Skip to main content

research: Wheat

Exploring the potential for blended wheat flours in Kenya  

Over the years, wheat-based foods have increasingly been incorporated as part of Kenyan meals. One example is packaged bread, which has become a common feature on Kenyan breakfast tables with millions of loaves from industrial bakeries delivered to retail shops daily, countrywide. Another example is chapati — a round unleavened flat bread. Once reserved for special occasions, chapati can now be purchased from roadside venders throughout the capital Nairobi.

Millers and processors in Kenya are highly dependent on imported wheat to meet the strong demand for wheat-based food products. The conflict between Russia and Ukraine, two of the most important sources of imported wheat for Kenya, presents a major threat to millers and industrial bakeries.  Prices for bread and chapati are increasing and may continue to increase. Governments and wheat-related industries are looking at short- and long-term options to reduce utilization of imported wheat. One short-term option is the blending of wheat flour with flour derived from locally available crops, such as cassava, millet or sorghum.

Record-high price of wheat

A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)
A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)

A visit to local industrial bakeries and wheat flour millers on the outskirts of Nairobi by International Maize and Wheat Improvement Center (CIMMYT) researchers confirmed the effects of record-high global prices of wheat.  Global Wheat Program director Alison Bentley and senior economist Jason Donovan had conversations with leaders of industrial bakeries and millers, who gave insights into their grain demands, production processes and sales volumes.

One of the leaders of an established industrial bakery divulged that they use approximately 15,000 tons of wheat flour monthly to make baked products, with only 10% of the wheat obtained locally.

“In the last ten years, local wheat production has comprised about ten to fifteen percent of our cereal mixture for bread, and we were already paying higher prices to farmers compared to import prices. The farmers were already being paid about 30 to 40 dollars more per ton,” a manager of a large baking industry in Kenya explained to the CIMMYT team.

According to government regulations, millers and bakeries must purchase locally produced wheat at agreed prices before they can buy imported wheat. He agreed that though the quality of local wheat is good, the local production cannot compete with the higher volume of imported wheat or its lower price.

Growing wheat in East Africa

It has been more than four months since the Russia-Ukraine conflict unfolded, and since then prices of wheat-based products have been increasing significantly. The current crisis has sparked the debate on low levels of self-sufficiency in food production for many countries. And this is especially the case for wheat in Kenya, and more widely in Africa.

Bentley points out that the biophysical conditions to produce wheat in East Africa are present and favorable. However, more work is needed to strengthen local wheat production, starting with efficient seed systems. Farmers who are interested in growing wheat need access to high performing and stress-tolerant wheat varieties.

CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)
CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Practical response to the crisis

With no certainty as to how long the conflict will continue and climate change resulting in significant crop loss in key production zones, wheat shortages on international markets could become a reality. Blending of wheat flour with locally available crops could be an option as an immediate response to the current scarcity of wheat in East Africa. “Blending [flour] is when for instance five percent of wheat flour is replaced with flour from a different crop such as sorghum or cassava,” Bentley explained.

Donovan added that, though it might seem like a small number, it becomes significant in consideration to the volume of wheat that industries use to make different products, translating into thousands of metric tons. He noted that blending flour therefore has the potential to create a win-win situtation, because it can boost the demand for local crops and address uncertainty and price volatility on international wheat markets.

Consumer acceptance of new products

Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)
Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)

During a full week of engagements with universities, partners, and industry experts in Kenya, the CIMMYT team explored the current interest of the sector in blending wheat flour. Several partners agreed that this could be a potential way forward for the grain industry but all highlighted one key element: the importance of consumer acceptance. If the functionality of the flour or taste would be negatively influenced by blending wheat flour, it would represent a no-go from the industry, even if blends would have higher nutritional benefits or lower prices. “This reinforces the need to understand consumer preferences and evaluate both the functionality of the flour to produce essential food products such as chapati or bread as well as the taste of those products,” Pieter Rutsaert explained.

CIMMYT researchers Sarah Kariuki and Pieter Rutsaert, both Markets and Value Chain Specialists, and Maria Itria Ibba, Head of the Wheat Quality Lab, are therefore engaging with local millers and universities in Kenya to design bread and chapati products derived from different wheat blends, to include blends comprised of 5%, 15% and 20% of cassava or sorghum. Lab testing and preliminary consumer testing will be used to identify the most promising products. These products will be taken to the streets in urban and peri-urban Nairobi to assess consumer tastes and preferences, through sensory analysis and at-home testing.

The market intelligence gained will offer foundational support for CGIAR’s Seed Equal Initiative to accelerate the growth of a demand-driven seed system. By gathering and analyzing consumer preferences on selected crops for blending, such as from farmers and milling industries, Donovan pointed out that CGIAR breeding will continue to make informed choices and prioritize breeding for specific crops, that seek to address specific challenges, therefore having greater impact.

Donovan noted that data and information from the studies will provide much needed evidence and fill information gaps that will support governments, millers, processors and farmers to make decisions in response to the evolving wheat crisis.

Scientists step up wheat landrace conservation efforts in Afghanistan, Turkey and other countries in the region

Farmers gather in a landrace field. Photo: Raqib Lodin/CIMMYT

For thousands of years, farmers in Afghanistan, Turkey and other countries in the region, have been breeding wheat, working closely with the environment to develop traditional wheat varieties known as landraces. Untouched by scientific breeding, landraces were uniquely adapted to their environment and highly nutritious.

As agriculture became more modernised and intensified, it threatened to push these traditional landraces into extinction, resulting in the loss of valuable genetic diversity. Institutions around the world decided to act, forming germplasm collections known as genebanks to safely house these landraces.

In 2009, a team of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), the UN Food and Agriculture Organization (FAO), and national partners set off on a five-year expedition across Central Asia to collect as many landraces as they could find. The project, led by FAO Cereal Breeder and former CIMMYT Principal Scientist Alexey Morgunov, was made possible by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.

The project had two main missions. The first is to preserve landrace cultivation in three countries, Afghanistan, Turkey and other countries in the region by selecting, purifying, and multiplying the landraces and giving them back to farmers. The second is to scientifically evaluate, characterize and use these landrace varieties in ongoing breeding programmes, exchange the information between the countries, and to deposit the seeds in genebanks to safely preserve them for future generations.

The latest results from the project were published in July in the journal Crops. The study, authored by a team of experts from CIMMYT, ICARDA, FAO, and research institutes in Afghanistan, Turkey and other countries in the region, compared the diversity, performance, and adaptation of the collected wheat landraces with modern varieties grown in the regions using a series of field experiments and cutting-edge genomic tools.

“Landraces are very useful from a breeding perspective because they have been cultivated by farmers over thousands of years and are well adapted to climate change, have strong resistance to abiotic stresses and have very good nutritional quality,” said Rajiv Sharma, a CIMMYT senior scientist and co-author of the paper.

“We were interested in seeing how well landraces adapt to certain environments, how they perform agronomically, and whether they are more diverse than modern varieties grown in these regions – as well as give their improved versions back to farmers before they are lost.”

The experiments, which were carried out in 2018 and 2019 in Turkey, and 2019 in Afghanistan, and other countries in the region revealed several physical characteristics in landraces which are no longer present in modern varieties. For example, the team found striking differences in spike and grain colors with landraces more likely to have red spikes and white grains, and modern varieties tending to have white spikes and red grains. This may have adaptive values for high altitudes and dry conditions.

A surprising finding from the study, however, was that landraces were not more genetically diverse than modern landraces.

“Many people thought that when we went from cultivating landraces to modern varieties, we lost a lot of diversity but genetically speaking, that’s not true. When you look at the genomic profile, modern varieties are just as diverse as landraces, maybe even a little bit more so,” said Sharma.

When the team compared landraces and modern varieties on crop performance, the results were mixed with modern wheat varieties outyielding landraces in half of the environments tested. However, they found that the highest yielding landraces were just as good as the best modern varieties – a reassuring finding for farmers concerned about the productivity of their crops.

A new breeding paradigm  

The results of the study have important implications for landrace conservation efforts in farmers’ fields and in future breeding strategies. While crossing wheat landraces with modern varieties to develop improved modern varieties is not new, the authors proposed a novel alternative breeding strategy to encourage the continued cultivation of landraces: improving landraces by crossing them with other landraces.

“In order to maintain landraces, we have to make them competitive and satisfy farmers’ needs and requirements. One option is that we breed landraces,” said Sharma.

“For example, you might have a landrace that is very-high yielding but susceptible to disease. By crossing this variety with another landrace with disease-resistant traits you can develop a new landrace better suited to the farmer and the environment. This approach maintains all the features of landraces – we are simply accelerating the evolution process for farmers to replace the very fast disappearance of these traditional varieties.”

This approach has already been used by crop scientists at the University of California, Davis who has successfully developed and registered “heirloom-like varieties” of dry beans. The varieties trace about 98% of their ancestry to landraces but are resistant to the common mosaic virus.

Heirloom food products are becoming increasingly popular with health-conscious consumers who are willing to pay a higher price for the products, garnering even more interest in conserving traditional landraces.

One of the overarching aims of the project was to give wheat landraces back to farmers and let nature take its course. Throughout the mission, the team multiplied and returned landrace seed to over 1500 farmers in communities across Afghanistan, Turkey and other countries in the region. The team also supplied over 500 farmers with improved landrace seed between 2018 and 2019.

Despite the political turmoil facing these countries, particularly Afghanistan, farmers are still growing wheat and the project’s contribution to food security will continue.

These landraces will take their place once more in the farming landscape, ensuring on-farm wheat diversity and food security for future generations.

This research was conducted with the financial assistance of the European Union within the framework of the Benefit-Sharing Fund project “W2B-PR-41-TURKEY” of the FAO’s International Treaty on Plant Genetic Resources for Food and Agriculture.

How to shockproof staples in a looming global food crisis

Empty shelfs in a Swiss grocery store. Photo Boris Dunand/Unsplash

The conflict in Ukraine has had a deeply destabilizing effect on the global wheat trade, causing unprecedented price volatility and uncertainty. As my colleagues and I have previously highlighted, the unintended consequences are likely to have outsized impacts on livelihoods in the Global South.

As the G7 group of nations recently acknowledged in a joint statement, the conflict is leading to steep price rises and increasing global food insecurity for millions, especially those most vulnerable, such as women and children.

In a new paper published in Nature Food, scientists and partners of the International Maize and Wheat Improvement Center (CIMMYT) present a package of applied solutions to respond to the crisis and ensure future wheat stability.

To stem the potential food crisis, food is needed in more places, and faster.

Recently announced talks between Russia, Turkey, Ukraine and the United Nations, among other negotiations, are already underway as part of this international effort to develop short-term solutions.

However, at present we are seeing the brakes applied in several places. For example, in India century-high temperature extremes have recently reduced official wheat production estimates by 6 percent, leading to reduced export potential. This shows the compounding effect of climatic instability on global wheat markets, an impact that is expected to worsen over time.

In our solutions agenda, we propose a package of short-, medium- and longer-term actions and urge immediate and sustained support for shockproofing major food security staple crops, including wheat.

  1. In the short term, the priority is mitigation of food security shocks through boosting production in existing high- and low-productivity areas, ensuring access to grain, and making use of flour substitution.
  2. In the medium term, we must increase the local, regional, and global resilience of wheat supply through targeted expansion (within agro-ecological boundaries), support for self-sufficiency, comprehensive technical support in production systems, and mainstreamed crop monitoring capacity.
  3. In the longer term, the transition to agri-food system resilience will need to encompass agroecosystem diversity, address gender disparities in agriculture and rural communities, and sustain an increased investment in a holistic, agri-food transition.

Conflict is being waged on wheat on multiple fronts: on battlefields, in the political arena and by our changing climate. Together these factors interact and amplify the threat to staple wheat production. To address this complexity, we now need to move beyond defining the problem to implementing practical action to ensure stable supply.

Essential actions to mitigate the food crisis, stabilize supply and transition to greater agrifood system resilience

Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)
Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)

As the Russia-Ukraine war continues to degrade global food security, a new analysis lays out concrete actions that governments and investors must do now to mitigate near-term food security risks and stabilize wheat supplies, while transitioning toward long-term resilience.

The guidance, published in Nature Food by scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners, lays out short-, medium- and long-term steps to respond to the global food crisis and ultimately lead to a more resilient global agrifood system.

“The Russia-Ukraine war will impact global food security over months — if not years,” said CIMMYT Global Wheat Program Director and lead author Alison Bentley. “We now need to move beyond defining the problem to implementing practical actions to ensure stable supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system.”

The war in Ukraine and trade sanctions against Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. More than 2.5 billion people worldwide consume wheat-based foods; those in lower- to middle-income countries dependent on imports from Russia and Ukraine are particularly affected. Some of the world’s poorest countries, such as Bangladesh, Sudan and Yemen, rely heavily on Russian and Ukrainian wheat. Given the highly interconnected nature of contemporary agrifood systems, few will remain unaffected by this new global food shock.

Mitigate the immediate crisis

The first priority, according to the authors, is to mitigate the immediate crisis by boosting wheat production in existing high- and low-productivity areas, ensuring grain access and blending wheat flour with other low-cost cereals. Bundled agronomic and breeding improvements and sustainable farming practices can reduce dependence on imported grain and fertilizer, while coordinated, multilateral policies can help conserve grain stocks for human consumption and avert trade restrictions.

Increase the resilience of wheat supply

In the medium term, the authors emphasized the need to increase the local, regional, and global resilience of the wheat supply. This can be done by expanding production within agro-ecological boundaries, supporting national wheat self-sufficiency and providing technical assistance, to increase the production of high-yielding disease-resistant wheat and to mainstream capacity for pest and disease monitoring.

Transition to system-level resilience

Finally, to reach crucially needed resilience in the world’s agrifood system, long-term measures must be taken that encompass agroecosystem diversity, address gender disparities in agriculture and rural communities and sustain increased investment in a holistic, agrifood transition.

“The current global food crisis underscores and compounds existing inequalities in our global food system,” Bentley said. “A transition to agrifood system resilience requires us to urgently balance global food supply needs with the multi-layered challenges of climate change, achieving gender equity, nutritional sufficiency and livelihood security.”


RELATED RESEARCH PUBLICATIONS:

Near- to long-term measures to stabilize global wheat supplies and food security

This research is supported by CGIAR Trust Fund Contributors.

INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

Ricardo Curiel, Communications Manager, CIMMYT. r.curiel@cgiar.org, +52 5558042004 ext. 1144.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agrifood systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.

Cross-center learning between CIMMYT and WorldFish

Alison Bentley presents at a joint seminar between CIMMYT and WorldFish. (Photo: Sarah McLaughlin/CIMMYT)

“Now more than ever, we need to build greater resilience across our global food system,” said Alison Bentley, Director of Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), to introduce her part of a joint seminar between CIMMYT and WorldFish. The two CGIAR research centers may appear to have different focuses, but the pairing draws attention to many opportunities for intra-CGIAR collaboration to address the looming global food crisis.

Beginning with Ahmed Nasr-Allah, Country Director (Egypt) at WorldFish, the presentation explored Integrated Agriculture and Aquaculture (IAA) systems for food security. Over the coming decades, population growth and increased scarcity of water pose a challenge for food production and agriculture, so water efficiency needs to be maximized.

Nasr-Allah explained that wheat nutrients improve soil quality, which in turn positively impacts fish quality when using water running off growing crops. He gave an example of a farmer who allocated more space on his farm to irrigate and store water and fish, which enabled him to produce higher crop yields. Further research between WorldFish and CIMMYT in this area could be examining nutrient flow from the fish system to the crop system.

Second to present was Bentley, looking at shock-proofing wheat to build future resilience. “It’s important we understand where the risks lie in our global system so we can respond to shocks,” she explained, citing data on global import dependency on Ukrainian and Russian wheat. She went on to describe potential solutions to combat the predicted yield decrease in wheat in the Global South, including substituting a proportion of wheat flour with other under-utilized crops in products, without impacting flour quality or consumer evaluation.

Linking to WorldFish’s work, Bentley highlighted the need to use water more effectively by combining new varieties with enhanced mechanization options to improve crop management, and the potential of optimizing individual components in fish and wheat rotations that could then be combined for greater impact.

The third session was with WorldFish Scientist Sarah Freed, who discussed designing integrated production practices to meet diverse needs. She invited event attendees to consider whether the lessons learnt from challenges in rice growing areas, such as climate change, poverty, food and nutrition insecurity, and increased demand, could be applicable solutions to problems in wheat growing areas.

Using biophysical and sociocultural insights from rice-fish innovations as an example, she listed five recommendations for design: identify objectives; identify a range of production options; use a co-design process; implement fit-for-purpose design and evaluation; and enable adaptation. Of particular interest was the co-design process with people who are involved at all levels, from landowners to rice farmers to laborers, so that the design benefits a variety of stakeholders. Freed also noted that decisions taken for economic reasons, such as extending the shrimp season, can lead to increased soil salinity, which means the ground can no longer incorporate diverse crops.

All three speakers concluded the event by acknowledging the potential in combining their research areas to determine and implement food security solutions.

Researchers use storytelling to evaluate women’s agency in agricultural production

CIMMYT enumerators hold booklets with vignettes before their interaction with family farmers Kiran Devi (second from left) and Rishikesh Ram (third from left). (Photo: Nima Chodon /CIMMYT)
CIMMYT enumerators hold booklets with vignettes before their interaction with family farmers Kiran Devi (second from left) and Rishikesh Ram (third from left). (Photo: Nima Chodon /CIMMYT)

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) are conducting a study in the state of Bihar, India, to improve our understanding of women’s and men’s contributions to decision-making around wheat crop management. The results will help reach women with new varieties that meet their needs and priorities.

The study seeks to overcome a big challenge for research organizations and national policymakers: to design a better framework for faster turnover of improved varieties and increased access to women and marginalized farmers.

Wheat is the second-largest crop grown in Bihar after rice, with a production of 5-6 million tonnes of it every year. Despite women’s contributions to farming activities, from sowing to harvesting, traditional gender norms can undermine their access to productive resources and influence household decisions. Additionally, women’s workload in wheat agriculture is increasing, due to men’s departure to non-agricultural jobs, but women are still not necessarily recognized as capable farmers.

Gender exclusion in agriculture

Given social norms and household-and-farm labor division based on gender, women are often confined to specific roles in the agricultural production system. In smallholder farming communities of South Asia like Bangladesh, India, and Nepal, men’s increasing involvement in non-agricultural activities has increased women’s workloads in every sphere of agricultural production. However, these long-held assumptions of their role can lead to exclusion from decision-making, limiting their control over what, how, and how much a crop is produced, their economic wellbeing, including household food security.

The CIMMYT study on “Intra-household gender dynamics in decision-making for wheat crop management in India (Bihar)” investigates women’s and men’s roles in production decisions. Led by Hom Gartaula, Gender, and Social Inclusion Specialist at CIMMYT, it covers eight villages — four in Darbhanga and four in Madhepura district — with 25 houses considered in each village.

As part of the Accelerating Genetic Gains in Maize and Wheat for improved livelihoods in Asia and Africa (AGG)  project, the research study will help gain deeper insights into the intra-household gender dynamics. It will also help in untangling who does what, how wheat cultivation and management decisions are organized within the households and the perceptions of the male and female farmers around why decisions are made in such a way.

Farmer Devi points at the vignette that aligns with her household decision-making process. (Photo: Nima Chodon /CIMMYT)
Farmer Devi points at the vignette that aligns with her household decision-making process. (Photo: Nima Chodon /CIMMYT)

Storytelling through household decision-making scenarios

In traditional rural societies, survey-based data collection might not be the best way to evaluate women’s agency, as the deeply rooted cultural restrictions might not allow them to talk openly about sensitive issues, like their relationship with a spouse. This study uses an innovative storytelling approach to data collection: using vignettes, farmers are given short stories to relate to their household circumstances. Stories are also easier to remember and help build a connection with the characters quickly.

The vignettes approach was first applied in the context of smallholder maize production in Kenya under the AGG project. According to Rachel Voss, the leader of the Kenyan study, “Using vignettes to explore decision-making in both East Africa and South Asia allows us to learn and compare across these regions and across crops. Gender relations in Indian wheat and Kenyan maize production might look similar in some ways, but very different in other ways, and our research and programming will need to respond to those differences.”

In this study, five vignettes with fictitious husband and wife characters are presented to participants to represent the different ways production and consumption decisions are made in the household. These vignettes describe how they engage in key decisions like seed procurement, labor hired, and harvest used for consumption or sale. With guidance from evaluators, respondents identify which scenario best aligns with the decision-making process in their household.

Researchers feel this qualitative data, gathered through a storytelling approach, could guide the reach of gender interventions in a more effective way. Gartaula and the team explained that the participants can build connections to a character in the story without biases, expressing their experiences in household decision-making through vignettes. They also observed that sometimes what the participant shared is the opposite of their assumption of women being excluded from decisions.

Rethinking gender roles

Traditional gender roles are deeply entrenched in the region. In the farming communities of rural Bihar, one might assume that who does what in wheat-rice cultivation is obvious, and it has been well studied in the past. However, investigating the stereotypes around gender to understand practices within households is an innovative aspect of this study.

For example, landless couple Pappu Paswan and Kamini Devi of village Kamtaul in Darbhanga district have been cultivating wheat on leased farm plots for many years. Devi is engaged in every aspect of decision-making. “We cultivate in leased plots of different sizes, spread across, requiring more effort and time in attending to them. We discuss additional labor during harvest and if there is money enough to pay them,” said Devi pointing her finger at the vignette illustrating ‘cooperation’ in household decision-making. They produce enough for their consumption, but when possible, “I advise my husband to sell some for income,” she added.

Despite contributing to decisions jointly with Pappu when it comes to farm labor and household finances, Devi has little or no knowledge of seed varieties and access. Her husband informs that it was UP262 (wheat seed variety) they have been cultivating for the last two years.

In Rishikesh Ram’s household, land ownership and livelihood specialization were factors in decision-making. He owns the land and makes all farming decisions, including how much will be saved for consumption at home. His wife, Kiran Devi, a nurse at the village primary health center, is hardly involved in any farming work. “As the income from her job contributes to expenses at home, decisions about loans or payment for labors on the farm are joint decisions,” Ram said.

“In these two households of the diverse decision-making process, different approaches to messaging and relevant extension services must be explored to address the issues of exclusion, access, and knowledge gaps in these households,” Gartaula observed.

Bridging the gender gap in agri-food systems

With the feminization of agriculture in the region, women’s contribution to agricultural production is likely to increase. Policy and research interventions must recognize this growing population and support their full economic and social contributions as cultivators, entrepreneurs, and laborers. However, whether women’s growing role in wheat production leads to increased decision-making authority and empowerment is still unknown. But hope is that AGG-supported gender research in South Asia and East Africa will help guide actions on gender and social inclusion in agri-food systems and support cross-learning between the regions.

CGIAR Plant Health Initiative formally launched on the International Day of Plant Health

National, regional, and international partners at the CGIAR Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative launch in Nairobi, Kenya, on May 12, 2022. (Credit: Susan Otieno)

CGIAR together with national, regional, and international partners kicked off the Plant Health and Rapid Response to Protect Food Security and Livelihoods Initiative also known as the Plant Health Initiative in Nairobi, Kenya, on May 12-13, 2022. The Initiative’s inception meeting was fittingly held on the first-ever International Day of Plant Health on May 12 and was attended by over 200 participants (both in-person and virtual), representing diverse institutions.

The Plant Health Initiative targets a broad range of pests and diseases affecting cereals (especially rice, wheat and maize) and legumes such as beans, faba bean, chickpea, lentil, and groundnut; potato; sweet potato; cassava; banana; and other vegetables.

Speaking at the meeting, CGIAR Plant Health Initiative Lead and Director of Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) noted that climate change, together with human activities and market globalization, is aggravating challenges to plant health, including outbreaks of devastating insect-pests and diseases. In addition, according to data from the African Union Partnership on Aflatoxin Control in Africa (AUC-PACA), 40 percent of commodities in local African markets exceed allowable levels of mycotoxins in food, causing adverse effects on diverse sectors, including agriculture, human health, and international trade.

“The CGIAR Plant Health Initiative is, therefore, a timely program for strengthening inter-institutional linkages for effective plant health management especially in the low- and middle-income countries in Africa, Asia, and Latin America, said Prasanna. “This calls for synergizing multi-stakeholder efforts to improve diagnostics, monitoring and surveillance, prediction and risk assessment of transboundary pests and pathogens, and implementing integrated pest and disease management in a gender-responsive and socially inclusive manner.”

Demand-driven multistakeholder approach

CGIAR Global Science Director for Resilient Agrifood Systems Martin Kropff reiterated the importance of the Initiative, and emphasized the need for a global plant health research-for-development consortium. He mentioned that all the CGIAR Initiatives, including the Plant Health Initiative, are demand-driven and will work closely with national, regional, and international partners for co-developing and deploying innovative solutions.

The chief guest at the event, Oscar Magenya, Secretary of Research and Innovation at Kenya’s Ministry of Agriculture, pointed out the need for a well-coordinated, multisectoral and multistakeholder approach to managing invasive pests and diseases. He recognized CGIAR’s contribution and partnership with the Government of Kenya through CIMMYT, especially in combating maize lethal necrosis and wheat rust in Kenya.

“As government, we invite the CGIAR Plant Health Initiative to partner with us in implementing the Migratory and Invasive Pests and Weeds Management Strategy that was launched recently [by the Kenya Government],” said Magenya.

Implications of Plant Health in Africa and globally

Zachary Kinuya, Director of Crop Health Program at the Kenya Agricultural and Livestock Research Organisation (KALRO) spoke on the importance of plant health management to African stakeholders, and observed that in addition to improved crop production, food and feed safety must be given adequate priority in Africa.

Director of the Plant Production and Protection Division at the UN Food and Agriculture Organization (FAO), Jingyuan Xia applauded CGIAR for launching the global Initiative. Through his virtual message, Xia stated that the goals of the two organizations are aligned towards supporting farmers and policy makers in making informed decisions and ultimately ending global hunger. He added that the CGIAR has strong research capacity in developing and disseminating new technologies.

CIMMYT Director General Bram Govaerts explained how negative impacts on plant health, combined with climate change effects, can lead to global production losses and food system shocks, including the potential to result in food riots and humanitarian crises. He challenged stakeholders in the meeting to resolve tomorrow’s problems today, through collective and decisive action at all levels.

Sarah M. Schmidt, Fund International Agriculture Research Advisor_GIZ Germany making a contribution during the Launch of the Plant Health Initiative. (credit Susan Otieno/CIMMYT)

The German development agency (GIZ) Fund International Agricultural Research (FIA) Advisor Sarah Schmidt said that GIZ supports the Initiative because of its interest in transformative approaches in innovations for sustainable pest and disease management. Recognizing women’s major involvement in farming in Africa, Schmidt said there is a need to empower and equip women with knowledge on plant health as this will result to greater productivity on farms in Africa. “We welcome that the Plant Health Initiative dedicated an entire crosscutting work package to equitable and inclusive scaling of innovations,” she added.

Participants at the launch were also reminded by Ravi Khetarpal, Executive Secretary of the Asia-Pacific Association of Agricultural Research Institutions (APAARI), that the Initiative is now at the critical phase of Implementation and requires diverse actors to tackle different issues in different geographies. Ravi added that biosecurity and plant health are important subjects for the Asia-Pacific region, in view of the emergence of new pests and diseases, and therefore the need to save the region from destructive pest incursions.

Other online speakers at the launch included Harold Roy Macauley, Director General of AfricaRice & CGIAR Regional Director, Eastern and Southern Africa; Nteranya Sanginga, Director General of the International Institute of Tropical Agriculture (IITA) and CGIAR Regional Director, West and Central Africa; and Joaquin Lozano, CGIAR Regional Director, Latin America & the Caribbean.

Reflecting on gender, social inclusion, and plant health

Panel discussions allowed for more in-depth discussion and recommendations for the Initiative to take forward. The panelists delved into the progress and challenges of managing plant health in the Global South, recommending a shift from a reactive to a more proactive approach, with strong public-private partnerships for sustainable outcomes and impacts.

Gender inequities in accessing the plant health innovations were also discussed. The discussion highlighted the need for participatory engagement of women and youth in developing, validating and deploying plant health innovations, a shift in attitudes and policies related to gender in agriculture, and recognition and deliberate actions for gender mainstreaming and social inclusion for attaining the Sustainable Development Goals (SDGs).

B.M. Prasanna speaking at the launch. (credit: Susan Otieno/CIMMYT)

Charting the course for the Initiative

The Plant Health Initiative Work Package Leads presented the Initiative’s five specific work packages and reiterated their priorities for the next three years.

“We are looking forward to taking bold action to bring all players together to make a difference in the fields of farmers all over the world,” said Prasanna.

The Initiative is poised to boost food security, especially in key locations through innovative and collaborative solutions.

For more information, visit the CGIAR Plant Health Initiative page or download a brief. 

Panel Discussion Presentations

“Plant Health Management in the Global South: Key Lessons Learnt So Far, and the Way Forward” moderated by Lava Kumar (IITA) with panelists: Florence Munguti [Kenya Plant Health Inspectorate (KEPHIS)], Maryben Chiatoh Kuo (African Union-Inter-African Phytosanitary Council), Roger Day (CABI) and Mark Edge (Bayer).

 “Scaling Strategy, including Gender and Social Inclusiveness of Plant Health Innovations” moderated by Nozomi Kawarazuka (CIP), with panelists Jane Kamau (IITA), Alison Watson (Grow Asia), Sarah Schmidt (GIZ), Aman Bonaventure Omondi (Alliance Bioversity-CIAT) and Nicoline de Haan (CGIAR Gender Platform)

Work Package Title and Leads

Work Package 1: Bridging Knowledge Gaps and Networks: Plant Health Threat Identification and Characterization

Lead: Monica Carvajal, Alliance of Bioversity-CIAT

Work Package 2: Risk Assessment, data management and guiding preparedness for rapid response

Lead: Lava Kumar, IITA

Work Package 3: Integrated pest and disease management

Lead: Prasanna Boddupalli, CIMMYT

Work Package 4: Tools and processes for protecting food chains from mycotoxin contamination

Lead: Alejandro Ortega-Beltran, IITA

Work Package 5: Equitable and inclusive scaling of plant health innovations to achieve impacts Co-leads:Nozomi Kawarazuka, International Potato Center (CIP), Yanyan Liu, International Food Policy Research Institute (IFPRI)

Wheat improvement: Food security in a changing climate

This open-access textbook provides a comprehensive, up-to-date guide for students and practitioners wishing to access the key disciplines and principles of wheat breeding. Edited by Matthew Paul Reynolds, head of Wheat Physiology at CIMMYT, and Hans-Joachim Braun, former Director of CIMMYT’s Global Wheat Program, it covers all aspects of wheat improvement, from utilizing genetic resources to breeding and selection methods, data analysis, biotic and abiotic stress tolerance, yield potential, genomics, quality nutrition and processing, physiological pre-breeding, and seed production.

It will give readers a balanced perspective on proven breeding methods and emerging technologies. The content is rich in didactic material that considers the background to wheat improvement, current mainstream breeding approaches, translational research, and avant-garde technologies that enable breakthroughs in science to impact productivity, facilitating learning.

While the volume provides an overview for professionals interested in wheat, many of the ideas and methods presented are equally relevant to small grain cereals and crop improvement in general.

All chapter authors are world-class researchers and breeders whose expertise spans cutting-edge academic science to impacts in farmers’ fields.

Given the challenges currently faced by academia, industry, and national wheat programs to produce higher crop yields, often with fewer inputs and under increasingly harsher climates, this volume is a timely addition to their toolkit.

It is time to invest in the future of Afghanistan’s wheat system

A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

The UN High Commissioner Michelle Bachelet recently said of Afghanistan, “In the wake of years of conflict, and since the takeover by the Taliban in August last year, the country has been plunged into a deep economic, social, humanitarian and human rights crisis” (UN News 2022a). International humanitarian agencies and NGOs have persisted in supporting the population, half of whom are suffering food insecurity, and some of whom are facing unprecedented and catastrophic levels of hunger (UN News 2022b). The conflict in Ukraine is exacerbating the crises in poor import-dependent countries and humanitarian programmes, and Afghanistan will be among the most affected (Bentley and Donovan 2022).

The rural sector underlies Afghanistan’s economic potential, with agriculture as the foundation of the economy. Wheat, both irrigated and rainfed, is the principal agricultural crop, and bread is the major component of the Afghan diet. For decades the country has relied for food security on neighbors such as Kazakhstan and Pakistan and import dependence appears to be a permanent feature of the agricultural economy (Sharma and Nang 2018).

In a recent paper published in Plants, People, Planet, CIMMYT scientists and partners from SOAS University of London, Afghanistan Research and Evaluation Unit, FAO-Afghanistan, The HALO Trust, Afghanaid and the Agricultural Research Institute of Afghanistan call for renewed investment in Afghanistan’s wheat and agricultural sector.

Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

Improved CIMMYT wheat germplasm has supported agricultural development

CIMMYT’s activities in Afghanistan have focused primarily on supporting the national agricultural research system through the provision of elite, widely adapted germplasm with strong disease resistance. Recent estimates of genetic gains over 14 years (2002-2003 to 2015-2016) of testing of CIMMYT’s Elite Spring Wheat Yield Trial material across 11 locations in Afghanistan documents significant grain yield progress of 115 kg/year. Average yields across 11 testing locations ranged from 3.58 to 5.97 t/ha (Sharma et al., 2021). This indicates that yield potential can be increased through introduction and testing of internationally improved germplasm.

But such investment in research has come to a halt. Local public- and private-sector wheat breeding activities have been largely absent in Afghanistan for over a decade. Hence, wheat productivity remains low due to the limited availability of improved varieties, inadequate quality seed production and distribution. Although in the short term, humanitarian interventions are likely to be the major determinant of food security, we propose that strategic rebuilding of the wheat system will lay the foundation for restoring Afghanistan’s agricultural production, food supplies, nutrition and health. Here we signal opportunities for future improvement.

Opportunities to build climate resilience and enhance seed systems

The need for climate-resilient varieties that meet farmers’ varied requirements and consumer preferences is paramount. Afghan farmers need varieties with improved traits such as heat and drought resilience, incorporating functional variation from existing landrace collections. In addition, agronomic interventions such as conservation agriculture will offer substantial benefits in buffering environmental stresses.

The technological pathways for seed (re-)distribution are a critical part of the innovation pathway from plant breeding to production and productivity. Given the particularities of markets in Afghanistan, both the public sector and the private sector often fail to reach farming geographies that are remote, diverse, and unserved by physical and institutional infrastructure. For many years, basic public services and agricultural interventions have been provided by the NGO sector, and this form of delivery continues. Hence, local ‘informal’ systems for seed and inputs are important to smallholder farmers.

Investment to support both irrigated and rain-fed wheat production

Rehabilitation of ancient irrigation practices and infrastructure could once again serve local farming in a way that supports stable production, restores Afghan heritage, and rebuilds social cohesion. However, there are no easy solutions to the challenges of increasing irrigation to boost agriculture. Although yields are lower, there is potential to optimize breeding specifically for rain-fed production. We expect rain-fed agriculture to continue given the limitations of water and infrastructure access.

Wheat improvement must be embedded in the wider agricultural environment. There is a renewed need for a deep understanding of social, political, and cultural systems and how they vary between villages, and from districts, provinces, and regions to people groups. We need to re-envision the roles of men and women in agriculture, and investment in skills and capacity building to provide a stable foundation for the eradication of poverty and food insecurity.

A new wheat program for Afghanistan

We highlight the urgent need for:

  • Resumption of breeding of nutritious and climate-resilient varieties.
  • Development of a knowledge base on current wheat production systems, gendered agricultural roles, farmer needs for varietal change and consumer preferences for tasty and nutritious wheat-based products.
  • Development of seed information systems using new technologies to enhance farmer engagement in research.
  • Expansion of appropriate irrigation systems and development of nature-based solutions to protect soil and to preserve and conserve water.
  • Investment in capacity building among private, non-governmental, university and public stakeholders in seed systems and delivery of agricultural services.

These foundations will support the wider regeneration of Afghanistan’s agricultural sector and enhance food security, nutrition and health of some of the world’s most vulnerable populations.

Full paper

Poole, N., Sharma, R., Nemat, O.A., Trenchard, R., Scanlon, A., Davy, C., Ataei, N., Donovan, J. and Bentley, A.R. (in production). Sowing the wheat seeds of Afghanistan’s future. Plants, People, Planet DOI: https://doi.org/10.1002/ppp3.10277

References

Bentley, A. and Donovan, J. (2022). What price wheat? Crisis in Ukraine underscores the need for long-term solutions for global food security. Retrieved 16 June 2022, from https://staging.cimmyt.org/blogs/what-price-wheat/.

Sharma, R.K. and Nang, M. (2018). Afghanistan wheat seed scenario: Status and imperatives. International Journal of Agricultural Policy and Research 6(5): 71-75 DOI: https://doi.org/10.15739/IJAPR.18.008

UN News (2022a). Afghanistan facing ‘the darkest moments’ in a generation. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/06/1120492.

UN News (2022b). Afghanistan: Nearly 20 million going hungry. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/05/1117812.

Remembering Ephrame Havazvidi

Ephrame Hazvidi. (Photo: The Herald, Zimbabwe)

We report with great sadness the death of Ephrame Havazvidi, who passed away on May 14, 2022.

Havazvidi was one of the world’s pioneering wheat breeders. He served on the Independent Steering Committee of the CGIAR Research Program on Wheat (WHEAT) from 2015 to 2021. He was a renowned seed and crop scientist of the wheat industry in Zimbabwe and the wider region and a frequent expert contributor to projects of the International Maize and Wheat Improvement Center (CIMMYT) in the region.

WHEAT Independent Steering Committee chair John Porter said, “Ephrame will no longer be gracing us with his big beaming smile, bright eyes and gorgeous laughter. Ephrame was a unique person and did so much to promote food security in Zimbabwe. He always supported the WHEAT Independent Steering Committee and shared his pan-African perspective on wheat-based food security. It was a great pleasure to have had him on our team.”

“Ephrame was not only an outstanding partner of both CIMMYT’s maize and wheat programs, especially when it came to promoting drought-tolerant varieties, but first and foremost a lovely human being,” said Prasanna Boddupalli, director of CIMMYT’s Global Maize Program.

Born in Masvingo District on 22 September 1954, Havazvidi held Doctor of Philosophy, Master of Philosophy and Bachelor’s degrees, all obtained from the University of Zimbabwe.

Before joining the University of Zimbabwe (then University of Rhodesia) in 1974 to 1976, he was among the top academic achievers at Berejena Mission in Chibi and Goromonzi High School for his Cambridge GCE “O” and “A” level studies respectively. Havazvidi also completed a year-long Executive Development program at the University of Zimbabwe and attended several management developments programs that include SMI.

Havazvidi began his career as a cotton agronomist at the Cotton Research Institute under the Zimbabwe Department of Research and Specialist Services in the then Ministry of Agriculture in Kadoma in 1977. He then joined Seed Co Limited, then Seed Coop, as a seed production research agronomist in 1980, where he pioneered research on maize seed production. Shortly thereafter, he became Seed Co’s principal wheat breeder between 1982 and 2011; as Seed Co breeder, Ephrame released 28 high-yielding wheat varieties that improved farmer productivity in Southern African countries. The varieties for irrigated areas helped to reduce Zimbabwe’s import burden at the time.

He also developed several high high-yielding maize inbred lines for Seed Co. Havazvidi has written several journal articles and presented at several high-level symposia and conferences locally and globally including for the CIMMYT-led Drought Tolerant Maize for Africa (DTMA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), and HarvestPlus Pro Vitamin A projects.

In 2020, he was recognized as one of 20 most influential plant breeders by the Southern African Plant Breeding Association (SAPBA).

Hazvidi is survived by his wife Elizabeth, four children — Charles, Happines, Kennedy  and Rumbi – and grandchildren.

CIMMYT and CGIAR senior leaders share vision ahead

(Left to right) Bram Govaerts, Claudia Sadoff, Joaquín Lozano and Kevin Pixley stand for a group photo next to the Norman Borlaug sculpture at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
(Left to right) Bram Govaerts, Claudia Sadoff, Joaquín Lozano and Kevin Pixley stand for a group photo next to the Norman Borlaug sculpture at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Senior leadership from CGIAR had the opportunity to strengthen ties with senior leaders and researchers from the International Maize and Wheat Improvement Center (CIMMYT) during a visit on April 25–26, 2022. Claudia Sadoff, Executive Management Team Convener and Managing Director for Research Delivery and Impact, visited CIMMYT’s global headquarters in Texcoco, Mexico, and the experimental station in Toluca, west of Mexico City. Joining her was Joaquín Lozano, CGIAR’s Regional Director for Latin America and the Caribbean.

On April 25, 2022, scientists provided an overview of CIMMYT’s research in Africa and Asia and discussed with Sadoff how CIMMYT’s science and operations contribute to the One CGIAR 2030 Strategy. Examples included sustainable agri-food systems research in South Asia and maize research in Africa, with emphasis on work that aligns with CGIAR’s Action Areas and impact. These sessions underlined CIMMYT’s involvement in multiple CGIAR Initiatives, its influence on policy, and evidence of translating science into impact on the ground.

Lozano and Sadoff toured the facilities, including the CIMMYT Museum, the Wellhausen-Anderson Plant Genetic Resources Center, and the Applied Biotechnology laboratory. Along the way, scientists explained their latest research and answered questions about conservation agriculture, innovation hubs, climate-smart technologies, and scale-appropriate mechanization.

In the afternoon, CIMMYT and CGIAR representatives had targeted discussions on poverty reduction, gender equity and social inclusion, climate adaptation, environmental health and biodiversity,

The remainder of the first day was spent at the Bioscience complex, with visits to the wheat molecular breeding lab, the greenhouse, the wheat quality laboratory, and the maize quality laboratory, which hosted a discussion on nutrition and health.

(Left to right) Joaquín Lozano, Claudia Sadoff, Carolina Sansaloni, Bram Govaerts and Alberto Chassaigne stand for a group photo inside the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)
(Left to right) Joaquín Lozano, Claudia Sadoff, Carolina Sansaloni, Bram Govaerts and Alberto Chassaigne stand for a group photo inside the germplasm bank at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Honoring our roots, growing into the future

On April 26, 2022, Lozano and Sadoff joined representatives from the Mexican and Indian governments, CIMMYT colleagues, and other partners at CIMMYT’s experimental station in Toluca for a dedication event for the late Sanjaya Rajaram.

In Sadoff’s speech, she praised CIMMYT’s highly committed staff and shared her honor at being invited to such an event. “Dr. Norman Borlaug, Dr. Sanjaya Rajaram, Dr. Ravi Singh, and many more talented researchers who have worked and continue to work at CIMMYT have built an outstanding international research organization that has been a role model for other CGIAR centers,” she said. “In view of this impressive history, it is very important that we all contribute to continue CIMMYT’s legacy and to multiply its impact worldwide, but also to honor those great colleagues who have truly inspired us with their impressive achievements.”

After the event, Lozano and Sadoff toured the station and praised the engaging program produced by CIMMYT.

For Lozano, it was his second visit to CIMMYT. “It was an honor to be back at CIMMYT HQ in Mexico this week with Claudia,” he said. “It’s evident that CIMMYT’s science, staff and partners support and proactively contribute to our global research strategy for a food-secure future. A big thanks to Bram Govaerts and the CIMMYT team for such a constructive dialogue and hospitality.”

2022 Excellence in International Service Award

Pablo D Olivera Firpo

Scientist Pablo D Olivera Firpo has been awarded the Excellence in International Service Award by Advancing the Science of Plant Pathology (APS) for outstanding contributions to plant pathology by APS members for countries other than their own.

Firpo was born in Montevideo, Uruguay, where he received a BSc degree as an agronomy engineer in 1997 from the University of the Republic, College of Agronomy. His PhD degree in 2008 was from the Department of Plant Pathology at the University of Minnesota (UMN). He began his career as a postdoctoral research associate with the Department of Plant Pathology and the USDA-ARS Cereal Disease Lab, and then became a research assistant professor in the Department of Plant Pathology at UMN in 2017.

Firpo has been a vital member in the global cereal rust pathology community and contributed substantially to the fight against Ug99 and other virulent wheat stem rust races that have re-emerged around the world and pose serious threats to food security. Firpo’s contributions are not only within the realm of research of great impact, but also include training 79 scientists and facilitating the establishment of a world-class research group in Ethiopia. He has worked to improve international germplasm screening in Ethiopia. As a postdoctoral research associate, Firpo’s first assignment was to search for new sources of resistance to Ug99 in durum wheat, used for pasta, and related tetraploid wheat lines. That project took him to Ethiopia, where an international Ug99-screening nursery for durum wheat was established at Debre Zeit Research Center. He worked closely with researchers from the Ethiopian Institute of Agricultural Research (EIAR) and the International Maize and Wheat Research Center (CIMMYT) to improve the methodologies for screening and to provide hands-on training to researchers managing the international screening nursery. During a period of 10 years (from 2009 to 2019), he traveled to Ethiopia 21 times to evaluate stem rust reactions of US and international durum wheat germplasm and completed the screening of the entire durum collection (more than 8,000 accessions) from the USDA National Small Grains Collection.

Firpo’s research on sources and genetics of stem rust resistance led to discoveries of valuable genetic resistance in durum and other relatives of wheat. These sources of resistance have provided the needed diversity to ensure the development and sustainability of durable stem rust resistance.

With frequent epidemics and severe yield losses caused by stem rust in eastern Africa, establishing a functional rust pathology laboratory to support international screening, as well as to monitor and detect new virulences in the pathogen population, became a high priority for the international wheat research community. Utilizing the onground opportunities in Ethiopia, Firpo and his colleagues at the CDL and UMN enthusiastically participated in building up the rust pathology lab at the Ambo Plant Protection Center of EIAR. Firpo traveled to Ambo 11 times to provide hands-on training to staff and to develop cereal rust protocols to suit local conditions. He worked closely with colleagues at CDL, EIAR, and CIMMYT to secure and upgrade facilities, equipment and supplies to a standard that ensures reliable rust work will be carried out. As a result, the rust pathology lab at the Ambo Center became the only laboratory in eastern Africa, and one of a handful in the world, that can conduct high-quality race analysis of wheat stem rust samples and provide vital and necessary support for breeding global wheat varieties for rust resistance. Currently, the laboratory is playing a critical role in the global surveillance of the stem rust pathogen and supports wheat breeding efforts led by EIAR, CIMMYT, and the USDA.

Firpo has been passionate in supporting capacity building of human resources in Ethiopia and elsewhere. He has been eager to share his knowledge whenever he encounters an opportunity to do so. In addition to the direct training of the staff at the Ambo Center, Firpo accepted invitations to provide training lectures and hands-on field- and greenhouse-based workshops on rust pathology at three research centers in Ethiopia. He prepared training materials, delivered a total of 12 lectures and 10 practical sessions in three Ethiopia national workshops in 2014, 2015, and 2017. These workshops enhanced human resource development and technical capacity in ​Ethiopia in cereal rust pathology; participants included a total of 64 junior scientists and technical staff from nationwide research centers. Beyond Ethiopia, he was responsible for developing and implementing a six-week training program in cereal rust prevention and control for international scientists. This training program, under the aegis of the Stakman-Borlaug Center for Sustainable Plant Health in the Department of Plant Pathology, University of Minnesota, provided an experiential learning opportunity for international scientists interested in acquiring knowledge and practical skills in all facets of working with cereal rusts. The program trained 15 rust pathologists and wheat scientists from Ethiopia, Kenya, Pakistan, Nepal, Bhutan, Georgia, and Kyrgyzstan, ranging from promising young scientists selected by the USDA as Borlaug Fellows to principal and senior scientists in their respective countries. Many of these trainees have become vital partners in the global surveillance network for cereal rusts.

Working in collaboration with CDL and international scientists, Firpo has been closely involved in global surveillance of the stem rust pathogen, spurred by monitoring the movements of, and detecting, new variants in the Ug99 race group. Since 2009, he and the team at the CDL have analyzed 2,500 stem rust samples from 22 countries, described over 35 new races, and identified significant virulence combinations that overcome stem rust resistance genes widely deployed in global wheat varieties. Among the most significant discoveries were the identification of active sexual populations of the stem rust pathogen in Kazakhstan, Georgia, Germany, and Spain that have unprecedented virulence and genetic diversities. More than 320 new virulent types (or races) were identified from these sexual populations. Evolution in these populations will present continued challenges to wheat breeding. Research in race analysis has provided valuable pathogen isolates that are used to evaluate breeding germplasm to select for resistant wheat varieties and to identify novel sources of stem rust resistance.

The race against time to breed a wheat to survive the climate crisis

CIMMYT scientists are using biodiversity, testing forgotten wheat varieties from across the world, to find those with heat- and drought-tolerant traits. The aim is to outpace human-made global heating and breed climate-resilient varieties so yields do not collapse, as worst-case scenarios predict.

Reporter visited CIMMYT’s experimental station in Ciudad Obregon, in Mexico’s Sonora state, and witnessed CIMMYT’s unique role in fighting climate change through the development of resilient varieties as “international public goods”.

Read more: https://www.theguardian.com/environment/2022/jun/12/wheat-breeding-climate-crisis-drought-resistant

NASDA representatives visit CIMMYT

Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco Alarcón/CIMMYT)
Ted McKinney (left) listens to a technician explaining the use of an alvograph. (Photo: Francisco Alarcón/CIMMYT)

Representatives from the National Association of State Departments of Agriculture (NASDA) of the United States visited the global headquarters of the International Maize and Wheat Improvement Center (CIMMYT) on May 19, 2022. Ted McKinney, NASDA’s Chief Executive Officer, was joined by RJ Karney, Senior Director of Public Policy, and John Goldberg, consultant and partner at The Normandy Group.

“I wish the world could all understand what you do here. This is just fantastic,” said McKinney after seeing the broad range of work conducted at CIMMYT.

NASDA’s tour of CIMMYT’s global headquarters in Texcoco, Mexico, included visits to the museum, the maize and wheat genebanks, the greenhouse, the bioscience complex, the wheat quality laboratory and the experimental station.

In each location, the visitors met with CIMMYT representatives who provided an overview of their research areas. Discussions ranged from the importance of preserving disease resistance in wheat in order to conduct experiments, the process for using DNA to inform breeding programs, and the assessment process for wheat grain. NASDA’s representatives also gained an understanding of how CIMMYT connects experiments with the needs of farmers, ensuring that scientific progress is translated into real-life solutions.

(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYT’s Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco Alarcón/CIMMYT)
(From left to right) Carolina Sansaloni, a translator, Kevin Pixley, Ted McKinney, RJ Karney and John Goldberg visit CIMMYT’s Wellhausen and Anderson Genetic Resources Center, housing the maize and wheat genebanks. (Photo: Francisco Alarcón/CIMMYT)
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco Alarcón/CIMMYT).
Nayelli Hernandez (second from left) explains the process for measuring wheat quality. (Photo: Francisco Alarcón/CIMMYT).
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)
(Left to right) Jelle Van Loon, John Goldberg, Ted McKinney, RJ Karney and Kevin Pixley stand for a group photo next to the Norman Borlaug statue at CIMMYT’s global headquarters in Texcoco, Mexico. (Photo: Francisco Alarcón/CIMMYT)

Nitrogen-Efficient Wheat Production Systems in the Indo-Gangetic Plains through Biological Nitrification Inhibition (BNI) Technology

The Nitrogen-Efficient Wheat Production Systems in the Indo-Gangetic Plains through Biological Nitrification Inhibition (BNI) Technology project aims to raise awareness of the benefits of new nitrogen-efficient wheat production systems among stakeholders in India.

By introducing technologies that maintain crop yield and quality, even with a reduced amount of nitrogen fertilizer, this project will also lessen the footprint of food production systems and combat environmental degradation.