Ram Kanwar Malik (center) with his team in Bihar, India, during a field visit.
Today the Weed Science Society of America (WSSA) announced the Honorary Member award for Ram Kanwar Malik, senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). This award is given every year to a person who has made outstanding contributions to weed science “through their research, teaching, publishing and outreach.”
Malik’s early engagement in agricultural sustainability led to initiatives exploring herbicide resistance evolution and management, zero tillage, and other resource-conservation technologies. At the Cereal Systems Initiative for South Asia (CSISA) — a regional project led by CIMMYT — Malik and his colleagues helped promote the practice of early wheat sowing to beat terminal heat stress, resulting in increased wheat yield in India’s eastern Indo-Gangetic Plains.
“WSSA’s Honorary Member award is one of the highest recognitions bestowed by the Weed Science Society of America,” said Krishna Reddy, Chair of the WSSA 2022 Award Committee. “[The] Honorary Member is selected for meritorious service to weed science, among non-members from North America or any weed scientist from other countries. Only one person per year is awarded this membership. Dr. Malik’s significant research in weed science and his collaborative effort to deliver solutions for farmers in developing countries like India is inspirational.”
Phalaris minor is a pernicious weed that affects crops like wheat and substantially reduces its yield potential.
Malik has worked extensively in the Indo-Gangetic Plains, leading many initiatives and innovations over the years, in collaboration with national and international partners. The WSSA award highlights Malik’s inspiring work in tackling herbicide resistance problems, first reported in India by his team in 1993. Malik was instrumental in developing a management solution for herbicide-resistant Phalaris minor, a pernicious weed in wheat crops. The integrated weed management system he helped develop raised wheat yield capacity significantly for farmers in the Indo-Gangetic Plains.
“The WSSA Honorary Member award reiterates the importance of agronomic management for sustained weed control strategies across cropping systems,” Malik said. “CIMMYT and partners, including the Australian Centre for International Agricultural Research (ACIAR), were the first to introduce zero tillage in wheat as part of a strategy to manage weed resistance problems in India. It is an honor that WSSA has recognized this collective work of ours,” he acknowledged.
Malik has devoted more than thirty years to transforming agricultural systems in the Indo-Gangetic Plains, working closely with farmers and partners, and building the capacity of national agricultural and research extension systems. he is a firm believer in farmers’ participation: “Large-scale adoption of sustainable agricultural practices is possible when we work together to leverage technologies which are mutually agreed by partners and meet farmers’ needs.”
Malik is a fellow of the Indian Society of Agronomy and the Indian Society of Weed Science (ISWS), which granted him the Lifetime Achievement Award. He has also received the Outstanding Achievement Award from the International Weed Science Society (IWSS) and the 2015 Derek Tribe Award from the Crawford Fund.
He remains passionate about and invested in changing the lives of farmers through better-bet agronomy and by leading innovative research at CIMMYT.
About the Weed Science Society of America (WSSA)
Founded in 1956, WSSA is a nonprofit scientific society that encourages and promotes the development of knowledge concerning weeds and their impact on the environment.
Emerging in the last 120 years, science-based plant breeding begins by creating novel diversity from which useful new varieties can be identified or formed. The most common approach is making targeted crosses between parents with complementary, desirable traits. This is followed by selection among the resulting plants to obtain improved types that combine desired traits and performance. A less common approach is to expose plant tissues to chemicals or radiation that stimulate random mutations of the type that occur in nature, creating diversity and driving natural selection and evolution.
Determined by farmers and consumer markets, the target traits for plant breeding can include improved grain and fruit yield, resistance to major diseases and pests, better nutritional quality, ease of processing, and tolerance to environmental stresses such as drought, heat, acid soils, flooded fields and infertile soils. Most traits are genetically complex — that is, they are controlled by many genes and gene interactions — so breeders must intercross and select among hundreds of thousands of plants over generations to develop and choose the best.
Plant breeding over the last 100 years has fostered food and nutritional security for expanding populations, adapted crops to changing climates, and helped to alleviate poverty. Together with better farming practices, improved crop varieties can help to reduce environmental degradation and to mitigate climate change from agriculture.
Is plant breeding a modern technique?
Plant breeding began around 10,000 years ago, when humans undertook the domestication of ancestral food crop species. Over the ensuing millennia, farmers selected and re-sowed seed from the best grains, fruits or plants they harvested, genetically modifying the species for human use.
Modern, science-based plant breeding is a focused, systematic and swifter version of that process. It has been applied to all crops, among them maize, wheat, rice, potatoes, beans, cassava and horticulture crops, as well as to fruit trees, sugarcane, oil palm, cotton, farm animals and other species.
With modern breeding, specialists began collecting and preserving crop diversity, including farmer-selected heirloom varieties, improved varieties and the crops’ undomesticated relatives. Today hundreds of thousands of unique samples of diverse crop types, in the form of seeds and cuttings, are meticulously preserved as living catalogs in dozens of publicly-administered “banks.”
The International Maize and Wheat Improvement Center (CIMMYT) manages a germplasm bank containing more than 180,000 unique maize- and wheat-related seed samples, and the Svalbard Global Seed Vault on the Norwegian island of Spitsbergen preserves back-up copies of nearly a million collections from CIMMYT and other banks.
Through genetic analyses or growing seed samples, scientists comb such collections to find useful traits. Data and seed samples from publicly-funded initiatives of this type are shared among breeders and other researchers worldwide. The complete DNA sequences of several food crops, including rice, maize, and wheat, are now available and greatly assist scientists to identify novel, useful diversity.
Much crop breeding is international. From its own breeding programs, CIMMYT sends half a million seed packages each year to some 800 partners, including public research institutions and private companies in 100 countries, for breeding, genetic analyses and other research.
A field worker removes the male flower of a wheat spike, as part of controlled pollination in breeding. (Photo: Alfonso Cortés/CIMMYT)
A century of breeding innovations
Early in the 20th century, plant breeders began to apply the discoveries of Gregor Mendel, a 19th-century mathematician and biologist, regarding genetic variation and heredity. They also began to take advantage of heterosis, commonly known as hybrid vigor, whereby progeny of crosses between genetically different lines will turn out stronger or more productive than their parents.
Modern statistical methods to analyze experimental data have helped breeders to understand differences in the performance of breeding offspring; particularly, how to distinguish genetic variation, which is heritable, from environmental influences on how parental traits are expressed in successive generations of plants.
Since the 1990s, geneticists and breeders have used molecular (DNA-based) markers. These are specific regions of the plant’s genome that are linked to a gene influencing a desired trait. Markers can also be used to obtain a DNA “fingerprint” of a variety, to develop detailed genetic maps and to sequence crop plant genomes. Many applications of molecular markers are used in plant breeding to select progenies of breeding crosses featuring the greatest number of desired traits from their parents.
Plant breeders normally prefer to work with “elite” populations that have already undergone breeding and thus feature high concentrations of useful genes and fewer undesirable ones, but scientists also introduce non-elite diversity into breeding populations to boost their resilience and address threats such as new fungi or viruses that attack crops.
Transgenics are products of one genetic engineering technology, in which a gene from one species is inserted in another. A great advantage of the technology for crop breeding is that it introduces the desired gene alone, in contrast to conventional breeding crosses, where many undesired genes accompany the target gene and can reduce yield or other valuable traits. Transgenics have been used since the 1990s to implant traits such as pest resistance, herbicide tolerance, or improved nutritional value. Transgenic crop varieties are grown on more than 190 million hectares worldwide and have increased harvests, raised farmers’ income and reduced the use of pesticides. Complex regulatory requirements to manage their potential health or environmental risks, as well as consumer concerns about such risks and the fair sharing of benefits, make transgenic crop varieties difficult and expensive to deploy.
Genome editing or gene editing techniques allow precise modification of specific DNA sequences, making it possible to enhance, diminish or turn off the expression of genes and to convert them to more favorable versions. Gene editing is used primarily to produce non-transgenic plants like those that arise through natural mutations. The approach can be used to improve plant traits that are controlled by single or small numbers of genes, such as resistance to diseases and better grain quality or nutrition. Whether and how to regulate gene edited crops is still being defined in many countries.
The mobile seed shop of Victoria Seeds Company provides access to improved maize varieties for farmers in remote villages of Uganda. (Photo: Kipenz Films for CIMMYT)
Selected impacts of maize and wheat breeding
In the early 1990s, a CIMMYT methodology led to improved maize varieties that tolerate moderate drought conditions around flowering time in tropical, rainfed environments, besides featuring other valuable agronomic and resilience traits. By 2015, almost half the maize-producing area in 18 countries of sub-Saharan Africa — a region where the crop provides almost a third of human calories but where 65% of maize lands face at least occasional drought — was sown to varieties from this breeding research, in partnership with the International Institute of Tropical Agriculture (IITA). The estimated yearly benefits are as high as $1 billion.
Intensive breeding for resistance to Maize Lethal Necrosis (MLN), a viral disease that appeared in eastern Africa in 2011 and quickly spread to attack maize crops across the continent, allowed the release by 2017 of 18 MLN-resistant maize hybrids.
Improved wheat varieties developed using breeding lines from CIMMYT or the International Centre for Agricultural Research in the Dry Areas (ICARDA) cover more than 100 million hectares, nearly two-thirds of the area sown to improved wheat worldwide, with benefits in added grain that range from $2.8 to 3.8 billion each year.
Breeding for resistance to devastating crop diseases and pests has saved billions of dollars in crop losses and reduced the use of costly and potentially harmful pesticides. A 2004 study showed that investments since the early 1970s in breeding for resistance in wheat to the fungal disease leaf rust had provided benefits in added grain worth 5.36 billion 1990 US dollars. Global research to control wheat stem rust disease saves wheat farmers the equivalent of at least $1.12 billion each year.
Crosses of wheat with related crops (rye) or even wild grasses — the latter known as wide crosses — have greatly improved the hardiness and productivity of wheat. For example, an estimated one-fifth of the elite wheat breeding lines in CIMMYT international yield trials features genes from Aegilops tauschii, commonly known as “goat grass,” that boost their resilience and provide other valuable traits to protect yield.
Biofortification — breeding to develop nutritionally enriched crops — has resulted in more than 60 maize and wheat varieties whose grain offers improved protein quality or enhanced levels of micro-nutrients such as zinc and provitamin A. Biofortified maize and wheat varieties have benefited smallholder farm families and consumers in more than 20 countries across sub-Saharan Africa, Asia, and Latin America. Consumption of provitamin-A-enhanced maize or sweet potato has been shown to reduce chronic vitamin A deficiencies in children in eastern and southern Africa. In India, farmers have grown a high-yielding sorghum variety with enhanced grain levels of iron and zinc since 2018 and use of iron-biofortified pearl millet has improved nutrition among vulnerable communities.
Innovations in measuring plant responses include remote sensing systems, such as multispectral and thermal cameras flown over breeding fields. In this image of the CIMMYT experimental station in Obregón, Mexico, water-stressed plots are shown in green and red. (Photo: CIMMYT and the Instituto de Agricultura Sostenible)
Thefuture
Crop breeders have been laying the groundwork to pursue genomic selection. This approach takes advantage of low-cost, genome-wide molecular markers to analyze large populations and allow scientists to predict the value of particular breeding lines and crosses to speed gains, especially for improving genetically complex traits.
Speed breeding uses artificially-extended daylength, controlled temperatures, genomic selection, data science, artificial intelligence tools and advanced technology for recording plant information — also called phenotyping — to make breeding faster and more efficient. A CIMMYT speed breeding facility for wheat features a screenhouse with specialized lighting, controlled temperatures and other special fixings that will allow four crop cycles — or generations — to be grown per year, in place of only two cycles with normal field trials. Speed breeding facilities will accelerate the development of productive and robust varieties by crop research programs worldwide.
Data analysis and management. Growing and evaluating hundreds of thousands of plants in diverse trials across multiple sites each season generates enormous volumes of data that breeders must examine, integrate, and co-analyze to inform decisions, especially about which lines to cross and which populations to discard or move forward. New informatics tools such as the Enterprise Breeding System will help scientists to manage, analyze and apply big data from genomics, field and lab studies.
Following the leaders. Driven by competition and the quest for profits, private companies that market seed and other farm products are generally on the cutting edge of breeding innovations. The CGIAR’s Excellence in Breeding (EiB) initiative is helping crop breeding programs that serve farmers in low- and middle-income countries to adopt appropriate best practices from private companies, including molecular marker-based approaches, strategic mechanization, digitization and use of big data to drive decision making. Modern plant breeding begins by ensuring that the new varieties produced are in line with what farmers and consumers want and need.
Cover photo: CIMMYT experimental station in Toluca, Mexico. Located in a valley at 2,630 meters above sea level with a cool and humid climate, it is the ideal location for selecting wheat materials resistant to foliar diseases, such as wheat rust. Conventional plant breeding involves selection among hundreds of thousands of plants from crosses over many generations, and requires extensive and costly field, screenhouse and lab facilities. (Photo: Alfonso Cortés/CIMMYT)
A farmer harvests wheat in one of CIMMYT’s research plots in Ethiopia. (Photo: P. Lowe/CIMMYT)
Five international wheat research teams have been awarded grants for their proposals to boost climate resilience in wheat through discovery and development of new breeding technologies, screening tools and novel traits.
Wheat is one of the world’s most important staple crops, accounting for about 20% of all human calories and protein and is increasingly threatened by the impacts of climate change. Experts around the world are working on ways to strengthen the crop in the face of increasing heat and drought conditions.
The proposals were submitted in response to a call by the Heat and Drought Wheat Improvement Consortium (HeDWIC), led by the International Maize and Wheat Improvement Center (CIMMYT) and global partners, made in 2021.
The grants were made possible by co-funding from the Foundation for Food & Agriculture Research (FFAR) and in-kind contributions from awardees as part of a project which brings together the latest research from scientists across the globe to deliver climate resilient wheat to farmers as quickly as possible.
Cutting-edge wheat research
Owen Atkin, from the Centre for Entrepreneurial Agri-Technology at the Australian National University, leads the awarded project “Discovering thermally stable wheat through exploration of leaf respiration in combination with photosystem II capacity and heat tolerance.”
“The ratio of dark respiration to light and CO2 saturated photosynthesis is a clear indicator of the respiratory efficiency of a plant,” Atkin said. “We will measure and couple this indicator of respiratory efficiency to the leaf hyperspectral signature of field grown wheat exposed to heat and drought. The outcome could be a powerful tool which is capable of screening for wheat lines that are more productive when challenged with drought and heatwave.”
Hannah M. Schneider, of Wageningen University & Research, leads the awarded project examining the use of a novel root trait called Multiseriate Cortical Sclerenchyma to increase drought-tolerance in wheat.
“Drought is a primary limitation to global crop production worldwide. The presence of small outer cortical cells with thick, lignified cell walls (MCS: Multiseriate Cortical Sclerenchyma) is a novel root trait that has utility in drought environments,” Schneider said. “The overall objective of this project is to evaluate and develop this trait as a tool to improve drought resistance in wheat and in other crops.”
An improved wheat variety grows in the field in Islamabad, Pakistan. (Photo: A. Yaqub/CIMMYT)
John Foulkes, of the University of Nottingham, leads an awarded project titled “Identifying spike hormone traits and molecular markers for improved heat and drought tolerance in wheat.”
“The project aims to boost climate-resilience of grain set in wheat by identifying hormone signals to the spike that buffer grain set against extreme weather, with a focus on cytokinin, ABA and ethylene responses,” Foulkes said. “This will provide novel phenotyping screens and germplasm to breeders, and lay the ground-work for genetic analysis and marker development.”
Erik Murchie, from the University of Nottingham, leads an awarded project to explore new ways of determining genetic variation in heat-induced growth inhibition in wheat.
“High temperature events as part of climate change increasingly limit crop growth and yield by disrupting metabolic and developmental processes. This project will develop rapid methods for screening growth and physiological processes during heat waves, generating new genetic resources for wheat,” Murchie said.
Eric Ober of the National Institute of Agricultural Botany in the UK, leads the awarded project “Targeted selection for thermotolerant isoforms of starch synthase.”
“Wheat remains a predominant source of calories and is fundamental to regional food security around the world. It is urgent that breeders are equipped to produce new varieties with increased tolerance to heat and drought, two stresses that commonly occur together, limiting grain production. The formation and filling of grain depends on the synthesis of starch, but a key enzyme in the pathway, starch synthase, is particularly sensitive to temperatures over 25°C. However, there exist forms of this enzyme that exhibit greater thermotolerance than that found in most current wheat varieties,” Ober said. “This project aims to develop a simple assay to screen diverse germplasm for sources of more heat-resistant forms of starch synthase that could be bred into new wheat varieties in the future.”
Breakthroughs from these projects are expected to benefit other crops, not just wheat. Other benefits of the projects include closer interaction between scientists and breeders and capacity building of younger scientists.
India has conferred posthumously upon Sanjaya Rajaram, 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), its prestigious 2022 Padma Bhushan Award in “Science and Engineering” in recognition of “distinguished service of high order.”
Among the most successful crop breeders in history, Rajaram, who passed away in 2021, personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties that were grown on at least 58 million hectares in over 50 countries, increasing global wheat production by more than 200 million tons and especially benefiting hundreds of millions of the resource-poor whose diets and livelihoods depend on this critical crop. In India and the neighboring South Asian nations of Bangladesh, Nepal, and Pakistan, inhabitants consume more than 120 million tons of wheat and wheat-based foods each year.
“Dr. Rajaram was a true titan of wheat breeding and an inspiration for young researchers, training and mentoring more than 700 scientists from developing countries worldwide,” said Bram Govaerts, CIMMYT director general. “He was also a complete gentleman, comporting himself with modesty and grace despite his many honors and accomplishments; his first priority was helping and crediting others. Rajaram is an example today for all of us to keep working with the final stakeholder — the farmer — in mind.”
The rise from rural beginnings
Born on a small farm in District Varanasi, Uttar Pradesh, India, in 1943, Rajaram studied genetics and plant breeding at the Indian Agricultural Research Institute in New Delhi. After receiving his Ph.D. from the University of Sydney, he joined CIMMYT in 1969, working as a wheat breeder alongside Nobel Prize Laureate and CIMMYT scientist Norman Borlaug in Mexico. Recognizing his talent and initiative, Borlaug appointed Rajaram as head of CIMMYT’s wheat breeding program at just 29 years of age.
The Padma Bhushan Award was announced by President Ram Nath Kovind of India on the country’s Republic Day, January 26. In 2015, Rajaram received the Pravasi Bharatiya Samman award, the highest honor conferred on Indians overseas. In 2001 he accepted the Padma Shri award from the government of India and, in 1998, the Friendship Award from the government of China.
Sanjaya Rajaram (Photo: Xochil Fonseca/CIMMYT)
Though a plant breeder and scientist by profession, Rajaram used the platform of his 2014 World Food Prize to promote an expansive, integrated vision for agricultural development. “If we want to make a change, research won’t do it alone; we need to work directly with farmers and to train young agronomists, ensuring they have a broad vision to address the problems in farmers’ fields,” Rajaram said at a news conference in Mexico City in 2014.
Rajaram also served as Director of the Integrated Gene Management Program at the International Center for Agricultural Research in the Dry Areas (ICARDA) before formally retiring in 2008. In his retirement, he continued as a special scientific advisor to CIMMYT and ICARDA.
Longstanding partners pushing forward for farmers
“India’s agricultural research community is proud of the distinguished achievements of Dr. Rajaram,” said Trilochan Mohapatra, Director General of the Indian Council of Agricultural Research (ICAR) and Secretary of the Department of Agricultural Research and Education (DARE), of India’s Ministry of Agriculture and Farmers’ Welfare. “ICAR greatly appreciates its valuable collaborations with CIMMYT to help farmers grow better crops and conserve resources under increasingly challenging conditions.”
The partnership of India with CIMMYT harks back to the 1960s-70s, when Indian farmers tripled national wheat yields in a few years by growing Borlaug’s high-yield wheat varieties and adopting improved farming practices.
In 2011, India and CIMMYT jointly launched the Borlaug Institute for South Asia (BISA) to improve cropping systems and food security, helping farmers to confront climate change and natural resource scarcities, among other challenges.
S. Ayyappan, former ICAR Director General who signed the joint declaration of intent for BISA’s establishment in India, has been honored with the 2022 Padma Shri Award.
CIMMYT is a non-profit international agricultural research and training organization focusing on two of the world’s most important cereal grains, maize and wheat, and related cropping systems and livelihoods. Wheat varieties derived from CIMMYT and ICARDA research cover more than 100 million hectares — nearly two-thirds of the area sown to improved wheat worldwide — and bring benefits in added grain worth as much as $3.8 billion each year.
Genomic selection identifies individual plants based on the information from molecular markers, DNA signposts for genes of interest, that are distributed densely throughout the wheat genome. For wheat blast, the results can help predict which wheat lines hold promise as providers of blast resistance for future crosses and those that can be advanced to the next generation after selection.
In this study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners evaluated genomic selection by combining genotypic data with extensive and precise field data on wheat blast responses for three sets of genetically diverse wheat lines and varieties, more than 700 in all, grown by partners at locations in Bangladesh and Bolivia over several crop cycles.
The study also compared the use of a small number of molecular markers linked to the 2NS translocation, a chromosome segment from the grass species Aegilops ventricosa that was introduced into wheat in the 1980s and is a strong and stable source of blast resistance, with predictions using thousands of genome-wide markers. The outcome confirms that, in environments where wheat blast resistance is determined by the 2NS translocation, genotyping using one-to-few markers tagging the translocation is enough to predict the blast response of wheat lines.
Finally, the authors found that selection based on a few wheat blast-associated molecular markers retained 89% of lines that were also selected using field performance data, and discarded 92% of those that were discarded based on field performance data. Thus, both marker-assisted selection and genomic selection offer viable alternatives to the slower and more expensive field screening of many thousands of wheat lines in hot-spot locations for the disease, particularly at early stages of breeding, and can speed the development of blast-resistant wheat varieties.
The research was conducted by scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Bangladesh Wheat and Maize Research Institute (BWMRI), the Instituto Nacional de Innovación Agropecuaria y Forestal (INIAF) of Bolivia, the Borlaug Institute for South Asia (BISA) and the Indian Council of Agricultural Research (ICAR) in India, the Swedish University of Agricultural Sciences (Alnarp), and Kansas State University in the USA. Funding for the study was provided by the Bill & Melinda Gates Foundation, the Foreign and Commonwealth Development Office of the United Kingdom, the U.S. Agency for International Development (USAID), the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR), the Swedish Research Council, and the Australian Centre for International Agricultural Research (ACIAR).
Cover photo: A researcher from Bangladesh shows blast infected wheat spikes and explains how the disease directly attacks the grain. (Photo: Chris Knight/Cornell University)
In nature, plants are simultaneously exposed to a complex system of biotic and abiotic stresses that limit crop yield. The cereal cyst nematode Heterodera filipjevi and dryland crown rot, caused by Fusarium, are important diseases facing cereal production around the world that cause significant yield loss. Yield loss accelerates when those diseases coexist with other abiotic stresses, such as drought.
Hexaploid bread wheat (Triticum aestivum L.) is an essential staple food for a large part of the world’s population, covering around 20% of daily caloric intake in the human diet, with global production at about 670.8 million tons per year, produced over 215.4 million hectares of land worldwide. Therefore, the program studying soil-borne pathogens at the International Maize and Wheat Improvement Center (CIMMYT)’s Turkey office initiated a study to investigate the effect of soil borne diseases (H. filipjevi and Fusarium culmorum) individually and in combination with drought on some morphological and physiological traits in wheat germplasm with different genetic tolerances to the three studied factors.
In this study, yield components included thousand kernel weight, spike weight, seed per spike and total grain yield. Morphological parameters, including plant height, final plant number (seedling emergence), relative water content, leaf chlorophyll content, H. filipjevi cyst number and presence of crown rot, were studied under greenhouse conditions in Turkey.
The main findings of the study showed that the interaction among water stress, F. culmorum and H. filipjevi increased the damage on the wheat parameters studied when compared with each stress applied alone. One of the most significant damages was seen in high seedling mortality under the three combined stresses (56% seedling death rate), which indicates the damage on wheat yield might occur at the seedling stage rather than later stages. This reduces plant density per area, which was ultimately responsible for low grain yield produced. The known dryland disease, crown rot, caused by F. culmorum, was significantly pronounced under water-stressed conditions.
In all studied parameters, the lowest damage was found among the resistant cultivars to biotic or abiotic stresses. This underscores the importance of wheat breeding programs to develop resistant germplasm, and reminds farmers to replace their old, susceptible varieties with new, resistant ones.
Based on our intensive experience in the CWANA region, most wheat growers basically do not recognize soil borne pathogens as a problem. In fact, most of them do not know that what nematode or soil fungal species are in their fields affecting yield. The term “hidden enemy” perfectly applies to the problems in the region and beyond. Integrated pest management (IPM) is, however, not practiced in the entire region and soil borne pathogen-induced yield losses are simply accepted.
We can conclude from this study that yield reduction in wheat due to soil borne pathogens could be lessened by improving and understanding the concept of IPM in the region where the practice of winter mono-culturing of wheat is the norm. Management of cereal soil-borne pathogens, especially cereal cyst nematode and crown rot, could involve an integrated approach that includes crop rotation, genetic resistance, crop nutrition and appropriate water supply.
Cover photo: Four different test crops show different stresses: T1V8 = Drought, T2V8 = Drought and Nematodes, T3V8 = Drought and fungus, T4V8 = Drought and nematode and fungus together. (Credit: CIMMYT)
At the same time, climate change has likely slowed breeding progress for high-yielding, broadly adapted wheat, according to the new study, published recently in Nature Plants.
“Breeders are usually optimistic, overlooking many climate change factors when selecting,” said Matthew Reynolds, wheat physiologist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of the publication. “Our findings undermine this optimism and show that the amplified interaction of wheat lines with the environment due to climate change has made it harder for breeders to identify outstanding, broadly adapted lines.”
What do 10 million data points tell scientists?
Each year for nearly half a century, wheat breeders taking part in the CIMMYT-led International Wheat Improvement Network (IWIN) have tested approximately 1,000 new, experimental wheat lines and varieties at some 700 field sites in over 90 countries.
Promising lines are taken up by wheat breeding programs worldwide, while data from the trials is used to guide global breeding and other critical wheat research, explained Wei Xiong, CIMMYT crop modeler/physiologist based in China and lead author of the new paper.
“To date, this global testing network has collected over 10 million data points, while delivering wheat germplasm estimated to be worth several billion dollars annually in extra productivity to hundreds of millions of farmers in less developed countries,” Xiong said.
Xiong and his colleagues analyzed “crossover interactions” — changes in the relative rankings of pairs of wheat lines — in 38 years of data from four kinds of wheat breeding trials, looking for the extent to which climate change or breeding progress have flipped those rankings. Two of the trials whose data they examined focused on yield in bread wheat and durum wheat, while the other two assessed wheat lines’ performance under high temperatures and in semi-arid environments, respectively.
In addition to raising yields, wheat breeders are endowing the crop with added resilience for rising temperatures.
“We found that warmer and more erratic climates since the 1980s have increased ranking changes in global wheat breeding by as much as 15 percent,” Xiong said. “This has made it harder for breeders to identify superior, broadly adapted lines and even led to scientists discarding potentially useful lines.”
Conversely, wheat cultivars emerging from breeding for tolerance to environmental stresses, particularly heat, are showing substantially more stable yields across a range of environments and fostering wheat’s adaptation to current, warmer climates, while opening opportunities for larger and faster genetic gains in the future, according to the study.
“Among other things, our findings argue for more targeted wheat breeding and testing to address rapidly shifting and unpredictable farming conditions,” Reynolds added.
Like many development research and funding organizations, the Australian Centre for International Agricultural Research (ACIAR) is emphasizing a renewed commitment to a nutrition-sensitive approach to agricultural development projects.
In the past decade, awareness has grown about the importance of diets that are rich in vitamins and minerals, and the need to combat micronutrient malnutrition which can lead to irreversible health outcomes impacting entire economies and perpetuating a tragic cycle of poverty and economic stagnation.
Lack of vitamins and minerals, often called “hidden hunger,” is not confined to lower-income food-insecure countries. In richer countries we clearly see a transition towards energy-rich, micronutrient-poor diets. In fact, populations throughout the world are eating more processed foods for reasons of convenience and price. To hit our global hunger and health targets we need to invest in nutrition-sensitive agricultural research and production as well as promoting affordable diets with varied and appealing nutrient-rich foods.
Alongside hunger, we have a pandemic of diet-related diseases that is partly caused by the over-consumption of energy-rich junk diets. This is because modern food formulations are often shaped towards addictive and unhealthy products. We see this in rising levels of obesity and diabetes, some cancers, heart diseases and chronic lung conditions.
Investing in agri-food research and improving nutrition will be much cheaper than treating these diet-related non-communicable diseases. Besides being healthier, many people will be much happier and able to live more productive lives.
Yet, the picture is bigger than micronutrient malnutrition. Even if new investments in research enable us to increase the production and delivery of fruits, vegetables and other nutrient-rich foods such as legumes and nuts, we will not have cracked the whole problem of food security, nutrition and health.
Besides “hidden hunger,” many hundreds of millions of people worldwide are hungry because they still lack the basic availability of food to live and work.
Enter cereals. Wheat, maize and rice have been the major sources of dietary energy in the form of carbohydrates in virtually all societies and for thousands of years: recent research in the Middle East suggests that the original “paleo” diet was not just the result of hunting and gathering, but included cereals in bread and beer!
There are three reasons why cereals are essential to feeding the world:
First, nutritionists and medics tell us that cereals not only provide macronutrients — carbohydrates, proteins and fats — and micronutrients — vitamins and minerals. We now know that cereals are important sources of bioactive food components that are not usually classed as nutrients, but are essential to health all the same. These are compounds like carotenoids, flavonoids, phytosterols, glucosinolates and polyphenols, which are found naturally in various plant foods and have beneficial antioxidant, anticarcinogenic, anti-inflammatory and antimicrobial properties, likely to be important in mitigating and/or combating disease.
Second, whole-grain foods, especially wheat, are also a major source of dietary fibre, which is essential for efficient digestion and metabolism. Fibre from cereals also nourishes the human gut flora whose products such as short-chain fatty acids have many health benefits including combatting some cancers. Eating such carbohydrates also helps us recognise that we have eaten sufficiently, so that we know when “enough is enough.”
Third, cereal foods are relatively cheap to produce and to buy, and also easy to transport and preserve. Hence, supplies are relatively stable, and good nutrition from cereals is likely to remain accessible to less affluent people.
But all is not well with cereals these days. Cereals are under siege from climate change-related heat and drought, and new and more virulent forms of plant diseases, which threaten our agriculture and natural resources. There remains much research to undertake in this era of rapidly changing climatic conditions, and of economic and political stresses.
Here are a few strategies for agri-food research and its supporters:
We can further increase the nutritional content of cereal foods through biofortification during plant breeding.
We can produce disease- and heat-resilient varieties of grains that are efficient in the use of water and fertilizer, and whose production is not labor-intensive.
By working with communities, we can adapt new production technologies to local conditions, especially where women are the farmers.
We can enhance the quality of cereal foods through nutrient fortification during milling, and by better processing methods and food formulation.
Experts in all agri-food disciplines can work together to inform and “nudge” consumers to make healthy food purchasing decisions.
Cereals matter, but in an age of misinformation, we still have to be cautious: Some people are susceptible to certain components of cereals such as gluten. People who are medically diagnosed with cereal intolerances must shape their diets accordingly and get their carbohydrates and bioactive food components from other sources.
So, we cannot live on bread alone: We should aim for diets which are rich in diverse foods.
Such diets include fruits and vegetables that must be accessible to people in different regions, particularly to the most vulnerable, and that provide different macronutrients, micronutrients and essential bioactive components. For most of us, the health-promoting content of cereals means that they must remain a major part of the global diet.
Nigel Poole is Emeritus Professor of International Development at SOAS University of London and Consultant at the International Maize and Wheat Improvement Center (CIMMYT).
Rajiv Sharma is Senior Scientist at the International Maize and Wheat Improvement Center (CIMMYT).
Alison Bentley is the Director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).
In an op-ed on Newsweek, CIMMYT director general Bram Govaerts wrote argues the best protection is actually reducing food system risks by building food system resilience against shocks. He highlighted how previous investments in agricultural research and development generated evidence-based strategies that mitigate global food price crisis.
Grafting wheat shoot to oat root gives the plant tolerance to a disease called “Take-all,” caused by a pathogen in soil. The white arrow shows the graft junction. (Photo: Julian Hibberd)
Grafting is the technique of joining the shoot of one plant with the root of another, so they continue to grow together as one. Until now it was thought impossible to graft grass-like plants in the group known as monocotyledons because they lack a specific tissue type, called the vascular cambium, in their stem.
Researchers at the University of Cambridge have discovered that root and shoot tissues taken from the seeds of monocotyledonous grasses — representing their earliest embryonic stages — fuse efficiently. Their results are published today in the journal Nature.
An estimated 60,000 plants are monocotyledons; many are crops that are cultivated at enormous scale, for example rice, wheat and barley.
The finding has implications for the control of serious soil-borne pathogens including Panama Disease, or Tropical Race 4, which has been destroying banana plantations for over 30 years. A recent acceleration in the spread of this disease has prompted fears of global banana shortages.
“We’ve achieved something that everyone said was impossible. Grafting embryonic tissue holds real potential across a range of grass-like species. We found that even distantly related species, separated by deep evolutionary time, are graft compatible,” said Julian Hibberd in the University of Cambridge’s Department of Plant Sciences, senior author of the report.
The technique allows monocotyledons of the same species, and of two different species, to be grafted effectively. Grafting genetically different root and shoot tissues can result in a plant with new traits — ranging from dwarf shoots, to pest and disease resistance.
Alison Bentley, CIMMYT Global Wheat Program Director and a contributor to the report, sees great potential for the grafting method to be applied to monocot crops grown by resource-poor farmers in the Global South. “From our major cereals, wheat and rice, to bananas and matoke, this technology could change the way we think about adapting food security crops to increasing disease pressures and changing climates.”
High magnification images show successful grafting of wheat in which a connective vein forms between root and shoot tissue after four months. White arrows show the graft junction. (Photo: Julian Hibberd)Monocotyledons breakthrough
The scientists found that the technique was effective in a range of monocotyledonous crop plants including pineapple, banana, onion, tequila agave and date palm. This was confirmed through various tests, including the injection of fluorescent dye into the plant roots — from where it was seen to move up the plant and across the graft junction.
“I read back over decades of research papers on grafting and everybody said that it couldn’t be done in monocots. I was stubborn enough to keep going — for years — until I proved them wrong,” said Greg Reeves, a Gates Cambridge Scholar in the University of Cambridge Department of Plant Sciences, and first author of the paper.
“It’s an urgent challenge to make important food crops resistant to the diseases that are destroying them,” Reeves explained. “Our technique allows us to add disease resistance, or other beneficial properties like salt-tolerance, to grass-like plants without resorting to genetic modification or lengthy breeding programmes.”
The world’s banana industry is based on a single variety, called the Cavendish banana — a clone that can withstand long-distance transportation. With no genetic diversity between plants, the crop has little disease-resilience. And Cavendish bananas are sterile, so disease resistance cannot be bred into future generations of the plant. Research groups around the world are trying to find a way to stop Panama Disease before it becomes even more widespread.
Image of date palm two and a half years after grafting. Inset shows a magnified region at the base of the plant, with the arrowhead pointing to the graft junction. (Photo: Julian Hibberd)
Grafting has been used widely since antiquity in another plant group called the dicotyledons. Dicotyledonous orchard crops — including apples and cherries, and high-value annual crops including tomatoes and cucumbers — are routinely produced on grafted plants because the process confers beneficial properties, such as disease resistance or earlier flowering.
The researchers have filed a patent for their grafting technique through Cambridge Enterprise. They have also received funding from Ceres Agri-Tech, a knowledge exchange partnership between five leading universities in the United Kingdom and three renowned agricultural research institutes.
“Panama disease is a huge problem threatening bananas across the world. It’s fantastic that the University of Cambridge has the opportunity to play a role in saving such an important food crop,” said Louise Sutherland, Director of Ceres Agri-Tech.
Ceres Agri-Tech, led by the University of Cambridge, was created and managed by Cambridge Enterprise. It has provided translational funding as well as commercialisation expertise and support to the project, to scale up the technique and improve its efficiency.
This research was funded by the Gates Cambridge Scholarship programme.
The University of Cambridge is one of the world’s top ten leading universities, with a rich history of radical thinking dating back to 1209. Its mission is to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.
The University comprises 31 autonomous Colleges and 150 departments, faculties and institutions. Its 24,450 student body includes more than 9,000 international students from 147 countries. In 2020, 70.6% of its new undergraduate students were from state schools and 21.6% from economically disadvantaged areas.
Cambridge research spans almost every discipline, from science, technology, engineering and medicine through to the arts, humanities and social sciences, with multi-disciplinary teams working to address major global challenges. Its researchers provide academic leadership, develop strategic partnerships and collaborate with colleagues worldwide.
The University sits at the heart of the ‘Cambridge cluster’, in which more than 5,300 knowledge-intensive firms employ more than 67,000 people and generate £18 billion in turnover. Cambridge has the highest number of patent applications per 100,000 residents in the UK.
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.
Cover photo: A banana producer in Kenya. (Photo: N. Palmer/CIAT)
Several recent studies document the long-term health and economic benefits from the “Green Revolution” — the widespread adoption of high-yielding staple crop varieties during the last half of the 20th century — and argue for continued investment in the development and use of such varieties.
“Our estimates provide compelling evidence that the health benefits of broad-based increases in agricultural productivity should not be overlooked,” the authors state. “From a policy perspective, government subsidies for inputs leading to a green revolution as well as investments in extension and R&D programs seem to be important.”
Norman Borlaug (fourth from right) shows a plot of Sonora-64 wheat — one of the semi-dwarf, high-yield, disease-resistant varieties that was key to the Green Revolution — to a group of young international trainees at CIMMYT’s experimental station in Ciudad Obregon, Sonora state, Mexico. (Photo: CIMMYT)
The COVID-19 pandemic exposed the fragility of the global food system and the need to transform it, increasing its environmental and economic resilience to withstand future threats, and underpinning healthier diets. The studies suggest that improved versions of cereal crops such as rice, wheat, and maize can play a key role.
“Our work speaks to the importance of supporting innovation and technology adoption in agriculture as a means of fostering economic development, improved health, and poverty reduction, said author Jan von der Goltz. “It also suggests that it is reasonable to view with some alarm the steady decline in funding for cereal crop improvement over the last few decades in sub-Saharan Africa, the continent with least diffusion of modern varieties.”
Likewise, a study co-authored by Prashant Bharadwaj of the University of California, San Diego, concluded that farmer adoption of high-yielding crop varieties (HYVs) in India reduced infant mortality dramatically across the country. Between 1960 and 2000, infant deaths dropped from 163.8 to 66.6 per 1,000 live births, and this occurred during the decades of India’s wheat productivity leap from 0.86 to 2.79 tons per hectare, as a result of HYV adoption and improved farming practices.
“What both of these papers do is to carefully establish a causal estimate of how HYVs affect infant mortality, by only comparing children born in the same location at different points in time, when HYV use was different, and by checking that mortality before arrival of HYVs was trending similarly in places that would receive different amount of HYVs,” Bharadwaj said.
“In the absence of a randomized control trial, these econometric techniques produce the best causal estimate of a phenomenon as important as the spread of HYVs during and after the Green Revolution,” he added. These thoughts were echoed by University of California San Diego professor Gordon McCord, a co-author of the global study.
Recent studies indicate that the Green Revolution also had long-term economic impacts, which also affected health outcomes.
In a 2021 update to the 2018 paper “Two Blades of Grass: The Impact of the Green Revolution,” Douglas Gollin, Professor of Development Economics at Oxford University and co-authors found that, in 90 countries where high-yielding varieties were adopted between 1965 and 2010, food crop yields increased by 44% and that, had this adoption not occurred, GDP per capita in the developing world could be half of what it is today.
Even a 10-year delay of the Green Revolution would, in 2010, have cost 17% of GDP per capita in the developing world, with a cumulative GDP loss of $83 trillion, equivalent to one year of current global GDP.
These GDP and health impacts were boosted by a related reduction in population growth. By observing causal inference at country, regional and developing world levels, and using a novel long-term impact assessment method, the study authors detected a trend: as living standards improved for rural families, they generally wanted to invest more in their children and have fewer.
“Our estimates suggest that the world would have contained more than 200 million additional people in 2010, if the onset of the Green Revolution had been delayed for ten years,” Gollin and his co-authors stated. This lower population growth seems to have increased the relative size of the working age population, which furthered GDP growth.
Ethiopian farmers give feedback to CGIAR researchers about durum wheat varieties. (Photo: C.Fadda/Bioversity International) (CC BY-NC-ND 2.0)
A long-term investment in system transformation
It takes time from the point of an intervention to when broad health impacts can be observed in the population, the authors note. For example, although the development of modern high-yielding varieties began in the 1950s and 60s, the rate of adoption did not speed up until the 1980s, 1990s, and even into the 2000s, with evidence from sub-Saharan Africa showing that variety adoption has increased by as much in the 2000s as in the four preceding decades.
In addition, any nutrition and food security strategy which aims to reach the second Sustainable Development Goal of feeding 9 billion by 2050 must incorporate wider system transformation solutions, such as zero-emissions agriculture, affordable, diverse diets and increased land conservation.
As Gollin explained, “The Green Revolution taught us that we need to approach productivity increases, especially in staple crop yields, differently. The challenge now is more complex: we need to get the same productivity increases, with fewer inputs and resources, more environmental awareness, and in larger quantities for more people.”
In part, this means increasing productivity on existing agricultural land with positive environmental and social impacts, according to Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT).
“Breeding and sharing more productive, hardy crop varieties is as important as ever,” Govaerts said, “but also engaging farmers — in our case, smallholders — in shared research and innovation efforts to bridge yield gaps, build climate-resilient farming systems, and open access to better nutrition and market opportunities.”
Cover photo: Children eat lunch at a mobile crèche outside Delhi, India. (Photo: Atul Loke/ODI) (CC BY-NC 2.0)
Two new students have graduated from the International Maize and Wheat Improvement Center’s (CIMMYT’s) Soil-Borne Pathogens program. The two new graduates, Khawla Mehalaine and Salah-Eddine Laasli, were supervised by CIMMYT senior scientist Abdelfattah Dababat.
He leads the Soil-Borne Pathogens program, which focuses on identifying the main soil-borne pathogens associated with cereals and developing an integrated pest management approach to combat them. The research team is particularly interested in finding novel sources of resistance against these pathogens.
Over the last two decades, CIMMYT scientists leading the Soil-Borne Pathogens program have trained tens of students which constitute the next generation of top researchers on this topic. Through this program, CIMMYT has also organized workshops and courses in North Africa, including a symposium on cereal nematodes held in Agadir, Morocco, in 2017.
Since soil-borne pathogens are exacerbated by water stress conditions, researchers have identified the Central and West Asia and North Africa regions as priority areas, due to their vulnerability to drought.
On March 1, 2021, Syngenta, in collaboration with CIMMYT and other partners, led the first One Earth Soil and Root Health Forum, an event which examined the importance of root and soil health to food security, climate resilience and livelihoods. The event also created a community for action on root and soil health.
Khawla Mehalaine celebrates graduating from her PhD. (Photo: handout)
Nematodes in Algeria
Mehalaine holds an engineering degree in agronomy and a master’s degree in plant protection from the Higher National School of Agronomy (ENSA) in Algeria. She successfully defended her PhD dissertation “Studies of cereal cyst nematodes of the genus Heterodera in the regions of northern Algeria” in June 2021, graduating from ENSA with honors.
She studied the behavior of four durum wheat varieties against cereal cyst nematodes through field surveys, molecular identification at species levels, and by evaluating the yield components of these wheat varieties.
She was promoted by ENSA professor Hammach M. and supervised by Dababat from CIMMYT, and professors Mustafa Imren and Göksel Özer from Abant Izzet Baysal University in Turkey.
“Completing my doctorate was a truly enriching experience and a challenging but rewarding journey,” Mehalaine said. “It was a collective effort and I am extremely grateful to Dr Abdelfattah Dababat for sharing his scientific skills, for his patience and support, and for all the opportunities I was given to further my research. Thanks to him, I got to know the world of nematodes. Special thanks to CIMMYT for funding the molecular study part.”
Salah-Eddine Laasli on his graduation day. (Photo: handout)
Root-lesion nematode and crown rot fungi
Laasli graduated with an International Master of Agronomic and Environmental Nematology (IMANEMA) from Ghent University, in collaboration with CIMMYT, the National Institute of Agricultural Research in Morocco and the Faculty of Agriculture at Abant Izzet Baysal University in Turkey.
His master thesis, entitled “Interaction of Root-Lesion Nematode (Pratylenchus thornei) and Crown Rot fungi (Fusarium culmorum) associated with wheat resistance under simulated field conditions,” was promoted by Wim Bert, a professor at the University of Ghent, and Dababat. The project was also supervised by Imren and Özer.
Laasli evaluated the host status of 150 spring wheat lines to both P. thornei and F. culmorum, and estimated the damage caused by the disease complex involving both pathogens at different infection scenarios. He found several lines that possessed multiple resistance to both diseases tested — which could be powerful sources of resistance for breeding program worldwide.
Cover photo: Irrigated wheat field. (Photo: S. Sukumaran/CIMMYT)
For over a decade, the CGIAR Research Programs on Maize (MAIZE) and Wheat (WHEAT) have been at the forefront of research-for-development benefiting maize and wheat farmers in the Global South, especially those most vulnerable to the shocks of a changing climate.
From 2012 to 2021, MAIZE has focused on doubling maize productivity and increasing incomes and livelihood opportunities from sustainable maize-based farming systems. Through MAIZE, scientists released over 650 elite, high-yielding maize varieties stacked with climate adaptive, nutrition enhancing, and pest and disease resistant traits.
The WHEAT program has worked to improve sustainable production and incomes for wheat farmers, especially smallholders, through collaboration, cutting-edge science and field-level research. Jointly with partners, WHEAT scientists released 880 high-yielding, disease- and pest-resistant, climate-resilient and nutritious varieties in 59 countries over the life of the program.
To document and share this legacy, the MAIZE and WHEAT websites have been redesigned to highlight the accomplishments of the programs and to capture their impact across the five main CGIAR Impact Areas: nutrition, poverty, gender, climate and the environment.
We invite you to visit these visually rich, sites to view the global impact of MAIZE and WHEAT, and how this essential work will continue in the future.
CIMMYT’s relationship with Mexico is one of a kind: in addition to being the birthplace of the wheat innovations that led to the Green Revolution and the founding of CGIAR, Mexico is also where maize originated thousands of years ago, becoming an emblem of the country’s economy and identity.
Honoring this longstanding connection and celebrating Mexico’s key contribution to global wheat and maize production, Mexico City will host a photo exhibition from December 1, 2021, to January 15, 2022, in the Open Galleries Lateral, located on Paseo de la Reforma, one of city’s most iconic promenades.
Titled “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat,” the exhibition illustrates the impact of MAIZE and WHEAT over the last ten years. The selection of photographs documents the challenges faced by maize and wheat smallholders in different regions, and showcases innovative interventions made by national and regional stakeholders worldwide.
From pathbreaking breeding research on climate-smart varieties to helping farming families raise their incomes, the photos — taken by CGIAR photographers before the COVID-19 pandemic — capture both the breadth of the challenges facing our global agri-food systems and the spirit of innovation and cooperation to meet them head on.
Don’t miss the chance to visit the exhibition if you are in Mexico City!
The photo exhibition “Maize and Wheat Research in Focus: Celebrating a Decade of Research for Sustainable Agricultural Development Under the CGIAR Research Programs on Maize and Wheat” will be on display in Mexico City until January 15, 2022. (Photo: Alfonso Cortés/CIMMYT)
From October 31 to November 12, all eyes and cameras turned to Glasgow, where the 26th Conference of the Parties of the United Nations Convention against Climate Change (COP26) took place in a hybrid format. With temperatures rising around the world and extreme weather events becoming increasingly frequent, country leaders and climate experts came together in Scotland to discuss the next steps in the fight against climate change.
Together with other CGIAR Centers, the International Maize and Wheat Improvement Center (CIMMYT) took part in this crucial conversation, drawing attention to the impact of climate change on smallholder agriculture and echoing CGIAR’s call for increased funding for agricultural research and innovation.
Here’s a summary of the events in which CIMMYT researchers and scientists participated.
“Because farmers feed us all: using climate for a resilient food system”
November 6, 2021
Sponsored by the UK Met Office, this event focused on the effects of climate change on the resilience of food systems and how this impact is factored into decision-making. Speakers discussed the real-life application of climate risk information, highlighting the importance of global collaboration and multi-stakeholder partnerships in developing context-specific climate services.
Focusing on CIMMYT’s work in Ethiopia, research associate Yoseph Alemayehu and senior scientist Dave Hodson provided some insights on the wheat rust early warning system. This revolutionary mechanism developed by CIMMYT and partners helps farmers in developing countries predict this disease up to a week in advance.
“COP26 highlighted the vulnerability of different agriculture sectors to climate change, including increased threats from pests and pathogens. From the work in Ethiopia on wheat rust early warning systems, strong partnerships and the application of advanced climate science can play an important role in mitigating some of the effects.” – Dave Hodson
“Developing Climate Resilient Food Systems Pathways: Approaches From Sub-Saharan Africa”
November 8, 2021
Putting an emphasis on participatory governance and community-centered technologies, this event showcased innovative approaches to strengthen the resilience of African food systems, calling for increased investment in the scale-up of climate-smart agriculture practices to meet growing demand.
Joining from Zimbabwe, Christian Thierfelder, Principal Cropping Systems Agronomist gave an overview of CIMMYT’s work in southern Africa, explaining how the introduction of conservation agriculture back in 2004 helped farmers overcome low crop yields and boost their incomes.
“If one thing was made clear at COP26, it is the urgent need for a change in the way we do agriculture. The status quo is not an option and we, as CIMMYT and part of the One CGIAR, will continue to generate the scientific evidence and climate-smart solutions to accelerate this change and address the climate challenges ahead of us, with farmers at the core of our work.” – Christian Thierfelder
“4 per 1000” Initiative Day
November 10, 2021
The “4 per 1000” Initiative, a multi-stakeholder partnership of more than 650 members on food security and climate change, held a day-long hybrid event to explore how healthy soils can help agriculture and forestry adapt to and mitigate climate change.
At the Partner Forum, Bram Govaerts, Director General of CIMMYT, stressed the urgent need to fund soil science to achieve its carbon sequestration potential, reiterating CIMMYT’s commitment to supporting this science with results-oriented actions that scale out sustainable practices and technologies.
“For me, the main take-away of the summit is the growing consensus and understanding that we need to transform agriculture and food systems to achieve global emissions targets on time.” – Bram Govaerts
Cover photo: The action zone and the globe at the Hydro, one of the venues in Glasgow where COP26 took place. (Photo: Karwai Tang/UK Government)
The findings, published in Nature Food, extend many potential benefits to national breeding programs, including improved wheat varieties better equipped to thrive in changing environmental conditions. This research was led by Sukhwinder Singh of the International Maize and Wheat Improvement Center (CIMMYT) as part of the Seeds of Discovery project.
Since the advent of modern crop improvement practices, there has been a bottleneck of genetic diversity, because many national wheat breeding programs use the same varieties in their crossing program as their “elite” source. This practice decreases genetic diversity, putting more areas of wheat at risk to pathogens and environmental stressors, now being exacerbated by a changing climate. As the global population grows, shocks to the world’s wheat supply result in more widespread dire consequences.
The research team hypothesized that many wheat accessions in genebanks — groups of related plant material from a single species collected at one time from a specific location — feature useful traits for national breeding programs to employ in their efforts to diversify their breeding programs.
“Genebanks hold many diverse accessions of wheat landraces and wild species with beneficial traits, but until recently the entire scope of diversity has never been explored and thousands of accessions have been sitting on the shelves. Our research targets beneficial traits in these varieties through genome mapping and then we can deliver them to breeding programs around the world,” Singh said.
Currently adopted approaches to introduce external beneficial genes into breeding programs’ elite cultivars take a substantial amount of time and money. “Breeding wheat from a national perspective is a race against pathogens and other abiotic threats,” said Deepmala Sehgal, co-author and wheat geneticist in the Global Wheat program at CIMMYT. “Any decrease in the time to test and release a variety has a huge positive impact on breeding programs.”
Deepmala Sehgal shows LTP lines currently being used in CIMMYT trait pipelines at the experimental station in Toluca, Mexico, for introgression of novel exotic-specific alleles into newly developed lines. (Photo: CIMMYT)
Taking into genetic biodiversity
The findings build from research undertaken through the Seeds of Discovery project, which genetically characterized nearly 80,000 samples of wheat from the seed banks of CIMMYT and the International Center for Agricultural Research in the Dry Areas (ICARDA).
First, the team undertook a large meta-survey of genetic resources from wild wheat varieties held in genebanks to create a catalog of improved traits.
“Our genetic mapping,” Singh said, “identifies beneficial traits so breeding programs don’t have to go looking through the proverbial needle in the haystack. Because of the collaborative effort of the research team, we could examine a far greater number of genomes than a single breeding program could.”
Next, the team developed a strategic three-way crossing method among 366 genebank accessions and the best historical elite varieties to reduce the time between the original introduction and deployment of an improved variety.
Sukhwinder Singh (second from left) selects best performing pre-breeding lines in India. (Photo: CIMMYT)
Worldwide impact
National breeding programs can use the diverse array of germplasm for making new crosses or can evaluate the germplasm in yield trials in their own environments.
The diverse new germplasm is being tested in major wheat producing areas, including India, Kenya, Mexico and Pakistan. In Mexico, many of the lines showed increased resistance to abiotic stresses; many lines tested in Pakistan exhibited increased disease resistance; and in India, many tested lines are now part of the national cultivar release system. Overall, national breeding programs have adopted 95 lines for their targeted breeding programs and seven lines are currently undergoing varietal trials.
“This is the first effort of its kind where large-scale pre-breeding efforts have not only enhanced the understanding of exotic genome footprints in bread wheat but also provided practical solutions to breeders,” Sehgal said. “This work has also delivered pre-breeding lines to trait pipelines within national breeding programs.”
Currently, many of these lines are being used in trait pipelines at CIMMYT to introduce these novel genomic regions into advanced elite lines. Researchers are collaborating with physiologists in CIMMYT’s global wheat program to dissect any underlying physiological mechanisms associated with the research team’s findings.
“Our investigation is a major leap forward in bringing genebank variation to the national breeding programs,” Singh explained. “Most significantly, this study sheds light on the importance of international collaborations to bring out successful products and new methods and knowledge to identify useful contributions of exotic in elite lines.”
Cover photo: A researcher holds a plant of Aegilops neglecta, a wild wheat relative. Approximately every 20 years, CIMMYT regenerates wheat wild relatives in greenhouses, to have enough healthy and viable seed for distribution when necessary. (Photo: Rocío Quiroz/CIMMYT)