Skip to main content

research: Wheat

Rapid Point-of-Care Diagnostics for Wheat Rusts (MARPLE)

MARPLE (Mobile And Real-time PLant disEase) diagnostics is a new innovative approach for fungal crop pathogen diagnostics developed by Diane Saunders’s team at the John Innes Centre.

MARPLE is the first operational system in the world using nanopore sequencing for rapid diagnostics and surveillance of complex fungal pathogens in situ. Generating results in 48 hours of field sampling, this new digital diagnostic strategy is leading revolutionary changes in plant disease diagnostics. Rapid strain level diagnostics are essential to quickly find new emergent strains and guide appropriate control measures.

Through this project, CIMMYT will:

  • Deploy and scale MARPLE to priority geographies and diseases as part of the Current and Emerging Threats to Crops Innovation Lab led by Penn State University / PlantVillage and funded by USAID’s Feed the Future.
  • Build national partner capacity for advanced disease diagnostics. We will focus geographically on Ethiopia, Kenya and Nepal for deployment of wheat stripe and stem rust diagnostics, with possible expansion to Bangladesh and Zambia (wheat blast).
  • Integrate this new in-country diagnostic capacity with recently developed disease forecasting models and early warning systems. Already functional for wheat stripe rust, the project plans to expand MARPLE to incorporate wheat stem rust and wheat blast.

Managing Wheat Blast in Bangladesh

The Managing Wheat Blast in Bangladesh: Identification and Introgression of Wheat Blast Resistance for Rapid Varietal Development and Dissemination project aims to characterize novel sources of wheat blast resistance, identification, and molecular mapping of resistance loci/gene(s) and their introgression into varietal development pipelines for rapid dissemination of resistant varieties in Bangladesh.

Objectives

  • Validate the effects of genes Rmg1, Rmg8 and RmgGR119 in field experiments
  • Identify novel wheat blast resistant sources and generating the corresponding genetic materials for investigating the resistance Quantitative Trait Loci (QTL)/genes
  • Monitor the adoption of resistant varieties BARI Gom 33 and WMRI Gom 3 by women and men farmers to learn the drivers and obstacles that are involved in the process, to inform the design of a farmer-preferred product profile, and factors in impact pathway
  • Build the capacity of the Bangladesh Wheat and Maize Research Institute (BWMRI) to operate major infrastructure in Jashore and Dinajpur at the individual and institutional levels
  • Enhance collaboration between Bangladesh and other countries showing interest on wheat blast
  • Train young wheat researchers and breeders in Jashore Precision Phenotyping Platform (PPP)

Two approaches better than one: identifying spot blotch resistance in wheat varieties

Spot blotch, a major biotic stress challenging bread wheat production is caused by the fungus Bipolaris sorokiniana. In a new study, scientists from the International Maize and Wheat Improvement Center (CIMMYT) evaluate genomic and index-based selection to select for spot blotch resistance quickly and accurately in wheat lines. The former approach facilitates selecting for spot blotch resistance, and the latter for spot blotch resistance, heading and plant height.

Genomic selection

The authors leveraged genotyping data and extensive spot blotch phenotyping data from Mexico and collaborating partners in Bangladesh and India to evaluate genomic selection, which is a promising genomic breeding strategy for spot blotch resistance. Using genomic selection for selecting lines that have not been phenotyped can reduce the breeding cycle time and cost, increase the selection intensity, and subsequently increase the rate of genetic gain.

Two scenarios were tested for predicting spot blotch: fixed effects model (less than 100 molecular markers associated with spot blotch) and genomic prediction (over 7,000 markers across the wheat genome). The clear winner was genomic prediction which was on average 177.6% more accurate than the fixed effects model, as spot blotch resistance in advanced CIMMYT wheat breeding lines is controlled by many genes of small effects.

“This finding applies to other spot blotch resistant loci too, as very few of them have shown big effects, and the advantage of genomic prediction over the fixed effects model is tremendous”, confirmed Xinyao He, Wheat Pathologist and Geneticist at CIMMYT.

The authors have also evaluated genomic prediction in different populations, including breeding lines and sister lines that share one or two parents.

Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)
Spot blotch susceptible wheat lines (left) and resistant lines. (Photo: Xinyao He and Pawan Singh/CIMMYT)

Index selection

One of the key problems faced by wheat breeders in selecting for spot blotch resistance is identifying lines that are genetically resistant to spot blotch versus those that escape and exhibit less disease by being late and tall. “The latter, unfortunately, is often the case in South Asia”, explained Pawan Singh, Head of Wheat Pathology at CIMMYT.

A potential solution to this problem is the use of selection indices that can make it easier for breeders to select individuals based on their ranking or predicted net genetic merit for multiple traits. Hence, this study reports the first successful evaluation of the linear phenotypic selection index and Eigen selection index method to simultaneously select for spot blotch resistance using the phenotype and genomic-estimated breeding values, heading and height.

This study demonstrates the prospects of integrating genomic selection and index-based selection with field based phenotypic selection for resistance in spot blotch in breeding programs.

Read the full study:
Genomic selection for spot blotch in bread wheat breeding panels, full-sibs and half-sibs and index-based selection for spot blotch, heading and plant height

Cover photo: Bipolaris sorokiniana, the fungus causing spot blotch in wheat. (Photo: Xinyao He and Pawan Singh/CIMMYT)

Diagram links physiological traits of wheat for yield potential

A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.
A generalized wiring diagram for wheat, as proposed by the authors. The diagram depicts the traits most commonly associated with the source (left) and sink (right) strengths and others that impact both the sink and source, largely dependent on growth stage (middle). TGW, thousand grain weight.

As crop yields are pushed closer to biophysical limits, achieving yield gains becomes increasingly challenging. Traditionally, scientists have worked on the premise that crop yield is a function of photosynthesis (source), the investment of assimilates into reproductive organs (sinks) and the underlying processes that enable and connect the expression of both. Although the original source-and-sink model remains valid, it must embrace more complexity, as scientific understanding improves.

A group of international researchers are proposing a new wiring diagram to show the interrelationships of the physiological traits that impact wheat yield potential, published on Nature Food. By illustrating these linkages, it shows connections among traits that may not have been apparent, which could serve as a decision support tool for crop scientists. The wiring diagram can inform new research hypotheses and breeding decisions, as well as research investment areas.

The diagram can also serve as a platform onto which new empirical data are routinely mapped and new concepts added, thereby creating an ever-richer common point of reference for refining models in the future.

“If routinely updated, the wiring diagram could lead to a paradigm change in the way we approach breeding for yield and targeting translational research,” said Matthew Reynolds, Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the study. “While focused on yield potential, the tool can be readily adapted to address climate resilience in a range of crops besides wheat.”

Breeding milestone

The new wiring diagram represents a milestone in deterministic plant breeding. It dovetails simpler models with crop simulation models.

It takes into account how source and sink strengths may interact with wheat developmental stages to determine yield. For example, at the time of stem growth, spike growth or effective grain filling.

This diagram can be used to illustrate the relative importance of specific connections among traits in their appropriate phenological context and to highlight major gaps in knowledge. This graphical representation can also serve as a roadmap to prioritize research at other levels of integration, such as metabolomic or gene expression studies. The wiring diagram can be deployed to identify ways for improving elite breeding material and to explore untapped genetic resources for unique traits and alleles.

Yield for climate resilience

The wheat scientific community is hard at work seeking new ways to get higher yields more quickly to help the world cope with population growth, climate change, wars and stable supplies of calories and protein.

“To ensure food and nutritional security in the future, raising yields must be an integral component of making crops more climate-resilient. This new tool can serve as a roadmap to design the necessary strategies to achieve these goals,” said Jeff Gwyn, Program Director of the International Wheat Yield Partnership (IWYP).

— ENDS —

READ THE FULL PUBLICATION:

A wiring-diagram to integrate physiological traits of wheat yield potential

INTERVIEW OPPORTUNITIES:

Matthew Reynolds – Distinguished Scientist and Head of Wheat Physiology at the International Maize and Wheat Improvement Center (CIMMYT)

Gustavo Ariel Slafer – Research Professor at the Catalonian Institution for Research and Advanced Studies (ICREA) and Associate Professor of the University of Lleida

For more information or to arrange interviews, please contact the CIMMYT media team:

Marcia MacNeil and Rodrigo Ordóñez: https://staging.cimmyt.org/media-center/

ACKNOWLEDGEMENTS:

The study is an international collaboration of scientists from the International Maize and Wheat Improvement Center (CIMMYT), the Catalonian Institution for Research and Advanced Studies (ICREA), the Center for Research in Agrotechnology (AGROTECNIO), the University of Lleida, the University of Nottingham, the John Innes Centre, Lancaster University, Technische UniversitĂ€t MĂŒnchen, CSIRO Agriculture & Food, and the International Wheat Yield Partnership (IWYP).

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agri-food systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food-secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.

ABOUT IWYP:

The International Wheat Yield Partnership (IWYP) represents a long-term global endeavor that utilizes a collaborative approach to bring together funding from public and private research organizations from a large number of countries. Over the first five years, the growing list of partners aims to invest up to US$100 million.

For more information, visit https://iwyp.org

CIMMYT scientists identify novel genomic regions associated with spot blotch resistance

Spot blotch, caused by the fungus Biopolaris sorokiniana poses a serious threat to bread wheat production in warm and humid wheat-growing regions globally, affecting more than 25 million hectares and resulting in huge yield losses.

Chemical control approaches, including seed treatment and fungicides, have provided acceptable spot blotch control. However, their use is unaffordable to resource-poor farmers and poses a hazard to health and the environment. In addition, “abiotic stresses like heat and drought that are widely prevalent in South Asia compound the problem, making varietal genetic resistance the last resort of farmers to combat this disease,” according to Pawan Singh, Head of Wheat Pathology at the International Maize and Wheat Improvement Center (CIMMYT). Therefore, one of CIMMYT’s wheat research focus areas is developing wheat varieties that carry genetic resistance to the disease.

Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)
Signs of spot blotch on wheat. (Photo: Philomin Juliana/CIMMYT)

Previously, only four spot blotch resistance genes in bread wheat had been identified. Through a new study, CIMMYT scientists have identified novel genomic regions associated with spot blotch resistance using the genome-wide association mapping approach with 6,736 advanced breeding lines from different years (2013 to 2020), evaluated at CIMMYT’s spot blotch screening platform in Agua Fría, in Mexico’s state of Morelos.

The study’s results are positive and confirmed that:

  • Many advanced CIMMYT breeding lines have moderate to high resistance to spot blotch.
  • Resistance to the disease is conferred quantitatively by several minor genomic regions that act together in an additive manner to confer resistance.
  • There is an association of the 2NS translocation from the wild species Aegilops ventricosa with spot blotch resistance.
  • There is also an association of the spot blotch favorable alleles at the 2NS translocation, and two markers on the telomeric end of chromosome 3BS with grain yield evaluated in multiple environments, implying that selection for favorable alleles at these markers could help obtain higher grain yield and spot blotch resistance.

“Considering the persistent threat of spot blotch to resource-poor farmers in South Asia, further research and breeding efforts to improve genetic resistance to the disease, identify novel sources of resistance by screening different germplasm, and selecting for genomic regions with minor effects using selection tools like genomic selection is essential,” explained Philomin Juliana, Molecular Breeder and Quantitative Geneticist at CIMMYT.

Read the full study:
Genome-Wide Association Mapping Indicates Quantitative Genetic Control of Spot Blotch Resistance in Bread Wheat and the Favorable Effects of Some Spot Blotch Loci on Grain Yield

Cover photo: Researchers evaluate wheat for spot blotch at CIMMYT’s experimental station in Agua Fría, Jiutepec, Morelos state, Mexico. (Photo: Xinyao He and Pawan Singh/CIMMYT)

Wheat versus heat

Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)
Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)

Across South Asia, including major wheat-producing regions of India and Pakistan, temperature extremes are threatening wheat production. Heatwaves have been reported throughout the region, with a century record for early onset of extreme heat. Monthly average temperatures across India for March and April 2022 exceeded those recorded over the past 100 years.

Widely recognized as one of the major breadbaskets of the world, the Indo-Gangetic Plains region produces over 100 million tons of wheat annually, from 30 million hectares in Bangladesh, India, Nepal and Pakistan, primarily supporting large domestic demand.

The optimal window for wheat planting is the first half of November. The late onset of the 2021 summer monsoon delayed rice planting and its subsequent harvest in the fall. This had a knock-on effect, delaying wheat planting by one to two weeks and increasing the risk of late season heat stress in March and April. Record-high temperatures over 40⁰C were observed on several days in March 2022 in the Punjabs of India and Pakistan as well as in the state of Haryana, causing wheat to mature about two weeks earlier than usual.

In-season changes and effects

Prior to the onset of extreme heat, the weather in the current season in India was favorable, prompting the Government of India to predict a record-high wheat harvest of 111 million tons. The March heat stress was unexpected and appears to have had a significant effect on the wheat crop, advancing the harvest and likely reducing yields.

Departure of the normalized difference vegetation index (NDVI) during the period from March 22 to April 7 from the average of the previous five years. The NDVI is a measure of the leaf area and the greenness of vegetation. The yellow areas in the Punjabs of India and Pakistan, as well as in the state of Haryana, indicate that wheat matured earlier than normal due to elevated temperatures. Maximum temperatures reached 40⁰C on March 15 and remained at or above this level throughout the wheat harvesting period. (Map: Urs Schulthess/CIMMYT).
Departure of the normalized difference vegetation index (NDVI) during the period from March 22 to April 7 from the average of the previous five years. The NDVI is a measure of the leaf area and the greenness of vegetation. The yellow areas in the Punjabs of India and Pakistan, as well as in the state of Haryana, indicate that wheat matured earlier than normal due to elevated temperatures. Maximum temperatures reached 40⁰C on March 15 and remained at or above this level throughout the wheat harvesting period. (Map: Urs Schulthess/CIMMYT).

In the North-Western Plains, the major wheat basket of India, the area of late-sown wheat is likely to have been most affected even though many varieties carry heat tolerance. Data from CIMMYT’s on-farm experiments show a yield loss between 15 to 20% in that region. The states of Haryana and Punjab together contribute almost 30% of India’s total wheat production and notably contribute over 60% of the government’s buffer stocks. In the North-Eastern Plains, in the states of Bihar and Uttar Pradesh, around 40% of the wheat crop was normal or even early sown, escaping heat damage, whilst the remainder of late-sown wheat is likely to be impacted at a variable level, as most of the crop in this zone matures during the third and fourth week of March.

The Government of India has now revised wheat production estimates, with a reduction of 5.7%, to 105 million tons because of the early onset of summer.

India has reported record yields for the past 5 years, helping it to meet its goal of creating a reserve stock of 40 million tons of wheat after the 2021 harvest. It went into this harvest season with a stock of 19 million tons, and the country is in a good position to face this year’s yield loss.

In Pakistan, using satellite-based crop monitoring systems, the national space agency Space & Upper Atmosphere Research Commission (SPARCO) estimated wheat production reduction close to 10%: 26 million tons, compared to the production target of 29 million tons, for the 2021-22 season.

Rural and farming health impacts

Alongside a direct negative impact on agricultural productivity, the extreme temperatures in South Asia are likely to have negative health implications for the large rural labor force involved in wheat production. There is a growing body of evidence documenting declining health status in the agricultural workforce in areas of frequent temperature extremes. This also adds to the substantial human and environmental health concerns linked to residue burning.

We recommend that systematic research be urgently undertaken to characterize and understand the impacts of elevated temperatures on the health of field-based workers involved in wheat production. This is needed to develop a holistic strategy for adapting our global cropping systems to climate change.

Amplifying wheat supply risks

Combined with the wheat supply and price impacts of the current conflict in Ukraine and trade restrictions on Russian commodities, these further impacts on the global wheat supply are deeply troubling.

India had pledged to provide increased wheat exports to bolster global supplies, but this now looks uncertain given the necessity to safeguard domestic supplies. During the COVID-19 pandemic, the Indian government supported domestic food security by providing free rations — mainly wheat and rice — to 800 million people over several months. This type of support relies on the availability of large buffer stocks which appear stable, but may be reduced if grain production and subsequent procurement levels are lower than desired.

We are already seeing indications of reduced procurement by governments with market prices running higher than usual. However, although the Food Corporation of India has procured 27% less wheat grain in the first 20 days of the wheat procurement season compared to the same period last year, the Government of India is confident about securing sufficient wheat buffer stocks.

As with the COVID-19 pandemic and the war in Ukraine, it is likely that the most marked effects of both climate change and shortages of staple crops will hit the poorest and most vulnerable communities hardest.

A chain reaction of climate impacts

The real impacts of reduced wheat production due to extreme temperatures in South Asia demonstrate the realities of the climate emergency facing wheat and agricultural production. Direct impacts on farming community health must also be considered, as our agricultural workforce is pushed to new physical limits.

Anomalies, which are likely to become the new normal, can set off a chain reaction as seen here: the late onset of the summer monsoon caused delays in the sowing of rice and the subsequent wheat crop. The delayed wheat crop was hit by the unprecedented heatwave in mid- to late March at a relatively earlier stage, thus causing even more damage.

Preparing for wheat production tipping points

Urgent action is required to develop applied mitigation and adaptation strategies, as well as to plan for transition and tipping points when key staple crops such as wheat can no longer be grown in traditional production regions.

A strategic design process is needed, supported by crop and climate models, to develop and test packages of applied solutions for near-future climate changes. On-farm evidence from many farmers’ fields in Northwestern India indicates that bundled solutions — no-till direct seeding with surface retention of crop residues coupled with early seeding of adapted varieties of wheat with juvenile heat tolerance — can help to buffer terminal heat stress and limit yield losses.

Last but not least, breeding wheat for high-temperature tolerance will continue to be crucial for securing production. Strategic planning needs to also encompass the associated social, market and political elements which underpin equitable food supply and stability.

Download the pre-print:
Wheat vs. Heat: Current temperature extremes threaten wheat production in South Asia

In memory of Zhuang Qiaosheng

Zhuang Qiaosheng (center) receives CIMMYT delegations in Beijing in 1997. (Photo: CIMMYT)
Zhuang Qiaosheng (center) receives CIMMYT delegations in Beijing in 1997. (Photo: CIMMYT)

Zhuang Qiaosheng passed away in Beijing on May 8, 2022, at the age of 105. He was the most celebrated wheat breeder in China and enjoyed a high reputation in the international community.

As a leader of Wheat Breeding Program at Chinese Academy of Agricultural Sciences (CAAS), Zhuang developed 20 high-yielding and disease-resistant winter wheat varieties from 1947 to 1995, with a total planting area of 28 million hectares in achieving notable yield increase.

Zhuang served as a member of the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) from 1984 to 1987. He made great contributions to the collaboration between CIMMYT and China, including the opening of the CIMMYT office in China and the establishment of a shuttle breeding project for improving scab resistance.

Zhuang Qiaosheng (center) with Sanjaya Rajaram (left) and Tom Lumpkin in Beijing in 2017. (Photo: CIMMYT)
Zhuang Qiaosheng (center) with Sanjaya Rajaram (left) and Tom Lumpkin in Beijing in 2017. (Photo: CIMMYT)

He did everything possible to enlarge CIMMYT activities in China before fully retiring in 2015.

He was a close friend to many CIMMYT staff, including the late distinguished scientist Sanjaya Rajaram. He also strongly recommended He Zhonghu, distinguished scientist and CIMMYT Country Representative for China, to work at CIMMYT as a postdoctoral fellow in 1990.

The CIMMYT community sends its deepest condolences to the Zhuang family.

Celebrating the life of Rosalind Morris, trailblazer for women in agriculture

A recent portrait of Rosalind Morris. (Photo: Courtesy)
A recent portrait of Rosalind Morris. (Photo: Courtesy)

Rosalind Morris, a celebrated wheat cytogeneticist and professor, peacefully passed away on March 26, 2022, just a few weeks shy of her 102nd birthday. Morris fought a long battle with cancer in her 90s and, most recently, an infection of COVID-19, which proved fatal to her health.

According to her wishes, there was no funeral or memorial service. Morris’s body was cremated, and her ashes deposited in her family’s plot in Ontario, Canada.

Born in Ruthin, United Kingdom, in 1920 to schoolteacher parents, Morris pursued studies in agricultural sciences at the University of Guelph and earned a bachelor’s degree in horticulture. Morris would later earn a Ph.D. from Cornell University’s department of plant breeding, becoming one of the first two women to accomplish this feat, along with Leona Schnell.

Morris dedicated her life and career to understanding and developing wheat genes.
Morris dedicated her life and career to understanding and developing wheat genes.

A pioneer in agricultural science and one of the first women scientists of her time, Morris dedicated her life and career to understanding and developing wheat genes. Her contributions include the development of wheat genetic stocks, or wheat populations generated for genetic studies, with far-reaching impact globally in explaining wheat genetics. The work of Morris provided a premier resource base for the emerging field of functional genomics, which explores how DNA is translated into complex information in a cell.

During World War II, Morris’s deep concern over the effects of atomic bombs dropped on Hiroshima and Nagasaki led her to study and experiment with the effects of X-rays and thermal neutrons on crop plants. In 1979, Morris became the first woman honored as a fellow of the American Society of Agronomy.

While being an acclaimed scientist internationally, Morris was also known for her passion for teaching. In the same year Morris earned her doctoral degree from Cornell University, she was hired as the first female faculty member in the agronomy department at the University of Nebraska-Lincoln (UNL) in 1947. This career would last 43 years: first as an assistant professor in 1947, becoming a professor in 1958 and remaining in that role until 1990, when she gained the title of emeritus professor of plant cytogenetics.

Morris was a trailblazer for women in agronomy during a point in history when few women were given the opportunity to pursue a career in the sciences. Morris is remembered by her peers not only for her lifelong contribution to agricultural sciences but also her immense kindness and patience.

Experts analyze the impact of the Russia-Ukraine war on global food and energy systems

Wheat fields in Kostanay, Kazakhstan. (Photo: M. DeFreese/CIMMYT)
Wheat fields in Kostanay, Kazakhstan. (Photo: M. DeFreese/CIMMYT)

A panel of experts convened by the Woodrow Wilson International Center for Scholars on April 13, 2022, discussed the effects that the Russia-Ukraine war could have on global supply chains of critical resources including staple crops, oil and natural gas, and strategic minerals.

Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), joined three experts representing a security consulting firm, a mining investment company and the academic sector. They analyzed the complex ramifications of the armed conflict and put forward policy recommendations to mitigate its impact on global food and energy systems.

“We have immediate action to take in order to boost the production of crops with fewer resources available, such as fertilizers,” Govaerts said, reflecting on how to help food-insecure countries in the Middle East and North Africa that import most of their wheat supplies from the Black Sea region. “We also need to look at where we are going to be supplied with alternate sources,” he added.

Govaerts took this opportunity to position Agriculture for Peace, the CIMMYT-led call for secure, stable and long-term investment in agricultural research for development, to transform global food systems by shifting their focus from efficiency to resilience.

More information: System Shock: Russia’s War and Global Food, Energy, and Mineral Supply Chains

CIMMYT scientist recognized at the Day of the Farmer in Sonora

DĂ­a del Agricultor 2022 Sonora

On the 67th Edition of the Day of the Farmer in Mexico’s Yaqui Valley, JesĂșs Larraguibele Artola, president of the Agricultural Research and Experimentation Board of the State of Sonora (PIEAES), publicly recognized the work and trajectory of Ravi Singh, Distinguished Scientist and Head of Global Wheat Improvement at the International Maize and Wheat Improvement Center (CIMMYT).

An Indian national, Singh first arrived to CIMMYT’s Experimental Station in Ciudad Obregón, Sonora, in 1983, and has since developed 680 wheat varieties in 48 countries, including the Cirno and Borlaug varieties, grown in 98% of the Yaqui Valley’s wheat fields.

At the event, Larraguibele Artola also highlighted the importance of the legacy of Norman Borlaug, father of the Green Revolution, who saved the lives of billions of people from starvation with his improved wheat varieties. He also recalled how the first Day of the Farmer was organized by Borlaug back in 1948, when the American agronomist presented his first rust-resistant wheat varieties to farmers in the region. Over time, the event became a unique place for researchers and scientists in Sonora to increase collaboration with farmers and producers in the region and share their latest scientific advances.

Acknowledging the key role of new technologies and wheat varieties in tackling current and future agricultural challenges, FĂĄtima Yolanda RodrĂ­guez Mendoza, Secretary of Agriculture, Farming, Hydraulic Resources, Fishing and Aquaculture (SAGRHPA) of Sonora, reiterated the commitment of the governor, Alfonso Durazo Montaño, to invest in agricultural research to boost production and drive the growth of the region’s agrifood sector.

“We’ll continue to invest in research and innovation and support scientists, who put their knowledge at the service of the people of Sonora”, she promised.

Read the original article: DĂ­a del Agricultor: permanente cambio y continua investigaciĂłn

The worst global food security crisis in 50 years could be already here

As agricultural researchers around the world explore ways to avert what is quickly becoming the worst global food crisis in 50 years, it is imperative to shift the focus from efficient food value chains to resilient food systems.

This was one of the key messages Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT) shared with global and local audiences at a series of lectures and presentations at Cornell University the week of March 14, 2022.

Speaking as an Andrew White Professor-at-Large lecturer and lifetime Cornell faculty member, Govaerts advocated for ratcheting up investment in agricultural research and development. Not only this is necessary to avert the looming humanitarian catastrophe, he argued, but also to recover from the COVID-19 pandemic and rebuild a more peaceful, resilient and food-secure world.

“Countries that are ill-prepared to absorb a global food shock are now facing similar conditions to those that triggered the Arab Spring a decade ago — possibly even worse,” Govaerts said.

In the lecture “Food Security: A legacy turned into a future challenge of peace, prosperity & empowerment,” he compared the current challenge to the 1970s famine threat in South Asia, which was averted by the introduction of improved, high-yielding wheat varieties bred in Mexico by the late Nobel Peace Prize Laureate, Norman Borlaug.

“Today, humanity faces an existential challenge fueled by conflict, environmental degradation and climate change that urges a transformational response in the way that we produce, process, distribute and consume food,” he said.

In a public lecture “What is the leading agricultural research for development organization doing to help farmers adapt to climate change?” Govaerts acknowledged agriculture’s dual burden as both a cause and victim of climate change.

“We need to get climate change out of agriculture, and agriculture out of climate change,” he said, advocating for climate change as the driver of research and innovation, and calling for investment in transforming from efficiency to resilience.

Referencing the Ukraine crisis and its looming food security implications, he reminded attendees that we can all be inspired by Norman Borlaug’s accomplishments applying science to agriculture, and move quickly, together, to avert disaster.

“We need the same bold thinking, to do something before it’s too late,” Govaerts told the audience, which included nearly 200 online attendees and a full auditorium at Cornell’s College of Agricultural and Life Sciences.

“There is no ‘other’ team that is going to do it for us. This is the meeting. This is the team.”

CIMMYT implements integrated agri-food systems initiatives to improve maize and wheat seeds, farming practices and technologies to increase yields sustainably with support from governments, philanthropists and farmers in more than 40 countries.

In addition, along with the Nobel Peace Center and the Governments of Mexico and Norway, CIMMYT launched the Agriculture for Peace call in 2020 to mobilize funding for agricultural research and extension services to help deliver much-needed global food systems transformation.

Cover photo: Maize and other food crops on sale at Ijaye market, Oyo State, Nigeria. (Photo: Adebayo O./IITA)

Viktor Maurice Kommerell

Victor Kommerell was the program manager of the CGIAR Research Programs on Maize (MAIZE; 2017-2021) and Wheat (WHEAT; 2012-2021). He previously worked as a consultant to the CGIAR on strategy, human resources and project management, which included facilitation of a 2020 sustainability plan for the 10 CGIAR gene banks and an external evaluation of ILAC.

Prior to working with the CGIAR, Victor worked with the Chief Prosecutor at the International Criminal Court and led a change management program at NATO HQ, after having worked for Perot Systems (people change management) and the Leipzig Trade Fair (b-to-b marketing).

Russia-Ukraine conflict and global food security

For the past month, researchers from the International Maize and Wheat Improvement Center (CIMMYT) have analyzed the expected impacts of the Russia-Ukraine war on global food security.

The war in Ukraine and the sanctions against Russia will disrupt wheat supply chains, fertilizer exports and other components of food systems. Their combined effect, along with other factors, could unchain a major food security crisis as well as increased inequality.

Explore our analysis and coverage on major media outlets and journals. To get in touch with our experts, please contact the media team.

CIMMYT scientists have also made available a summary of key facts and figures about the impact of the Russia-Ukraine war on wheat supply (PowerPoint, 32MB): changing patterns of consumption and effect on food prices, geographic export supply concentration, global wheat imports, and specific vulnerabilities particularly in the Global South.

Another food crisis?

The Russia-Ukraine conflict will cause massive disruptions to global wheat supply and food security. Agricultural research investments are the basis of resilient agri-food systems and a food-secure future.

Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Broken bread — avert global wheat crisis caused by invasion of Ukraine

War highlights the fragility of the global food supply — sustained investment is needed to feed the world in a changing climate, Alison Bentley explains on Nature.

Food is just as vital as oil to national security

A new Bloomberg op-ed urges nations to steer more money to organizations like CIMMYT that are advancing crucial research on how to grow more resilient wheat and maize crops in regions that are becoming steadily less arable.

What price wheat?

Crisis in Ukraine underscores the need for long-term solutions for global food security, Alison Bentley and Jason Donovan explain.

Wheat fields in Ukraine. Photo: tOrange.biz on Flickr (CC BY 2.0)

Multiple breadbasket failures: Nations must address looming food emergencies

The war in Ukraine, coupled with weather-related disruptions in the world’s major grain-producing regions, could unleash unbearable humanitarian consequences, civil unrest, and major financial losses worldwide, say Sharon E. Burke (Ecospherics) and Bram Govaerts (CIMMYT) on The Boston Globe.

BNI-enhanced wheat research wins 2021 Cozzarelli Prize

The paper “Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution” received the 2021 Cozzarelli Prize, which recognizes outstanding articles published in the journal Proceedings of the National Academy of Sciences of the United States of America (PNAS). The paper was published as a joint research collaboration of Japan International Research Center for Agricultural Sciences (JIRCAS), the International Maize and Wheat Improvement Center (CIMMYT), the University of the Basque Country (UPV/EHU) and Nihon University.

The study identifies of a chromosomal region that regulates the biological nitrification inhibition (BNI) ability of wheat grass (Leymus racemosus), a wild relative of wheat. It also outlines the development of the world’s first BNI-enhanced wheat, through intergeneric crossing with a high-yielding wheat cultivar.

This research result is expected to contribute to the prevention of nitrogen pollution that leads to water pollution and greenhouse gas emissions, reducing the use of nitrogen fertilizer while maintaining productivity.

Best of the year

PNAS is one of the most cited scientific journals in the world, publishing more than 3,000 papers per year on all aspects of science. A total of 3,476 papers were published in 2021, covering six fields: Physical and Mathematical Sciences, Biological Sciences, Engineering and Applied Sciences, Biomedical Sciences, Behavioral and Social Sciences, and Applied Biological, Agricultural and Environmental Sciences.

The Cozzarelli Prize was established in 2005 as the PNAS Paper of the Year Prize and renamed in 2007 to honor late editor-in-chief Nicholas R. Cozzarelli. It is awarded yearly by the journal’s Editorial Board to one paper from each field reflecting scientific excellence and originality. The BNI research paper received the award in the category of Applied Biological, Agricultural, and Environmental Sciences.

The awards ceremony will be held online on May 1, 2022, and a video introducing the results of this research will be available.

Recently, lead researcher Guntur V. Subbarao presented this research on a talk at Princeton University’s Center for Policy Research on Energy and the Environment: “Low-nitrifying agricultural systems are critical for the next Green Revolution.”

Fruitful collaboration

CIMMYT has collaborated with JIRCAS on BNI-enhanced wheat research since 2009, with funding from Japan’s Ministry of Agriculture, Forestry and Fisheries. CIMMYT is one of the founding members of the BNI Consortium, established in 2015.

The CGIAR Research Programs on Wheat (WHEAT) and Maize (MAIZE) co-funded BNI research since 2014 and 2019 respectively, until their conclusion at the end of 2021.

BNI research has been positioned in the “Measures for achievement of Decarbonization and Resilience with Innovation (MeaDRI)” strategy of Japan’s Ministry of Agriculture, Forestry and Fisheries, and was also selected as one of the ministry’s “Top 10 agricultural technology news for 2021.”

Read the full article:
Enlisting wild grass genes to combat nitrification in wheat farming: A nature-based solution

Sanjaya Rajaram honored with India’s civilian service award

Jai Prakash Rajaram (left) receives the Padma Bhushan Award on behalf of his late father, Sanjaya Rajaram, from the President of India, Ram Nath Kovind. (Photo: Government of India)
Jai Prakash Rajaram (left) receives the Padma Bhushan Award on behalf of his late father, Sanjaya Rajaram, from the President of India, Ram Nath Kovind. (Photo: Government of India)

The President of India, Ram Nath Kovind, presented the prestigious Padma Bhushan Award for Science & Engineering (Posthumous) to the relatives of Sanjaya Rajaram. The award was received by Rajaram’s son and daughter, Jaiprakash Rajaram and Sheila Rajaram, at a ceremony in New Delhi, India, on March 28, 2022.

The Padma Awards, instituted in 1954, are one of India’s highest civilian honors. Announced annually on the eve of Republic Day, January 26, they are given in three categories: Padma Vipbhushan, for outstanding and distinguished service; Padma Bhushan, for distinguished service of the highest order; and Padma Shri, for distinguished service.

The award seeks to recognize achievement in all fields of activities and disciplines involving a public service item.

Padma Bhushan Award diploma and medal. (Photo: Courtesy of Jai Prakash Rajaram)
Padma Bhushan Award diploma and medal. (Photo: Courtesy of Jai Prakash Rajaram)

Sanjaya Rajaram, who passed away in 2021, was a 2014 World Food Prize laureate and former wheat breeder and Director of the Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT).

Among his many accomplishments, he personally oversaw the development of nearly 500 high-yielding and disease-resistant wheat varieties. These varieties, which have been grown on at least 58 million hectares in over 50 countries, increased global wheat production by more than 200 million tons, benefiting hundreds of millions of resource-poor people who rely on wheat for their diets and livelihoods.