheat and the importance of foliar fertilization in crops.

Thereafter, participants visited the plant pathology laboratory where Abdelfattah A. Dababat and Gül Erginbas-Orakci gave an overview of laboratory methods to study Cereal Cyst Nematodes and Root-Lesion Nematodes with live demonstrations. Innovative approaches to tackle the Plant-Parasitic Nematodes in agriculture were also discussed. In the agronomy laboratory, Oğuz Önder gave a live demonstration for estimating plant grain and biomass yield by optical sensor-based technologies. Participants also had the opportunity to explore the soil science laboratory and become familiar with state-of-the-art equipment used for soil nutrient analysis.

Visit to Bolu

The participants visited Abant Izzet Baysal University, in Bolu, where the Rector Professor. Mustafa Alişarlı welcomed them. This was followed by presentations and discussions on burning issues in agriculture. Professor Senol Yildiz gave a presentation on soil health assessment and management. Professor Halil Kütük of the Department of Plant Protection gave a brief overview of the latest research advancement in biological control of major crop diseases. In continuation, Abdelfattah A. Dababat gave an overview of the cereal cyst nematode and their management. The discussion led to a brainstorming session on soil health management, soil-borne diseases, soil microbiome, and the challenges of using microorganisms for soil health improvements. The major challenges and opportunities for agriculture development under changing climate scenarios in India and Türkiye were also discussed.

The training course exposed participants to the latest research and technologies for soil and root health management to increase agricultural productivity and profitability immediately and into the future. During the entire visit, participants working in different fields (soil science, agronomy, plant breeding, and microbiology) interacted with Türkiye’s expert counterparts to discuss their work and share valuable research insights. Several topics and technologies relevant to global agriculture, like zero tillage, climate-resilient agriculture, precision input management, hidden hunger, and digital agriculture, were discussed. Participants also explored future opportunities for bilateral research collaborations between India and Türkiye.

Participants expressed their deepest gratitude to the CIMMYT team at Türkiye, led by Abdelfattah A. Dababat, for arranging an effective training program and for the support provided at every step. “Your careful planning and thoughtful execution have created an environment where learning flourishes and connections are made. Thank you for your invaluable contribution to our learning journey,” said the participants. Participants also expressed their sincere thanks to the Ministry of Agriculture, Türkiye, and the BISA team for coordinating this training and making the entire experience seamless and impactful for all involved. Special thanks were offered to the Government of Bihar for supporting the travel of scientists from India for this training program under the climate-resilient agriculture project in the state.

Successful surveillance results in early first detection of Ug99 in South Asia

The detection of the Ug99 wheat stem rust strain TTKTT in Nepal showcases the effectiveness of CIMMYT-led global surveillance efforts. Identified early through diligent field surveys by Nepal’s NPPRC and NWRP and confirmed by Denmark’s GRRC, this proactive response helped prevent further spread. Despite no subsequent detections in South Asia, the case underlines the importance of ongoing surveillance and development of resistant wheat varieties, supported by international initiatives.

Read the full story.

Unlocking the power of collaboration in global wheat science

CIMMYT Global Wheat Program (GWP) scientists visited National Agricultural Research Systems (NARS) partners in Pakistan, Nepal, and India during February 2024. The key purpose was to review current approaches and explore new opportunities to enhance collaborative wheat improvement activities.

NARS partners described their current priorities and recent changes in their activities, while CIMMYT shared recent modernization efforts of its wheat breeding and highlighted opportunities to enhance collaborative wheat improvement. GWP representatives included Interim Wheat Director Kevin Pixley, and scientists Naeela Qureshi, Velu Govindan, Keith Gardner, Sridhar Bhavani, T.P. Tiwari, and Arun K Joshi.

Representatives from the Pakistan Agricultural Research Council (PARC) and CIMMYT meet to identify chances for improved cooperation in wheat breeding research. (Photo: Awais Yaqub/CIMMYT)

Planning the future of South Asian wheat

In each country, CIMMYT and NARS leaders held a one-day meeting to review and plan their wheat improvement partnership, with attendance from 25-30 wheat scientists in each country. The sessions aimed to review and identify bottlenecks to the wheat impact pathway in each country, describe recent changes in the breeding programs of CIMMYT and NARS partners, and prioritize and agree updates to the NARS-CIMMYT wheat improvement collaborations.

NARS partners highlighted their wheat improvement programs through field visits to research stations. Visitors attended Wheat Research Institute (ARI), Faisalabad and National Agricultural Research Center (NARC), Islamabad in Pakistan; National Wheat Research Program (NWRP), Bhairahawa and National Plant Breeding & Genetics Research Center (NPBGRC), Khumaltar in Nepal; and Indian Institute of Wheat and Barley Research (IIWBR), Punjab Agricultural University (PAU), Borlaug Institute for South Asia (BISA), and the Indian Agricultural Research Institute (IARI) in India.

The GWP team also visited: Faisalabad Agricultural University, with a special focus on collaborative zinc biofortification work in Pakistan; farmers’ fields in Nepal to see participatory evaluations of elite wheat lines (candidates for release as new varieties) and to hear from farmers about challenges and expectations from improved varieties; and the Lumbini Seed Company to learn about the crucial role of seed companies, bottlenecks, and opportunities in the pathway from research to impact in farmers’ fields.

NARS scientists and directors in all three countries were enthusiastic about the opportunities for enhanced partnership to adopt some of the modernizing technologies that AGG has brought to CIMMYT. Partners are especially keen to –

  1. Receive earlier generation varieties, segregating breeding lines to empower them to select in their own environments.
  2. Model and explore strategies to shorten their breeding cycles.
  3. Apply quantitative genetics tools to better select parents for their crossing blocks.
  4. Adopt experimental designs that improve efficiency.
  5. Explore opportunities for co-implementing improvement programs through shared testing schemes, communities of practice (e.g. for quantitative genetics or use of exotic germplasm to address challenges from climate change), and more.
A highlight of the trip in Nepal: visiting on-farm trials, where farmers share insights about their preferences for improved varieties, where they often mentioned tolerance over lodging. (Photo: CIMMYT)

“The visit provided CIMMYT and NARS wheat scientists with the opportunity to exchange experiences and ideas, and to explore ways of enhancing collaborations that will strengthen our joint impact on wheat farmers and consumers,” said Pixley.

Following these visits, the Bangladesh Wheat and Maize Research Institute (BWMRI) soon reached out to CIMMYT to request a similar review and planning meeting, with a vision to modernize and strengthen their wheat improvement partnership.