Skip to main content

research: Wheat

Maize and wheat science to sustainably feed the world

As the world turns its attention to the policy-shaping discussions during this week’s Pre-Summit of the UN Food System Summit, the need for science and innovation to advance the transformation of food, land and water systems is clear.

The International Maize and Wheat Improvement Center (CIMMYT), with its 50-year track record of impact, success and high return on investment, is essential to these efforts.

Our new institutional brochure, Maize and wheat science to sustainably feed the world, links CIMMYT’s mission, vision and excellence in science to the urgent needs of a world where an estimated tenth of the global population — up to 811 million people — are undernourished.

CIMMYT is also a crucial wellspring of response capacity to CGIAR — the largest global, publicly funded research organization scaling solutions for food, land and water system challenges.

View and download the new CIMMYT Brochure.

View and download the new CIMMYT Brochure.Maize and wheat science to sustainably feed the world explains why we do what we do in light of these challenges.

  • CIMMYT leads maize and wheat research for food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.
  • Our research is focused on smallholder farmers in low- and middle-income countries and on improving the livelihoods of people who live on less than $2 a day.
  • CIMMYT science reaches them through innovation hubs, appropriate technologies, sustainable sourcing, and helps to address their needs and challenges through public policy guidance.

Applying high-quality science and strong partnerships, CIMMYT works for a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems.

Protecting plants will protect people and the planet

This story was originally published on the Inter Press Service (IPS) website.

Durum wheat field landscape at CIMMYT's experimental station in Toluca, Mexico. (Photo: Alfonso Cortés/CIMMYT)
Durum wheat field landscape at CIMMYT’s experimental station in Toluca, Mexico. (Photo: Alfonso CortĂ©s/CIMMYT)

Back-to-back droughts followed by plagues of locusts have pushed over a million people in southern Madagascar to the brink of starvation in recent months. In the worst famine in half a century, villagers have sold their possessions and are eating the locusts, raw cactus fruits, and wild leaves to survive.

Instead of bringing relief, this year’s rains were accompanied by warm temperatures that created the ideal conditions for infestations of fall armyworm, which destroys mainly maize, one of the main food crops of sub-Saharan Africa.

Drought and famine are not strangers to southern Madagascar, and other areas of eastern Africa, but climate change bringing warmer temperatures is believed to be exacerbating this latest tragedy, according to The Deep South, a new report by the World Bank.

Up to 40% of global food output is lost each year through pests and diseases, according to FAO estimates, while up to 811 million people suffer from hunger. Climate change is one of several factors driving this threat, while trade and travel transport plant pests and pathogens around the world, and environmental degradation facilitates their establishment.

Crop pests and pathogens have threatened food supplies since agriculture began. The Irish potato famine of the late 1840s, caused by late blight disease, killed about one million people. The ancient Greeks and Romans were well familiar with wheat stem rust, which continues to destroy harvests in developing countries.

But recent research on the impact of temperature increases in the tropics caused by climate change has documented an expansion of some crop pests and diseases into more northern and southern latitudes at an average of about 2.7 km a year.

Prevention is critical to confronting such threats, as brutally demonstrated by the impact of the COVID-19 pandemic on humankind. It is far more cost-effective to protect plants from pests and diseases rather than tackling full-blown emergencies.

One way to protect food production is with pest- and disease-resistant crop varieties, meaning that the conservation, sharing, and use of crop biodiversity to breed resistant varieties is a key component of the global battle for food security.

CGIAR manages a network of publicly-held gene banks around the world that safeguard and share crop biodiversity and facilitate its use in breeding more resistant, climate-resilient and productive varieties. It is essential that this exchange doesn’t exacerbate the problem, so CGIAR works with international and national plant health authorities to ensure that material distributed is free of pests and pathogens, following the highest standards and protocols for sharing plant germplasm. The distribution and use of that germplasm for crop improvement is essential for cutting the estimated 540 billion US dollars of losses due to plant diseases annually.

Understanding the relationship between climate change and plant health is key to conserving biodiversity and boosting food production today and for future generations. Human-driven climate change is the challenge of our time. It poses grave threats to agriculture and is already affecting the food security and incomes of small-scale farming households across the developing world.

We need to improve the tools and innovations available to farmers. Rice production is both a driver and victim of climate change. Extreme weather events menace the livelihoods of 144 million smallholder rice farmers. Yet traditional cultivation methods such as flooded paddies contribute approximately 10% of global man-made methane, a potent greenhouse gas. By leveraging rice genetic diversity and improving cultivation techniques we can reduce greenhouse gas emissions, enhance efficiency, and help farmers adapt to future climates.

A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)
A farmer in Tanzania stands in front of her maize plot where she grows improved, drought tolerant maize variety TAN 250. (Photo: Anne Wangalachi/CIMMYT)

We also need to be cognizant that gender relationships matter in crop management. A lack of gender perspectives has hindered wider adoption of resistant varieties and practices such as integrated pest management. Collaboration between social and crop scientists to co-design inclusive innovations is essential.

Men and women often value different aspects of crops and technologies. Men may value high yielding disease-resistant varieties, whereas women prioritize traits related to food security, such as early maturity. Incorporating women’s preferences into a new variety is a question of gender equity and economic necessity. Women produce a significant proportion of the food grown globally. If they had the same access to productive resources as men, such as improved varieties, women could increase yields by 20-30%, which would generate up to a 4% increase in the total agricultural output of developing countries.

Practices to grow healthy crops also need to include environmental considerations. What is known as a One Health Approach starts from the recognition that life is not segmented. All is connected. Rooted in concerns over threats of zoonotic diseases spreading from animals, especially livestock, to humans, the concept has been broadened to encompass agriculture and the environment.

This ecosystem approach combines different strategies and practices, such as minimizing pesticide use. This helps protect pollinators, animals that eat crop pests, and other beneficial organisms.

The challenge is to produce enough food to feed a growing population without increasing agriculture’s negative impacts on the environment, particularly through greenhouse gas emissions and unsustainable farming practices that degrade vital soil and water resources, and threaten biodiversity.

Behavioral and policy change on the part of farmers, consumers, and governments will be just as important as technological innovation to achieve this.

The goal of zero hunger is unattainable without the vibrancy of healthy plants, the source of the food we eat and the air we breathe. The quest for a food secure future, enshrined in the UN Sustainable Development Goals, requires us to combine research and development with local and international cooperation so that efforts led by CGIAR to protect plant health, and increase agriculture’s benefits, reach the communities most in need.

Barbara H. Wells MSc, PhD is the Global Director of Genetic Innovation at the CGIAR and Director General of the International Potato Center. She has worked in senior-executive level in the agricultural and forestry sectors for over 30 years.

CRP Wheat Annual Report 2020

We are proud to present highlighted impacts from WHEAT’s research in our 2020 Annual Report, showcasing the shared accomplishments through global partnerships for the eighth year of the program.

Read the WHEAT 2020 Annual Report

Read a PDF version of the WHEAT 2020 Annual Report 

Read the WHEAT 2020 Technical Annual Report

In 2020, the COVID-19 crisis devastated communities, economies, and livelihoods, especially of the world’s most vulnerable populations. At the same time, climate change continued to threaten wheat systems around the world. Under unprecedented challenges, WHEAT scientists and partners responded swiftly, generating new research evidence, forming new partnerships, and improving access to conservation agriculture and farm mechanization technologies.

This web-based report focuses on some of the major impacts the program has had on sustainable intensification, gender and social inclusion, and technological innovations for more productive wheat-based farming. Although they are reported for 2020, these impacts reflect years of dedicated science and strong collaborative relationships with partners.

We are deeply grateful for our partners in the science, research, policymaking, and funding communities who have allowed us to continue our work in the face of urgent and powerful challenges. We hope you enjoy this year’s Annual Report as we look back upon our outcomes and achievements in 2020 and set our targets for the future.

CIMMYT announces new Director General ad interim

Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with José Francisco Gutiérrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico's Guanajuato state.
Bram Govaerts (left), Nicole Birrell (second from left) and Martin Kropff (right) stand for a group photo with JosĂ© Francisco GutiĂ©rrez Michel (second from right), Secretary of Agri-Food and Rural Development of Mexico’s Guanajuato state.

Today the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) announced leadership changes.

The Board approved the appointment of Martin Kropff, current Director General of CIMMYT, as Global Director of Resilient Agrifood Systems of CGIAR. He will play a critical role in enabling an effective transition to the new structure of CGIAR and implementing the CGIAR 2030 Research and Innovation Strategy. In this role, Kropff will be hosted by the CGIAR System Management Organization and will be based in Montpellier, France.

“We congratulate Dr. Kropff on his new position. We are convinced that he will bring to CGIAR the same excellence in science, innovation and effective management that he brought to CIMMYT,” said Board of Trustees Outgoing Chair Nicole Birrell, who completes her term in October this year.

“Through my tenure as CIMMYT Director General, we built a strong and committed team. I am sure that — with the support of the Management Committee, the Executive Committee, the Board, and the three CGIAR Science Group directors — the work of CIMMYT will find a good place in CGIAR,” said Martin Kropff.

New Director General ad interim

Effective July 1, 2021, in accordance with CIMMYT’s Constitution, the Board of Trustees appointed Bram Govaerts as CIMMYT’s Director General ad interim.

Govaerts has been part of the CIMMYT family since 2007. He is Chief Operating Officer and Deputy Director General for Research (Sustainable Production Systems and Integrated Programs) ad interim. He is also the director of CIMMYT’s Integrated Development Program.

Govaerts is renowned for pioneering, implementing and inspiring transformational changes for farmers and consumers in meeting sustainable development challenges. He brings together multi-disciplinary science and development teams to integrate sustainable, multi-stakeholder and sector strategies that generate innovation and change in agri-food systems.

“On behalf of the full Board, we want to thank Dr. Govaerts for his leadership and willingness to ensure that the Center, our research and our operations continue to run smoothly to serve our mandate and mission, as well as the broader One CGIAR vision,” said Board of Trustees Incoming Chair Margaret Bath.

“The world needs CIMMYT and our mission now more than ever, to respond to the challenges that are ahead. We are ready to take up this role, as CIMMYT has done ever since Norman Borlaug and his talented team started their work in the service of the poorest. Let us continue celebrating his legacy by generating further impact through our science,” Govaerts said.

Govaerts is the ninth Director General to serve since CIMMYT was founded in 1966.

Annual Report 2020 launched

We began 2020 with grim news of the COVID-19 pandemic spreading from country to country, wreaking havoc on national economies, causing countless personal tragedies, and putting additional pressure on the livelihoods of the poor and hungry.

The global crisis exposed the enormous vulnerability of our food system.

If we have learned anything from the past year, it is that we need to urgently invest in science for renewed food systems that deliver affordable, sufficient, and healthy diets produced within planetary boundaries.

During this time, the dedication and resilience of the CIMMYT community allowed us to continue making important advances toward that vision.

We hope you enjoy reading our stories and will join us in actively working towards resilience, renewal and transition in our agri-food systems, to ensure that they are strong in the face of current and future crises.

Read the web version of the Annual Report 2020

Download the Annual Report 2020 in PDF format

Download the financial report 2020

Adult plant resistance (APR): the strategy to beat persistent pathogens

Scientists examine Ug99 stem rust symptoms on wheat. (Photo: Petr Kosina/CIMMYT)

The three rust diseases, yellow (stripe) rust, black (stem) rust, and brown (left) rust occur in most wheat production environments, causing substantial yield losses and under serious epidemics, can threaten the global wheat supply.

CIMMYT is one of the largest providers of elite germplasm to national partners in over 80 countries. CIMMYT nurseries, known for research in developing adaptive, high-yielding and high-quality germplasm, also carry resistance to several biotic and abiotic stresses, such as rust disease.

Through years of research and experience, CIMMYT has found that durable control of wheat rusts can be achieved by developing and deploying wheat varieties with complex adult-plant resistance (APR). A combination of both conventional and modern technologies in APR will enable breeders to address the problem of rusts and other diseases and continue progress in delivering higher genetic gains, a key goal of the Accelerating Genetic Gains in Maize and Wheat (AGG) project.

Learn more about CIMMYT’s APR strategy: CIMMYT Strategy for Adult Plant Resistance (APR)

For more information on CIMMYT’s APR strategy, contact CIMMYT’s Head of Wheat Rust Pathology and Molecular Genetics, Sridhar Bhavani.

From science to impact: a chat with women scientists at CIMMYT

At the International Maize and Wheat Improvement Center (CIMMYT), staff are one of our most important assets. We anchor our commitment to diversity and inclusion through our vision, mission and organizational strategy. We interpret workplace diversity as understanding, accepting and valuing all aspects of one’s identity, including gender.

Scientists such as Itria Ibba, head of the Wheat Chemistry and Quality Laboratory, Thokozile (Thoko) Ndhlela, maize line development breeder, and Huihui Li, quantitative geneticist, empower the rest of the maize and wheat research community to do more for those who need sustainable food systems the most.

It wasn’t easy to find a convenient time for the four of us to have a conversation — me, because of COVID-19 travel restrictions, from the Netherlands, Itria in Mexico, Thoko in Zimbabwe and Huihui in China – but we managed. I enjoyed hearing about their work, what sparked — and continues to spark — their passion for maize and wheat research and had the chance to share some thoughts about where the CGIAR transition is taking us.

Martin Kropff, Itria Ibba, Thoko Ndhlela and Huihui Li share a discussion over Zoom. (Photo: CIMMYT)

Martin Kropff: Hello Itria, Huihui and Thoko, great to see you! I’d love to hear more about what you do. Why do you think your work is important in this day and age?

Itria Ibba: Hello Martin! I lead the [CIMMYT] Wheat Chemistry and Quality Laboratory. I am very passionate about my work, which I believe is very important.

In the lab we work both on the improvement of wheat technological and nutritional quality. Both of these aspects are fundamental for the successful adoption of a wheat variety and, of course, to promote a healthy and nutritious diet. Development of nutritious varieties is especially important because — especially in developing countries — the basic diet doesn’t provide all the micro and macronutrients necessary to live a healthy life. Since my focus is wheat, a staple crop that is mainly used for human consumption, I think the work that I am doing can actually have a direct and real impact on the lives of many people.

Kropff: It is important that you — on the quality side of the work — can give feedback to the breeders, and they listen to you. Is it happening?

Ibba: I believe that yes. Of course, quality cannot be the only target in the selection process where several other traits such as yield potential, disease resistance and tolerance to abiotic stresses have to be considered. However, especially for wheat, quality needs to be considered because it is strictly associated with the economic value of a specific variety and plays a fundamental role throughout the whole wheat value chain. The feedback we are giving is being taken positively. Of course, it could be ‘heard’ more.

Kropff: If I may ask, do you think you’re being treated as a scientist regardless of your gender? Or does it matter?

Ibba: Personally, I have always felt that I was respected, in my lab and in my team, especially at CIMMYT. At the beginning, I had some concerns because I am a bit young
 Mainly because of that, yes, but not because I am a woman. I cannot say anything bad from that perspective.

Kropff: I think that young people must have the future in our organization. Sometimes when people get older — I try not to be like that, but I am also getting older — they think that they know everything and then you have to be very careful, because the innovations are mostly coming from young people. But young minds come up with new ideas. What about your work, Huihui? You are contributing in a completely different way than Itria and Thoko, and you are coming from a mathematical point of view. When I see you, I always think about math.

Li: Yes, due to my major, sometimes I feel like I am a stranger working in an agricultural research organization. Because I can’t breed new varieties, for example. So, what’s my position? I ask myself: how can I have a successful career in agriculture? But I think that in this new era, this new digital era, I can do more.

Kropff: Data, data, data!

Li: Yes! We can do smart agriculture based on big data. We can do a lot of things with prediction, so that breeders can save time and effort. Maybe we cannot breed the varieties directly or we cannot publish our new findings in high impact journals, but we can play an essential role for this work to be successful. I think that’s my added value: to be useful to breeders.

Kropff: And you are! Thoko, what about you?

Ndhlela: I’m a maize breeder. I’m responsible for two product profiles in southern Africa and these are extra early, early and nutritious maize. I feel like my work is very important, given that I am focusing on developing and deploying nutritious and stress-tolerant maize varieties to people who rely on maize as a staple food crop. White maize is the one that is mainly consumed and yet it doesn’t contain any of the micronutrients such as vitamin A, zinc, iron. We are working towards closing that gap where people have limited or no access to other foods that contain those micronutrients. If we provide them with maize that is nutritious, then we close that gap and addressing the issue of malnutrition. It is especially critical, for young children. According to UNICEF, 53% of the mortalities in children globally are due to micronutrient deficiencies. My work aims to address to a greater extent the problems that farmers face.

Thoko Ndhlela presents on provitamin A maize at a CIMMYT demonstration plot in Zimbabwe. (Photo: CIMMYT)

Kropff: Are you working on provitamin A maize?

Ndhlela: Yes!

Kropff: It’s orange right? How are consumers adopting it? Does that require extra marketing activities?

Ndhlela: Yes, because in most countries where maize is a popular staple food, people use yellow maize mostly for livestock feeds. But when it comes to the main food, they mainly use white maize. So there has to be that extra effort. We have been working with HarvestPlus on that front, and so far in southern Africa we’ve made good strides in terms of getting people to accept the maize.

Back in the day, when they were first introduced to the idea of eating yellow maize as main food, that maize came from food relief and not in a good state, so there was that negative attitude, which they remembered when we came in with vitamin A maize [which has a yellow color]. We told them, “This is different” and the fact that we did demos, they grew the maize, they harvested and consumed it, led to their acceptance of it. Right now, we have so much demand for seed, especially across southern Africa. Seed companies that we work with say that the seed is sold out and people are still looking for it.

Kropff: I’m very happy to hear this. We have to make sure that what we do is demand-driven, right? And on your role as a woman in research in Zimbabwe. Do you feel like you are taken seriously as a scientist?

Ndhlela: I really do, yes. I am really given space to be myself, to do my work and have that impact on the ground.

Ibba: Martin, I have a question regarding One CGIAR. Will there be any changes within CIMMYT regarding redistribution of research areas? Will some of the research areas change the research focus or implement new research groups and strategies?

Kropff: I could talk for five hours about this. CGIAR has big plans to change the structure, to change the initiatives, to change everything this year.
I believe that CIMMYT is strong, we have a lot of impact. The quality of our work is really high, and I want to make sure that CIMMYT’s work — your work — finds a solid landing in the new CGIAR.

They’re envisioning a restructuring in three large science groups. Several Directors General suggest that we shouldn’t start breaking everything up but that we take whole programs as we have them now and bring them into the new science groups. It’s complicated but everyone wants the CGIAR to be successful.

In terms of research, what we do as CIMMYT already provides solutions, for example, the Integrated Development Programs, such as CSISA, MasAgro, SIMLESA. This has now been taken over by the whole CGIAR. These are programs where you work with national systems and you look at what is important to them, and where innovation is needed. Not focusing on single solutions but integrated solutions from different disciplines. When the research needs come directly from the stakeholders, we become more demand-driven. And that makes life even more exciting.

I think that when we listen to our stakeholders, there will always be a maize and wheat component [in agricultural research]. When we interviewed them in 2020, they stated that things [that are on top of their wish list for agricultural research and development are] breeding, agronomy, big data, and wheat, maize and rice.

I always say: what we need is food systems that deliver affordable — you said it already, Thoko — sufficient and healthy diets produced within planetary boundaries. And for all those criteria, wheat and maize are key because they are efficient, they are produced very well, they provide a good basis of nutrition, and you can produce them within planetary boundaries.

But, back to you. Could you share a story or anecdote about a turning point or defining moment in your work?

Ibba: Personally, I’ve had different turning points that led me to this career but I believe that one of the most important moments for me was when I started my PhD in Crop Science at Washington State University. There for the first time in my scientific career I understood the importance of working together with breeders, molecular scientists, cereal chemists and even with food companies in order to deliver a successful product from farmers all the way to consumers. The research done there had a real impact that you could see and I loved it. Also for this reason, I am happy to now work at CIMMYT because this happens here, as well, but at a bigger scale. You can clearly see that the work and research you do are directly used and go into new wheat lines and new varieties which are grown by different farmers across the world. It’s amazing. That’s what I think had a bigger impact for me.

Itria Ibba presenting on wheat quality in her lab at CIMMYT HQ, Mexico. (Photo: CIMMYT)

Ndhlela: I think the biggest moment in my work was when I was first employed as a scientist at CIMMYT. I always looked at CIMMYT scientists as role models. I remember many times that CIMMYT jobs were being advertised for technicians, and people would say, “Oh, this is yours now!” and I told them, “No, no, no, I will only join CIMMYT as a scientist.” And I waited for that moment. And it came and was a turning point in my career and I really thought that now I can express myself, do my work without limitations. And to reach impact!

Another great moment in my work is when I hear that hundreds of farmers are growing and consuming the varieties that I am involved in developing and deploying. I really want to hear people talking of impact: how many tons of certified seed is being channeled from seed companies to the growers, and how many peoples’ lives are we improving. I think that really defines my work. If the varieties don’t get to the farmer, then it is just work going to waste.

Li: Sometimes I feel inferior because I can’t breed a variety, or have big papers in agriculture-related journals, but one day I looked up my citation of my publications and I felt self-satisfied. I could feel my impact. Actually, several of my papers are highly cited; my total citation is more than 3,000 right now.

Kropff: Oh good!

Li: Yes! That means that my work has impact and many people are using the algorithm I developed to have even more impact. Papers that cite my work are published in Science and Nature, Nature Genetics, etc. I feel useful and like my work plays an essential role in research.

Kropff: That’s the thing: there’s impact in science and impact in farmers’ fields and at CIMMYT it comes together. Colleagues at CIMMYT are taking your results and using them to make a difference through crop variety improvement and other things.

Ndhlela: How do you think that One CGIAR will help strengthen our research towards the Sustainable Development Goals across the geographies where we work?

Kropff: I have always promoted the idea of ‘One CGIAR’. Even before joining CIMMYT. But it is complicated because we’re bringing 13 CGIAR Centers together. I saw it at Wageningen University: when you have one organization, you can be so much stronger and more visible, globally.

Because together we [One CGIAR] are the global international organization for agricultural research. We add something [to our global partners such as] the Food and Agriculture Organization of the UN (FAO) which works on agricultural policy, and IFAD that has international development programs and World Food Programme which delivers food — most of it staple crops — to those who need it the most. But supplying food is not a sustainable approach, we want to have sustainable food systems in those countries, so that people can produce their own food. That’s where research is necessary, and knowledge is necessary.

I am super proud that the wheat and maize and agronomy work we do is so well adopted. Farmers are adopting our varieties across the globe. These are new varieties I’m talking about — this is key — which are on average 10 years old and they respond to current challenges happening on the ground. Regarding your work, Thoko, with maize, I just got data from Prasanna [CIMMYT’s Maize Program and CGIAR Research Program on Maize Leader, Prasanna Boddupalli] that farmers are growing drought-tolerant maize and other maize varieties from CIMMYT on 5 million hectares in eastern and southern Africa! All of this is because of a good seed systems approach with the private sector: small seed companies delivering our varieties scaling our great breeding work. Taking it to the farmers!

I think that the work that we do is super important to reach the Sustainable Development Goals. Number one —– well, it’s number two, but for me it is the first —– is ending hunger. Because when you’re hungry, you cannot think or live normally. Poverty is also an incredibly important challenge. But I would put hunger as number one. I don’t think any of us here have had real hunger. My parents did, in the Second World War and let me tell you, when I heard those stories, I realized that that’s something that nobody should go through.

Climate change as well. We have to keep innovating because the climate keeps changing. I was just reading today in a Dutch newspaper that 2 degrees won’t be reached, it will be more. And in the Netherlands the land is so low, so that even with dykes, we will not be able to manage in the next 50 years. People will have to start moving. In the Indo-Gangetic Plains, they’ll have to plant short duration rice, use smart machinery such as the Happy Seeder, then plant short duration wheat — all just to stay ahead of the looming 50 ˚C weather.

Do you agree?

Ibba: Well, yes, but I hope that in the end there will be good coordination between the CGIAR Centers and everything. But if it works well, then I definitely think that it will be more impactful. That’s for sure.

Kropff: What can supervisors and mentors do to encourage women in science careers?

Li: I think this is a good question Martin. I am sure that Itria and Thoko will agree with me: women need more than just our salary. I think that women are more emotional, so, most of the time, when my supervisor is more considerate and careful in regard to my emotions, I feel touched and actually, more motivated. I simply need more consideration, emotionally. I have some experience in this with students [who work for me]. When I want to stimulate their motivation, I compare the two effects. Say, I increase their salary. I feel that the male student is happier than the female. [Laughs] On the other hand, I try to be more considerate with all of my students and ask them about their families or express concern about something. When I do this, I don’t get much of a reaction from the males but the females are grateful. I think the same works for me.

Huihui Li at work in her lab in China. (Photo: CIMMYT)

Kropff: I always intend to treat everyone equally and I think I do. But then some people need to be treated differently. That is situational management based on the capabilities and also the personality of people. Do we have to be more mindful of how one works with women?

Li: Well, people are diverse.

Kropff: Right. On the one hand, people should be treated as they want to be treated based on their individual personality, and then on the other hand you want to make sure that women are taken as seriously as men in, say, science.

Ndhlela: I agree with Huihui. Supervisors should give maximum support to women because they already have full plates. The field of science is challenging, so if they feel that they’re not being given enough support, they tend to get discouraged and demoralized. So, supervisors and colleagues need to take that into account. Like Huihui said, women are more emotional than our counterparts. And they need that support. When dealing with women in a professional setting, supervisors could take a visionary style where they give us space to work and do our assigned duties without a lot of interference. Micromanagement is frustrating. From my experience, women in science are serious and they can work with minimum supervision and they are really out there to achieve objectives.

Ibba: I agree with both of you. Space and trust, and constructive criticism. Apart from the strength and support from one’s supervisor, it would be good to implement a mentorship program for young scientists. Sometimes you need a non-supervisor voice or someone that can guide you [who you do not report to]. Human Resources also need to play a key role in supporting women and men, and ensuring zero discrimination. But I’m sure that all we really want is to be treated as humans [laughs]. We all have emotions.

Kropff: Thank you very much colleagues for this open discussion. This has been very interesting and given me a lot of food for thought. Our conversation makes me miss pre-COVID-19 informal moments at work and at conferences, social moments where people open up. But here we show, we can do that during Zoom meetings as well with videos on to read each other’s body language and with groups that are small. Thank you for the inspiration!

Beneficial bioactives

Popular starchy staples maize and wheat provide more than simple dietary energy, but they are often found at the center of debates around the excessive consumption of carbohydrates.

While the nutrient contribution of whole grains is commonly emphasized in dietary guidelines, the milling and subsequent processing of cereal products tends to reduce or remove much of the important protein, fat, vitamin and mineral content, and in recent years there has been increasing concern about the ultra-processing of cereal-based food products containing noxious dietary components that exacerbate the occurrence of non-communicable diseases.

For these reasons — and because of the focus on energy content — maize and wheat are not often considered to be among the categories of “nutrient-rich” foods that can contribute to reducing micronutrient malnutrition. Consequently, it is unsurprising that a popular perception that cereals make a limited contribution to nutritious diets persists. This view has not been successfully challenged by a necessarily nuanced understanding of the complex role of cereals, and particularly the carbohydrate fractions, in human nutrition.

“In addition to the hidden micronutrients, there is sound scientific and popular awareness of the importance of some dietary components such as dietary fiber,” says Nigel Poole, Emeritus Professor of International Development at the School of Oriental and African Studies (SOAS).

“Though there is as yet imperfect scientific understanding and public awareness of the carbohydrates which make up dietary fiber,” he explains, “biomedical research continues to highlight the importance of carbohydrates in health and well-being. Moreover, there is a need for further knowledge on the nature and roles of many other bioactive food components that are not usually considered to be nutrients.”

These bioactives are substances such as carotenoids, flavonoids, and polyphenols. Most of the beneficial effects of the consumption of whole grain cereals on non-communicable diseases are currently attributed to the bioactive components of dietary fiber and the wide variety of phytochemicals.

A growing body of evidence from cereal chemistry, food science and metabolic studies shows that the bioactives in cereals are important for nutrition, health and well-being. In a new working paper authored in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), Poole demonstrates that there is considerable potential for plant breeding strategies to improve these elements of grain composition. This could be done through exploiting natural variation, genetic and genomic selection methods, and mutagenesis and transgenesis in order to modify cell wall polysaccharides, and specifically to improve the starch composition and structure in breeding material through natural and induced mutations.

Rebalancing the agri-nutrition research agenda, Poole argues, is necessary in order to explore, explain and exploit the contribution to diets of hitherto less-researched nutrient-dense crops and other foods. Nevertheless, because of the quantities in which cereals are consumed, the nutritional contribution of cereals in addition to energy complements the consumption of micronutrient-rich fruits, vegetables, nuts and pulses in diverse diets.

To leverage the bioactive content of cereals — including dietary fiber — as well as the macro- and micronutrient content, a comprehensive approach to food and nutrition systems from farm to metabolism is needed, spanning research disciplines and food systems’ stakeholders throughout the agri-food industries, and embracing policy makers, nutrition advocacy, and consumer education and behavior change.

Read the full working paper: Food security, nutrition and health: Implications for maize and wheat research and development

Nigel Poole conducted research for this paper during a year-long Visiting Fellowship at CIMMYT, with support from scientists at the institution.

Breaking Ground: Fatima Camarillo invests in education

It was clear to Fatima Camarillo Castillo from a young age that her future was in agriculture. She grew up on a farm in a small village in Zacatecas, Mexico, and recalls working in the fields alongside her father and siblings, helping with the harvests and milking the cows. And every year, her family ran into the same issue with their crops: droughts.

“Sometimes the harvest was okay, but sometimes we didn’t have any harvest at all,” says Camarillo. “For us that meant that, if we didn’t have enough harvest, then for the whole year my mother and father struggled to send us to school.”

But they did send her to school, and instead of escaping the persistent challenges that agriculture had presented her family in her young life, she was determined to solve them. “After elementary school we had to leave the farm to continue our education,” she explains. “I knew about all the challenges that small farmers face and I wanted to have an impact on them.”

To this day, Camarillo believes in the power of education. Her schooling took her all the way to the International Maize and Wheat Improvement Center (CIMMYT), where she is now not only a researcher, but an educator herself. After her extensive study of plant breeding, genetics and wheat physiology, Camarillo gained a master’s degree from the University of Massachusetts, Amherst, and a PhD from Texas A+M University.

She was a part of CIMMYT’s fellowship program while pursuing her doctorate, and she joined the organization’s wheat breeding team shortly afterward. Camarillo now splits her time between wheat research and organizing the training activities for CIMMYT’s Global Wheat Program (GWP) wheat improvement course.

Fatima Camarillo analyzes durum wheat in the field at CIMMYT’s experimental research station in Ciudad ObregĂłn, Mexico. (Photo: CIMMYT)

A special legacy

CIMMYT’s wheat improvement course is an internationally recognized program where scientists from national agricultural research programs (NARS) from around the world travel to CIMMYT Headquarters in Texcoco, Mexico, and then to Ciudad Obregón, for a 16-week training. Participants observe an entire breeding cycle and learn about the latest technologies and systems for breeding.

“A crucial component of having an impact on farmers is establishing good relationships with national programs, where all the germplasm that CIMMYT develops is going to go,” says Camarillo. “But at the same time, these partners need training. They need to know what is behind these varieties and the process for developing them, and we try to keep them updated with the vision, the current technologies and the breeding pipeline.”

The organization’s university-focused training programs are also special to Camarillo for many reasons, having participated in one of them herself. In fact, her first ever exposure to CIMMYT was through the annual Open Doors day which she attended during her first year of university, watching the breeders and scientists that would eventually become her colleagues give talks on germplasm development and distribution.

The courses also give students a chance to see all how their theoretical education can be applied in the real world. “When you are in graduate school you care a lot about data analysis and the most recent molecular tools,” says Camarillo. “But there is something else out there, the real problems outside. By taking the breeding program course you understand these challenges and situations.”

Camarillo remembers being struck by the thought that something that happens in a research station in Mexico can have an impact on the whole world. “CIMMYT cares about how other countries will adopt new varieties, it’s not just about developing germplasm for the sake of it,” she explains. “We’re interested in how new varieties are going to reach the farmers who need them, and for that, training is essential.”

“At the end of the day, these researchers are the ones who will help us evaluate germplasm. If they’re well trained, the efficiency of the whole process will increase.”

Fatima Camarillo (standing, third from the right) in Ciudad ObregĂłn, Mexico, with participants on the GWP’s 2019 training program. (Photo: CIMMYT)

Keeping an eye on the breeding pipeline

With one foot in education and the other in research, Camarillo has a unique perspective on CIMMYT’s strategy for bringing tools and findings out of the lab, and towards the next step in the impact pathway. A key part of her work involves helping to research physiological traits by developing new tools to increase phenotyping efficiency in the breeding pipeline.

In particular, she is working on a project to develop high-throughput phenotyping tools, which use hyperspectral sensors and cameras to measure several traits in plants. This can help reflect how the plant is responding to different stresses internally, and helps physiologists and breeders understand how the plant behaves within a specific environment, and then quickly integrate these traits into the breeding process.

“Overall it increases the efficiency of selection, so farmers will have better materials, better germplasm, and more reliable yield across environments in a shorter period of time,” says Camarillo.   

Sharing the recipe for success

Camarillo’s role in both breeding and training speaks to CIMMYT’s historic and proven strategy of working with national programs to effectively deliver improved seeds to the farmers who need them. In addition to developing friendships with trainees from around the world, she is helping CIMMYT to expand its global network of research and agriculture professionals.

As a product and purveyor of a great agricultural education, Camarillo is dedicated to it passing on. “I think we have to invest in education,” she says. “It is the only path to solve the current problems we face, not only in agriculture, but in every single discipline.”

“If we don’t invest and take the time for education, our future is very uncertain.”

Fatima Camarillo Castillo

Fatima Camarillo Castillo is an associate scientist and training coordinator working with CIMMYT’s Global Wheat Program, based in Mexico.

A view from above

Scientists at the International Maize and Wheat Improvement Center (CIMMYT) have been harnessing the power of drones and other remote sensing tools to accelerate crop improvement, monitor harmful crop pests and diseases, and automate the detection of land boundaries for farmers.

A crucial step in crop improvement is phenotyping, which traditionally involves breeders walking through plots and visually assessing each plant for desired traits. However, ground-based measurements can be time-consuming and labor-intensive.

This is where remote sensing comes in. By analyzing imagery taken using tools like drones, scientists can quickly and accurately assess small crop plots from large trials, making crop improvement more scalable and cost-effective. These plant traits assessed at plot trials can also be scaled out to farmers’ fields using satellite imagery data and integrated into decision support systems for scientists, farmers and decision-makers.

Here are some of the latest developments from our team of remote sensing experts.

An aerial view of the Global Wheat Program experimental station in Ciudad ObregĂłn, Sonora, Mexico (Photo: Francisco Pinto/CIMMYT)

Measuring plant height with high-powered drones

A recent study, published in Frontiers in Plant Science validated the use of drones to estimate the plant height of wheat crops at different growth stages.

The research team, which included scientists from CIMMYT, the Federal University of Viçosa and KWS Momont Recherche, measured and compared wheat crops at four growth stages using ground-based measurements and drone-based estimates.

The team found that plant height estimates from drones were similar in accuracy to measurements made from the ground. They also found that by using drones with real-time kinematic (RTK) systems onboard, users could eliminate the need for ground control points, increasing the drones’ mapping capability.

Recent work on maize has shown that drone-based plant height assessment is also accurate enough to be used in maize improvement and results are expected to be published next year.

A map shows drone-based plant height estimates from a maize line trial in Muzarabani, Zimbabwe. (Graphic: CIMMYT)

Advancing assessment of pests and diseases

CIMMYT scientists and their research partners have advanced the assessment of Tar Spot Complex — a major maize disease found in Central and South America — and Maize Streak Virus (MSV) disease, found in sub-Saharan Africa, using drone-based imaging approach. By analyzing drone imagery, scientists can make more objective disease severity assessments and accelerate the development of improved, disease-resistant maize varieties. Digital imaging has also shown great potential for evaluating damage to maize cobs by fall armyworm.

Scientists have had similar success with other common foliar wheat diseases, Septoria and Spot Blotch with remote sensing experiments undertaken at experimental stations across Mexico. The results of these experiments will be published later this year. Meanwhile, in collaboration with the Federal University of Technology, based in Parana, Brazil, CIMMYT scientists have been testing deep learning algorithms — computer algorithms that adjust to, or “learn” from new data and perform better over time — to automate the assessment of leaf disease severity. While still in the experimental stages, the technology is showing promising results so far.

CIMMYT researcher Gerald Blasch and EIAR research partners Tamrat Negash, Girma Mamo and Tadesse Anberbir (right to left) conduct field work in Ethiopia. (Photo: Tadesse Anberbir)

Improving forecasts for crop disease early warning systems

CIMMYT scientists, in collaboration with Université catholique de Louvain (UCLouvain), Cambridge University and the Ethiopian Institute of Agricultural Research (EIAR), are currently exploring remote sensing solutions to improve forecast models used in early warning systems for wheat rusts. Wheat rusts are fungal diseases that can destroy healthy wheat plants in just a few weeks, causing devastating losses to farmers.

Early detection is crucial to combatting disease epidemics and CIMMYT researchers and partners have been working to develop a world-leading wheat rust forecasting service for a national early warning system in Ethiopia. The forecasting service predicts the potential occurrence of the airborne disease and the environmental suitability for the disease, however the susceptibility of the host plant to the disease is currently not provided.

CIMMYT remote sensing experts are now testing the use of drones and high-resolution satellite imagery to detect wheat rusts and monitor the progression of the disease in both controlled field trial experiments and in farmers’ fields. The researchers have collaborated with the expert remote sensing lab at UCLouvain, Belgium, to explore the capability of using European Space Agency satellite data for mapping crop type distributions in Ethiopia. The results will be also published later this year.

CIMMYT and EIAR scientists collect field data in Asella, Ethiopia, using an unmanned aerial vehicle (UAV) data acquisition. (Photo: Matt Heaton)

Delivering expert irrigation and sowing advice to farmers phones

Through an initiative funded by the UK Space Agency, CIMMYT scientists and partners have integrated crop models with satellite and in-situ field data to deliver valuable irrigation scheduling information and optimum sowing dates direct to farmers in northern Mexico through a smartphone app called COMPASS — already available to iOS and Android systems. The app also allows farmers to record their own crop management activities and check their fields with weekly NDVI images.

The project has now ended, with the team delivering a webinar to farmers last October to demonstrate the app and its features. Another webinar is planned for October 2021, aiming to engage wheat and maize farmers based in the Yaqui Valley in Mexico.

CIMMYT researcher Francelino Rodrigues collects field data in Malawi using a UAV. (Photo: Francelino Rodrigues/CIMMYT)

Detecting field boundaries using high-resolution satellite imagery

In Bangladesh, CIMMYT scientists have collaborated with the University of Buffalo, USA, to explore how high-resolution satellite imagery can be used to automatically create field boundaries.

Many low and middle-income countries around the world don’t have an official land administration or cadastre system. This makes it difficult for farmers to obtain affordable credit to buy farm supplies because they have no land titles to use as collateral. Another issue is that without knowing the exact size of their fields, farmers may not be applying to the right amount of fertilizer to their land.

Using state of the art machine learning algorithms, researchers from CIMMYT and the University of Buffalo were able to detect the boundaries of agricultural fields based on high-resolution satellite images. The study, published last year, was conducted in the delta region of Bangladesh where the average field size is only about 0.1 hectare.

A CIMMYT scientist conducts an aerial phenotyping exercise in the Global Wheat Program experimental station in Ciudad ObregĂłn, Sonora, Mexico. (Photo: Francisco Pinto/CIMMYT)

Developing climate-resilient wheat

CIMMYT’s wheat physiology team has been evaluating, validating and implementing remote sensing platforms for high-throughput phenotyping of physiological traits ranging from canopy temperature to chlorophyll content (a plant’s greenness) for over a decade. Put simply, high-throughput phenotyping involves phenotyping a large number of genotypes or plots quickly and accurately.

Recently, the team has engaged in the Heat and Drought Wheat Improvement Consortium (HeDWIC) to implement new high-throughput phenotyping approaches that can assist in the identification and evaluation of new adaptive traits in wheat for heat and drought.

The team has also been collaborating with the Accelerating Genetic Gains in Maize and Wheat (AGG) project, providing remote sensing data to improve genomic selection models.

Cover photo: An unmanned aerial vehicle (UAV drone) in flight over CIMMYT’s experimental research station in Ciudad Obregon, Mexico. (Photo: Alfredo Saenz/CIMMYT)

The Green Revolution was built on manipulating genes to breed higher-yielding, disease resistant crops. Here’s an ode to one of its pioneers, Sanjaya Rajaram

This tribute to the life and work of Sanjaya Rajaram, one of Norman Borlaug’s most impactful collaborators, also flags CIMMYT’s contribution to improving livelihoods and fostering more productive sustainable maize and wheat farming in low- and middle-income countries.

Read more: https://geneticliteracyproject.org/2021/05/05/the-green-revolution-was-built-on-manipulating-genes-to-breed-higher-yielding-disease-resistant-crops-heres-an-ode-to-one-of-its-pioneers-in-emembering-world-food-prize-laureate-sanjaya-rajaram-s/

CIMMYT and John Innes Centre announce strategic collaboration on wheat research

CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)
CIMMYT researchers use coverings to increase night-time temperatures and study wheat’s heat tolerance mechanisms, key to overcoming climate change challenges to wheat production. (Photo: Kevin Pixley/CIMMYT)

The International Maize and Wheat Improvement Center (CIMMYT) and the John Innes Centre (JIC) have announced a strategic collaboration for joint research, knowledge sharing and communications, to further the global effort to develop the future of wheat.

Wheat, a cornerstone of the human diet that provides 20% of all calories and protein consumed worldwide, is threatened by climate change-related drought and heat, as well as increased frequency and spread of pest and disease outbreaks. The new collaboration, building on a history of successful joint research achievements, aims to harness state-of-the-art technology to find solutions for the world’s wheat farmers and consumers.

“I am pleased to formalize our longstanding partnership in wheat research with this agreement,” said CIMMYT Deputy Director General for Research Kevin Pixley. “Our combined scientific strengths will enhance our impacts on farmers and consumers, and ultimately contribute to global outcomes, such as the Sustainable Development Goal of Zero Hunger.”

Director of the John Innes Centre, Professor Dale Sanders commented, “Recognizing and formalizing this long-standing partnership will enable researchers from both institutes to focus on the future, where the sustainable development of resilient crops will benefit a great many people around the world.”

Thematic areas for collaboration

Scientists from CIMMYT and JIC will work jointly to apply cutting-edge approaches to wheat improvement, including:

  • developing and deploying new molecular markers for yield, resilience and nutritional traits in wheat to facilitate deploying genomic breeding approaches using data on the plant’s genetic makeup to improve breeding speed and accuracy;
  • generating, sharing and exploiting the diversity of wheat genetic material produced during crossing and identified in seed banks;
  • pursuing new technologies and approaches that increase breeding efficiency to introduce improved traits into new wheat varieties; and
  • developing improved technologies for rapid disease diagnostics and surveillance.

Plans for future collaborations include establishing a new laboratory in Norwich, United Kingdom, as part of the Health Plants, Healthy People, Healthy Plant (HP3) initiative.

Bringing innovations to farmers

An important goal of the collaboration between CIMMYT and JIC is to expand the impact of the joint research breakthroughs through knowledge sharing and capacity development. Stakeholder-targeted communications will help expand the reach and impact of these activities.

“A key element of this collaboration will be deploying our innovations to geographically diverse regions and key CIMMYT partner countries that rely on smallholder wheat production for their food security and livelihoods,” said CIMMYT Global Wheat Program Director Alison Bentley.

Capacity development and training will include collaborative research projects, staff and student exchanges and co-supervision of graduate students, exchange of materials and data, joint capacity building programs, and shared connections to the private sector. For example, plans are underway for a wheat improvement summer school for breeders in sub-Saharan African countries and an internship program to work on the Mobile And Real-time PLant disease (MARPLE) portable rust testing project in Ethiopia.


INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

Dale Sanders  – Director, John Innes Centre

OR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE JOHN INNES CENTRE:

The John Innes Centre is an independent, international centre of excellence in plant science, genetics and microbiology. Our mission is to generate knowledge of plants and microbes through innovative research, to train scientists for the future, to apply our knowledge of nature’s diversity to benefit agriculture, the environment, human health, and wellbeing, and engage with policy makers and the public.

We foster a creative, curiosity-driven approach to fundamental questions in bio-science, with a view to translating that into societal benefits. Over the last 100 years, we have achieved a range of fundamental breakthroughs, resulting in major societal impacts. Our new vision Healthy Plants, Healthy People, Healthy Planet (www.hp3) is a collaborative call to action. Bringing knowledge, skills and innovation together to create a world where we can sustainably feed a growing population, mitigate the effects of climate change and use our understanding of plants and microbes to develop foods and discover compounds to improve public health.

The John Innes Centre is strategically funded by the UKRI-BBSRC (Biotechnology and Biological Sciences Research Council), and is supported by the John Innes Foundation through provision of research accommodation, capital funding and long-term support of the Rotation PhD programme.

For more information about the John Innes Centre visit our website: www.jic.ac.uk.