Skip to main content

research: Wheat

Greenhouse upgrades at BWMRI for wheat blast research

Md. Sayedul Islam inaugurated the greenhouse complex along with Golam Faruq and Md. Benojir Alam. (Credit: Timothy J. Krupnik/CIMMYT)

A new greenhouse complex, built with financial support from the International Maize and Wheat Improvement Center (CIMMYT), at the Bangladesh Wheat and Maize Research Institute (BWMRI) was inaugurated on 13 August 2022. The greenhouse was built at BWMRI’s headquarters in Dinajpur, Bangladesh.

This complex has a room for generator, a sample preparation room and space for a small laboratory. These upgrades will add new momentum for greenhouse activities and BWMRI and CIMMYT scientists designed the facility to accommodate wheat scientists from Bangladesh and other countries.

The BWMRI has been working to combat wheat blast disease since 2016, with financial and technical support from CIMMYT and other investors. CIMMYT has also assisted the Government of Bangladesh in developing an early warning system for wheat blast.

Because of the challenging phenology of synthetic wheat and introductions from winter and facultative wheat zones, field condition evaluation of these germplasm is difficult and the greenhouse will help ease this hurdle. Additionally, several pathological experiments investigating the biology of wheat blast will now be able to be performed in the new greenhouse facility.

Supplementary activities at the greenhouse include disease screening and research into unlocking the genetics of host resistance. The installation of a diesel generator will keep the greenhouse running in case of power outages.

Visitors to the newly constructed greenhouse at the Bangladesh Wheat and Maize Research Institute. (Credit: Rezaul Kabir/BWMRI)

Md. Sayedul Islam, Secretary of the Ministry of Agriculture, inaugurated the greenhouse complex. Additional attendees at the opening included Shaikh Mohammad Bokhtiar, Executive Chairman of the Bangladesh Agricultural Research Council (BARC), Golam Faruq, Director General of BWMRI, Mirza Mofazzal Islam, Director General of the Bangladesh Institute of Nuclear Agriculture (BINA), Debasish Sarker, Director General of the Bangladesh Agricultural Research Institute (BARI), Md. Benojir Alam, Director General of the Department of Agricultural Extension (DAE), and Md. Abdul Wadud, Executive Director and Additional Secretary at the Bangladesh Institute of Research and Training on Applied Nutrition (BIRTAN). Timothy J. Krupnik, country representative of CIMMYT in Bangladesh, was also present.

Conservation agriculture practices revive saline and sodic soils

In arid and semi-arid regions, soil salinity and sodicity pose challenges to global food security and environmental sustainability. Globally, around 932 million hectares are affected by salinization and alkalinization. Due to growing populations, anthropogenic activities and climate change, the prominence of salt stress in soil is rising both in irrigated and dryland systems.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council of Agricultural Research (ICAR) employed long-term conservation agriculture practices in different agri-food systems to determine the reclamation potential of sodic soil after continuous cultivation for nine years, with the experiment’s results now published.

Using different conservation agriculture techniques on areas cultivating combinations of maize, wheat, rice and mungbean, the study used soil samples to identify declines in salinity and sodicity after four and nine years of harvesting.

Evidence demonstrates that this approach is a viable route for reducing soil sodicity and improving soil carbon pools. The research also shows that the conservation agriculture-based rice-wheat-mungbean system had more reclamation potential than other studied systems, and therefore could improve soil organic carbon and increase productive crop cultivation.

Read the full publication: Long-term conservation agriculture helps in the reclamation of sodic soils in major agri-food systems

Cover photo: Comparison of crop performance under conservation agriculture and conventional tillage in a sodic soil at Karnal, Haryana, India. (Credit: HS Jat/ICAR-CSSRI)

Afghan wheat landrace shows promise for rust resistance

Rust pathogens are the most ubiquitous fungal pathogens that continue to pose a serious threat to wheat production. The preferred strategy to combat these diseases is through breeding wheat varieties with genetic resistance.

Landraces are a treasure trove of trait diversity, offer an excellent choice for the incorporation of new traits into breeding germplasm, and serve as a reservoir of genetic variations that can be used to mitigate current and future food challenges. Improving selection efficiency can be achieved through broadening the genetic base through using germplasm pool with trait diversity derived from landraces.

In a recent study, researchers from the International Maize and Wheat Improvement Center (CIMMYT) used Afghan landrace KU3067 to unravel the genetic basis of resistance against Mexican races of leaf rust and stripe rust. The findings of this study not only showcase new genomic regions for rust resistance, but also are the first report of Lr67/Yr46 in landraces. This adult plant resistance (APR) gene confirms multi-pathogenic resistance to three rust diseases and to powdery mildew.

Using genotype sequencing and phenotyping, the authors also report an all-stage resistance gene for stripe rust on chromosome 7BL, temporarily designated as YrKU. The genetic dissection identified a total of six quantitative trait locus (QTL) conferring APR to leaf rust, and a further four QTL for stripe rust resistance.

Although use of landraces in wheat breeding has been practiced for a long time, it has been on a limited scale. This study represents a significant impact in breeding for biotic stresses, particularly in pest and disease resistance.

Read the full study here: Identification and Characterization of Resistance Loci to Wheat Leaf Rust and Stripe Rust in Afghan Landrace “KU3067”

Cover photo: Yellow rust screening takes place at a CIMMYT experimental station in Mexico. (Credit: Sridhar Bhavani/CIMMYT)

Pilot of new wheat variety improves yield for farmers in Ethiopia

“I am happy with this wheat variety and all the support from the project,” said Agere Worku, a female farmer in Ethiopia working with the International Maize and Wheat Improvement Center (CIMMYT). “It is a lot of money that I will earn as a female farmer in my life.”

Worku is just one farmer taking part in a pilot intervention as part of CIMMYT’s Adaptation, Demonstration, and Piloting of Wheat Technologies for Irrigated Lowlands of Ethiopia (ADAPT-Wheat) project. Four female and four male farmers were chosen to take part from the Melke Yegna Tesfa Association, a membership group of 83 smallholder farmers, nearly half of which are female.

Participants were given Kingbird seeds, a new wheat variety, to plant in their smallholdings. The project then supported them through capacity building and advice on smart soil, water management, plant protection and agronomic packages.

“We prepared six hectares of land and sowed 1.1 tons of Kingbird seed,” said Yeshiwas Worku, chair of the Melke Yegna Tefsa Association. “There were other wheat varieties, such as Danda’a, adjacent to our experimental plot and the difference in yields was very visible. The other members of the association were eager to get Kingbird seeds, which are very different in terms of quality, yields, maturity, and disease tolerance.”

“CIMMYT is a life changer for me,” said Buzayehu Getahun, a farmer in Jeju, in the Oromia region. “I produced 3.7 tons on 0.75 hectares. Interestingly, I earned around 132,000 Ethiopian Birr (US$2,500) from this yield. I plan to build a new house for my mother in my village and will be blessed by her at her old age,” said Getahun.

Female smallholder farmer with a bag of Kingbird seed, which she will use as part of a CIMMYT project pilot. (Credit: Enawgaw Shibeshi/CIMMYT)

The impact on female farmers

After involvement in the pilot, the female farmers produced higher yields than they had experienced before.

“I used to harvest wheat three times in the previous years and earned only 0.66 tons of wheat per 0.75 hectare using seeds of other wheat varieties,” explained Worku. “But now thanks to support from CIMMYT, the yield has increased four times than the previous years; I produced 2.4 tons per 0.75 hectares. I am very happy with the high yield and feel encouraged to reinvest in other agricultural activities.”

A second female farmer, Melishew Tedela, said, “I am happy with this seed and all the support from the project. I can be witness that the other farmers who didn’t get this variety were not happy with their low yields of wheat.”

Female farmers in Ethiopia share their experiences of cultivating Kingbird wheat crops. (Credit: Enawgaw Shibeshi/CIMMYT)

The future of lowland wheat farming

Bekele Geleta Abeyo, wheat breeder and Ethiopia Country Representative at CIMMYT, said, “The Government of Ethiopia is emphasizing increasing irrigated wheat production and productivity in the lowlands to complement the intensification of rainfed wheat production in the highlands in order to achieve self-sufficiency by 2023 and feed the ever-growing population.”

With world wheat prices skyrocketing due to the Ukraine conflict, wheat technology generation and dissemination are key for sustainable agricultural practices.

CIMMYT is working to replace obsolete wheat varieties in Ethiopia that are susceptible to wheat rust, particularly yellow and stem rust, with disease-resistant products. Newer varieties like Kingbird are rust-resistant and therefore produce higher yields.

Farmer in his field of Kingbird wheat in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)

How bad will we let the food crises get?

As the Russia-Ukraine war continues to degrade global food security, the Australian who leads the global effort on improving wheat production has set out the concrete actions needed by governments and investors to mitigate the food crisis, stabilise supply and transition to greater agrifood system resilience.

Alison Bentley leads the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), the renowned research organisation from which more than 90 per cent of the wheat varieties grown in Australia can be traced. She will be addressing the Crawford Fund’s international conference Celebrating Agriculture for Development – Outcomes, Impacts and the Way Ahead this week in Parliament House, Canberra. The conference will also be addressed by the Minister for Agriculture, Fisheries and Forestry, Senator The Hon, Murray Watt.

“The broad food security impacts of the Russia-Ukraine war highlight the fragility of the global food supply, but the war is only one of a multitude of problems that we’ll be facing for many years to come. Few will remain unaffected,” said Alison Bentley, who was the lead author in a recently published related article in Nature Food.

“More than 2.5 billion people worldwide consume wheat-based foods. We need to move beyond defining the problem to implementing practical actions to ensure stable food supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system, and we will all benefit,” she said.

“The first priority is to mitigate the immediate crisis by boosting wheat production by bundling existing agronomic and breeding improvements and sustainable farming practices, just as Australia and other wealthy countries are doing. This will reduce dependence on imported grain and fertilizer in poorer countries.”

“We have learned since the Green Revolution that this must be done within agro-ecological boundaries, with high-yielding disease-resistant wheat and by mainstreaming capacity for pest and disease monitoring. Importantly, we also need to address climate change, gender disparities, nutrition insufficiency and increase investment in agricultural research,” she concluded.

The Fund’s annual conference will bring together international and Australian specialists to look at the mutual benefit and impacts of investment in global food security and poverty alleviation, and consider the effects of emerging threats including climate change and changing geo-political conditions on agricultural production, food chains and the environment.

Other speakers include international affairs specialist Allan Gyngell, climate change and security specialist Robert Glasser and renowned international economist Phil Pardey.

Contact for enquiries
Cathy Reade – Director of Outreach
+61 413 575 934                                                                                                                              crawford@crawfordfund.org
www.crawfordfund.org

All the powerpoints can be found on the website – you’ll find them linked to each speaker’s presentation title on the program page. 

Fighting back against Ug99 wheat stem rust

Sridhar Bhavani, head of rust pathology and molecular genetics and the International Maize and Wheat Improvement Center (CIMMYT), shared potential solutions for fighting back against wheat stem rusts like Ug99.

More than 200 new wheat varieties released by CIMMYT over the last ten years have contributed to reducing the spread of wheat stem rust in East Africa, where the disease originated. Scientists identify genes resistant to Ug99 and breed new varieties that are not susceptible to stem rust pathogens.

For long-term success, combining multiple resistant genes within a single variety is the way to go.

Read more: Fighting back against Ug99 wheat stem rust

Achieving sixty years of wheat yield increase

Achieving greater food security requires a continued increase in global wheat yields, which the developing world plays a central role in meeting. Newly published research covering 60 years of wheat yield trends in the Yaqui Valley, Mexico, provides insights into how farmers can increase yields to address this need.

By dividing the 60-year interval into three 20-year periods between 1960-2019 and correcting farm yield for the strong influence of inter-annual variation in January to March minimum temperature, scientists from Commonwealth Scientific and Industrial Research Organisation (CSIRO) and the International Maize and Wheat Improvement Center (CIMMYT) have taken steps towards advancing the sustainability of the Valley’s wheat cropping system by studying farm yield for the irrigated spring wheat production environment.

Total yield increase, corrected for temperature and CO2 rise, relative to average yield in each period, was 4.17%, 0.47%, and 1.59% p.a. for 1960–79, 1980–99, and 2000–19, respectively. The breeding component, estimated by the increase in the Varietal Yield Index in farmers’ fields, rose at 0.97%, 0.49%, and 0.71% p.a., respectively. The remaining yield change (3.16, -0.02%, and 0.87% p.a., respectively) comprised the net effect of improved crop management (agronomic progress), plus that of off-farm changes.

In the first period, off-farm developments were bolstered by strong government financial support whereas developments in the second period were hindered by the breakdown of the traditional smallholder land system and withdrawal of government support. The final period experienced better prices and improved access to technical advice.

Wheat is likely to continue playing a dominant role in the Yaqui Valley for the next 20-year period, especially from potential yield increase through breeding. However, closing the yield gap is becoming more challenging due to fluctuations in energy price, goals to achieve net zero CO2 and environmental signals. The biophysical sustainability of the Valley’s wheat cropping system requires urgent actions through better fertilizer management, greater cropping diversity, integrated management of biotic threats, acceptance of no-till, residue retention and controlled traffic.

Lessons from the Yaqui Valley bear importance for global wheat security given that without area increase and new technologies, food security will increasingly depend on developing countries.

Read the full publication here: Sixty years of irrigated wheat yield increase in the Yaqui Valley of Mexico: Past drivers, prospects and sustainability

Cover photo: Workers sowing wheat into sorghum residue. (Credit: CIMMYT)

Can digital agricultural services boost Ethiopia’s durum wheat production?

Participants gather to discuss solutions to low levels of durum wheat cultivation in Ethiopia. (Credit: Enawgaw Shibeshi/CIMMYT)

Despite an increase in the total area used for growing wheat in Ethiopia, the share of durum wheat, the wheat used for pasta, has decreased substantially across the country. Smallholder farmers grow durum wheat on marginal lands for their own use but are not benefitting financially from cultivating the crop.

To understand factors contributing to low area coverage of durum wheat and identify opportunities for reinvigoration and improved marketing, the International Maize and Wheat Improvement Center (CIMMYT) hosted a workshop for stakeholders from the entire durum wheat value chain.

“New breeding technologies have great promise for expanding the area of durum wheat production,” said Moti Jaleta, agricultural economist at CIMMYT, “but this achievement remains primarily dependent on the market’s ability to purchase grains at a higher price to stimulate farmer adoption. The market in Ethiopia is not favoring durum wheat, so suppliers and extension workers must promote it very well.”

Rising consumption of durum wheat products such as pasta and macaroni is causing higher dependency on wheat imports. Reducing this reliance requires addressing the challenges facing Ethiopia’s durum wheat farmers in variety development and release, seed supply, crop management, level of productivity, market opportunities, and extension systems.

Kindie Tesfaye, scientist and crop modeler at CIMMYT, explained, “There is a need to improve the durum wheat seed system and extension service, enhance the development of new varieties with desired grain quality and create market linkages to meet the increasing durum wheat demand from the rapidly growing urban population and expanding agro-industrial parks.”

The potential of digital

As Ethiopia’s agricultural systems are highly dependent on rainfall, digital interventions can serve as key decision support tools to manage climate risk and bolster the adaptive capacity and productivity of smallholder farmers. CIMMYT collaborates with value chain-based digital agro-advisory services through the Digital Agricultural Advisory Services (DAAS) project, which runs multiple projects in Ethiopia to advance the use of digital tools in farming.

Taye Tadesse, director of crop research at the Ethiopian Institute of Agricultural Research, emphasized that the introduction of production technology should be participatory and customer-oriented to achieve the intended outcomes. Ensuring that technology is accessible is vital for strengthening the value chain system, he said.

Agreed actions from the workshop included focusing attention on the bodies responsible for the expansion of infrastructure and raising wheat farmers’ awareness of the value-adding tools available to them through training.

“We must ensure that farmers are the biggest decision-makers,” Tasfaye said.

Earlier wheat planting will boost yields in eastern India

“For several years, we’ve been building dense data sets with colleagues from the Indian Agricultural Research Council, which have allowed us to unravel complex farm realities through big data analytics, and to determine what agricultural management practices really matter in smallholder systems,” said Andrew McDonald ’94, M.S. ’98, Ph.D. ’03, associate professor of soil and crop sciences in the College of Agriculture and Life Sciences. “This process has confirmed that planting dates are the foundation for climate resilience and productivity outcomes in the dominant rice-wheat cropping systems in the eastern sector in India.”

McDonald is first author of “Time Management Governs Climate Resilience and Productivity in the Coupled Rice-Wheat Cropping Systems of Eastern India,” published July 21 in Nature Food with a consortium of national and international partners, including scientists from the International Maize and Wheat Improvement Center (CIMMYT).

The research was conducted through the  Cereal Systems Initiative for South Asia (CSISA). CSISA, which is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute as research partners, was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

Researchers found that farmers in eastern India could increase yield by planting wheat earlier – avoiding heat stress as the crop matures – and quantified the potential gains in yields and farm revenues for the region. They also found that the intervention would not negatively impact rice productivity, a key consideration for farmers. Rice alternates with wheat on the cropping calendar, with many farmers growing rice in the wet season and wheat in the dry season.

The study also provides new recommendations for rice sowing dates and types of cultivars, to accommodate the earlier sowing of wheat.

“Farmers are not just managing single crops. They are managing a sequence of decisions,” said McDonald, who has a joint appointment in the Department of Global Development. “Taking a cropping systems approach and understanding how things cascade and interlink informs our research approach and is reflected in the recommendations that emerged from this analysis. Climate resilient wheat starts with rice.”

The research is the result of years of collaboration with international groups and government agencies in India, which have identified the Eastern Ganges Plain as the area with the most potential growth in production. The region will become essential, McDonald said, as the demand for wheat grows, and climate change makes production more difficult and unpredictable; just this year, record heat waves in March and April and food shortages caused by the war in Ukraine – both of which prompted India’s government to instate a ban on wheat exports – have highlighted the need for increased yields and more sustainable farming practices.

“In the bigger sense, this research is timely because the hazards of climate change aren’t just a hypothetical,” McDonald said. “Many of these areas are stress-prone environments, and extreme weather already constrains productivity. Identifying pragmatic strategies that help farmers navigate current extremes will establish a sound foundation for adapting to progressive climate change.”

Poverty is endemic in the Eastern Ganges Plain, and the region is dominated by small landholders, with varying practices and access to resources. The breadth and specificity of the data collected and analyzed in the study – including field and household survey data, satellite data, and dynamic crop simulations – allowed researchers to understand regional small farms’ challenges and the barriers to change.

“At the end of the day, none of this matters unless farmers opt in,” McDonald said. “There’s a spatial dimension and a household dimension to opportunity.  If we can  target approaches accordingly, then we hope to position farmers to make management changes that will benefit the entire food system.”

The study was co-authored with researchers from the Australian Department of Primary Industries and Regional Development, the International Rice Research Institute, the International Maize and Wheat Improvement Center, the International Food Policy Research Institute, the Indian Council of Agricultural Research and Bihar Agricultural University. The research was supported by the Bill and Melinda Gates Foundation and the U.S. Agency for International Development through grants to the Cereal Systems Initiative for South Asia, which is led by the International Maize and Wheat Improvement Center.

This piece by Caitlin Hayes, was originally posted on the Cornell Chronicle website.

Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE)

Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) is a five-year program with the aim of establishing, institutionalizing, and scaling routine monitoring of improved variety adoption and turnover using genotyping.

It is led by country teams in Ethiopia, Nigeria and Tanzania, supported by Context Global Development and the Bill & Melinda Gates Foundation.

Reliable monitoring: IMAGE will assess the varieties that farmers are growing of four staple crops within the three target countries and marking the rate of improved variety adoption through recurring surveys and comparative analysis.

Vision for change: IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization.

Project objectives:

  • Enable a national leadership mandate to monitor crop varieties and adoption
  • Build a network of technical experts and service providers to provide personalized advisory support
  • Establish best practices that enable routine monitoring and produce credible results
  • Form a sustainable funding mechanism based on use cases with government and stakeholder buy-in
  • Advocate for institutional capacity for reliable monitoring programs

IMAGE provides the opportunity to leverage past monitoring pilots and for cross-country learnings while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years. This is done through six objectives:

  • Comparable estimates of varietal adoption and turnover will be generated and made available to stakeholders​
  • Standardization of best-practices ​and supporting technologies​
  • Establishment of ​sustainable business cases
  • Pilot study results on varietal identity preservation in seed value chains for each country-crop combination ​
  • Institutionalized system of ​varietal monitoring for long-term, sustainable national partner implementation
  • Generated data used by seed sector stakeholders to make key decisions​

Exploring the potential for blended wheat flours in Kenya  

Over the years, wheat-based foods have increasingly been incorporated as part of Kenyan meals. One example is packaged bread, which has become a common feature on Kenyan breakfast tables with millions of loaves from industrial bakeries delivered to retail shops daily, countrywide. Another example is chapati — a round unleavened flat bread. Once reserved for special occasions, chapati can now be purchased from roadside venders throughout the capital Nairobi.

Millers and processors in Kenya are highly dependent on imported wheat to meet the strong demand for wheat-based food products. The conflict between Russia and Ukraine, two of the most important sources of imported wheat for Kenya, presents a major threat to millers and industrial bakeries.  Prices for bread and chapati are increasing and may continue to increase. Governments and wheat-related industries are looking at short- and long-term options to reduce utilization of imported wheat. One short-term option is the blending of wheat flour with flour derived from locally available crops, such as cassava, millet or sorghum.

Record-high price of wheat

A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)
A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)

A visit to local industrial bakeries and wheat flour millers on the outskirts of Nairobi by International Maize and Wheat Improvement Center (CIMMYT) researchers confirmed the effects of record-high global prices of wheat.  Global Wheat Program director Alison Bentley and senior economist Jason Donovan had conversations with leaders of industrial bakeries and millers, who gave insights into their grain demands, production processes and sales volumes.

One of the leaders of an established industrial bakery divulged that they use approximately 15,000 tons of wheat flour monthly to make baked products, with only 10% of the wheat obtained locally.

“In the last ten years, local wheat production has comprised about ten to fifteen percent of our cereal mixture for bread, and we were already paying higher prices to farmers compared to import prices. The farmers were already being paid about 30 to 40 dollars more per ton,” a manager of a large baking industry in Kenya explained to the CIMMYT team.

According to government regulations, millers and bakeries must purchase locally produced wheat at agreed prices before they can buy imported wheat. He agreed that though the quality of local wheat is good, the local production cannot compete with the higher volume of imported wheat or its lower price.

Growing wheat in East Africa

It has been more than four months since the Russia-Ukraine conflict unfolded, and since then prices of wheat-based products have been increasing significantly. The current crisis has sparked the debate on low levels of self-sufficiency in food production for many countries. And this is especially the case for wheat in Kenya, and more widely in Africa.

Bentley points out that the biophysical conditions to produce wheat in East Africa are present and favorable. However, more work is needed to strengthen local wheat production, starting with efficient seed systems. Farmers who are interested in growing wheat need access to high performing and stress-tolerant wheat varieties.

CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)
CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Practical response to the crisis

With no certainty as to how long the conflict will continue and climate change resulting in significant crop loss in key production zones, wheat shortages on international markets could become a reality. Blending of wheat flour with locally available crops could be an option as an immediate response to the current scarcity of wheat in East Africa. “Blending [flour] is when for instance five percent of wheat flour is replaced with flour from a different crop such as sorghum or cassava,” Bentley explained.

Donovan added that, though it might seem like a small number, it becomes significant in consideration to the volume of wheat that industries use to make different products, translating into thousands of metric tons. He noted that blending flour therefore has the potential to create a win-win situtation, because it can boost the demand for local crops and address uncertainty and price volatility on international wheat markets.

Consumer acceptance of new products

Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)
Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)

During a full week of engagements with universities, partners, and industry experts in Kenya, the CIMMYT team explored the current interest of the sector in blending wheat flour. Several partners agreed that this could be a potential way forward for the grain industry but all highlighted one key element: the importance of consumer acceptance. If the functionality of the flour or taste would be negatively influenced by blending wheat flour, it would represent a no-go from the industry, even if blends would have higher nutritional benefits or lower prices. “This reinforces the need to understand consumer preferences and evaluate both the functionality of the flour to produce essential food products such as chapati or bread as well as the taste of those products,” Pieter Rutsaert explained.

CIMMYT researchers Sarah Kariuki and Pieter Rutsaert, both Markets and Value Chain Specialists, and Maria Itria Ibba, Head of the Wheat Quality Lab, are therefore engaging with local millers and universities in Kenya to design bread and chapati products derived from different wheat blends, to include blends comprised of 5%, 15% and 20% of cassava or sorghum. Lab testing and preliminary consumer testing will be used to identify the most promising products. These products will be taken to the streets in urban and peri-urban Nairobi to assess consumer tastes and preferences, through sensory analysis and at-home testing.

The market intelligence gained will offer foundational support for CGIAR’s Seed Equal Initiative to accelerate the growth of a demand-driven seed system. By gathering and analyzing consumer preferences on selected crops for blending, such as from farmers and milling industries, Donovan pointed out that CGIAR breeding will continue to make informed choices and prioritize breeding for specific crops, that seek to address specific challenges, therefore having greater impact.

Donovan noted that data and information from the studies will provide much needed evidence and fill information gaps that will support governments, millers, processors and farmers to make decisions in response to the evolving wheat crisis.

Scientists step up wheat landrace conservation efforts in Afghanistan, Turkey and other countries in the region

Farmers gather in a landrace field. Photo: Raqib Lodin/CIMMYT

For thousands of years, farmers in Afghanistan, Turkey and other countries in the region, have been breeding wheat, working closely with the environment to develop traditional wheat varieties known as landraces. Untouched by scientific breeding, landraces were uniquely adapted to their environment and highly nutritious.

As agriculture became more modernised and intensified, it threatened to push these traditional landraces into extinction, resulting in the loss of valuable genetic diversity. Institutions around the world decided to act, forming germplasm collections known as genebanks to safely house these landraces.

In 2009, a team of wheat scientists from the International Maize and Wheat Improvement Center (CIMMYT), the International Center for Agricultural Research in the Dry Areas (ICARDA), the UN Food and Agriculture Organization (FAO), and national partners set off on a five-year expedition across Central Asia to collect as many landraces as they could find. The project, led by FAO Cereal Breeder and former CIMMYT Principal Scientist Alexey Morgunov, was made possible by the International Treaty on Plant Genetic Resources for Food and Agriculture Benefit-Sharing Fund.

The project had two main missions. The first is to preserve landrace cultivation in three countries, Afghanistan, Turkey and other countries in the region by selecting, purifying, and multiplying the landraces and giving them back to farmers. The second is to scientifically evaluate, characterize and use these landrace varieties in ongoing breeding programmes, exchange the information between the countries, and to deposit the seeds in genebanks to safely preserve them for future generations.

The latest results from the project were published in July in the journal Crops. The study, authored by a team of experts from CIMMYT, ICARDA, FAO, and research institutes in Afghanistan, Turkey and other countries in the region, compared the diversity, performance, and adaptation of the collected wheat landraces with modern varieties grown in the regions using a series of field experiments and cutting-edge genomic tools.

“Landraces are very useful from a breeding perspective because they have been cultivated by farmers over thousands of years and are well adapted to climate change, have strong resistance to abiotic stresses and have very good nutritional quality,” said Rajiv Sharma, a CIMMYT senior scientist and co-author of the paper.

“We were interested in seeing how well landraces adapt to certain environments, how they perform agronomically, and whether they are more diverse than modern varieties grown in these regions – as well as give their improved versions back to farmers before they are lost.”

The experiments, which were carried out in 2018 and 2019 in Turkey, and 2019 in Afghanistan, and other countries in the region revealed several physical characteristics in landraces which are no longer present in modern varieties. For example, the team found striking differences in spike and grain colors with landraces more likely to have red spikes and white grains, and modern varieties tending to have white spikes and red grains. This may have adaptive values for high altitudes and dry conditions.

A surprising finding from the study, however, was that landraces were not more genetically diverse than modern landraces.

“Many people thought that when we went from cultivating landraces to modern varieties, we lost a lot of diversity but genetically speaking, that’s not true. When you look at the genomic profile, modern varieties are just as diverse as landraces, maybe even a little bit more so,” said Sharma.

When the team compared landraces and modern varieties on crop performance, the results were mixed with modern wheat varieties outyielding landraces in half of the environments tested. However, they found that the highest yielding landraces were just as good as the best modern varieties – a reassuring finding for farmers concerned about the productivity of their crops.

A new breeding paradigm  

The results of the study have important implications for landrace conservation efforts in farmers’ fields and in future breeding strategies. While crossing wheat landraces with modern varieties to develop improved modern varieties is not new, the authors proposed a novel alternative breeding strategy to encourage the continued cultivation of landraces: improving landraces by crossing them with other landraces.

“In order to maintain landraces, we have to make them competitive and satisfy farmers’ needs and requirements. One option is that we breed landraces,” said Sharma.

“For example, you might have a landrace that is very-high yielding but susceptible to disease. By crossing this variety with another landrace with disease-resistant traits you can develop a new landrace better suited to the farmer and the environment. This approach maintains all the features of landraces – we are simply accelerating the evolution process for farmers to replace the very fast disappearance of these traditional varieties.”

This approach has already been used by crop scientists at the University of California, Davis who has successfully developed and registered “heirloom-like varieties” of dry beans. The varieties trace about 98% of their ancestry to landraces but are resistant to the common mosaic virus.

Heirloom food products are becoming increasingly popular with health-conscious consumers who are willing to pay a higher price for the products, garnering even more interest in conserving traditional landraces.

One of the overarching aims of the project was to give wheat landraces back to farmers and let nature take its course. Throughout the mission, the team multiplied and returned landrace seed to over 1500 farmers in communities across Afghanistan, Turkey and other countries in the region. The team also supplied over 500 farmers with improved landrace seed between 2018 and 2019.

Despite the political turmoil facing these countries, particularly Afghanistan, farmers are still growing wheat and the project’s contribution to food security will continue.

These landraces will take their place once more in the farming landscape, ensuring on-farm wheat diversity and food security for future generations.

This research was conducted with the financial assistance of the European Union within the framework of the Benefit-Sharing Fund project “W2B-PR-41-TURKEY” of the FAO’s International Treaty on Plant Genetic Resources for Food and Agriculture.

How to shockproof staples in a looming global food crisis

Empty shelfs in a Swiss grocery store. Photo Boris Dunand/Unsplash

The conflict in Ukraine has had a deeply destabilizing effect on the global wheat trade, causing unprecedented price volatility and uncertainty. As my colleagues and I have previously highlighted, the unintended consequences are likely to have outsized impacts on livelihoods in the Global South.

As the G7 group of nations recently acknowledged in a joint statement, the conflict is leading to steep price rises and increasing global food insecurity for millions, especially those most vulnerable, such as women and children.

In a new paper published in Nature Food, scientists and partners of the International Maize and Wheat Improvement Center (CIMMYT) present a package of applied solutions to respond to the crisis and ensure future wheat stability.

To stem the potential food crisis, food is needed in more places, and faster.

Recently announced talks between Russia, Turkey, Ukraine and the United Nations, among other negotiations, are already underway as part of this international effort to develop short-term solutions.

However, at present we are seeing the brakes applied in several places. For example, in India century-high temperature extremes have recently reduced official wheat production estimates by 6 percent, leading to reduced export potential. This shows the compounding effect of climatic instability on global wheat markets, an impact that is expected to worsen over time.

In our solutions agenda, we propose a package of short-, medium- and longer-term actions and urge immediate and sustained support for shockproofing major food security staple crops, including wheat.

  1. In the short term, the priority is mitigation of food security shocks through boosting production in existing high- and low-productivity areas, ensuring access to grain, and making use of flour substitution.
  2. In the medium term, we must increase the local, regional, and global resilience of wheat supply through targeted expansion (within agro-ecological boundaries), support for self-sufficiency, comprehensive technical support in production systems, and mainstreamed crop monitoring capacity.
  3. In the longer term, the transition to agri-food system resilience will need to encompass agroecosystem diversity, address gender disparities in agriculture and rural communities, and sustain an increased investment in a holistic, agri-food transition.

Conflict is being waged on wheat on multiple fronts: on battlefields, in the political arena and by our changing climate. Together these factors interact and amplify the threat to staple wheat production. To address this complexity, we now need to move beyond defining the problem to implementing practical action to ensure stable supply.

Essential actions to mitigate the food crisis, stabilize supply and transition to greater agrifood system resilience

Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)
Wheat at a CIMMYT field trial. (Photo: H. Hernandez Lira/CIMMYT)

As the Russia-Ukraine war continues to degrade global food security, a new analysis lays out concrete actions that governments and investors must do now to mitigate near-term food security risks and stabilize wheat supplies, while transitioning toward long-term resilience.

The guidance, published in Nature Food by scientists from the International Maize and Wheat Improvement Center (CIMMYT) and partners, lays out short-, medium- and long-term steps to respond to the global food crisis and ultimately lead to a more resilient global agrifood system.

“The Russia-Ukraine war will impact global food security over months — if not years,” said CIMMYT Global Wheat Program Director and lead author Alison Bentley. “We now need to move beyond defining the problem to implementing practical actions to ensure stable supply, safeguard the livelihoods of millions of vulnerable people and bring resilience to our global agrifood system.”

The war in Ukraine and trade sanctions against Russia are triggering a level of volatility that could easily overwhelm existing mitigation mechanisms. More than 2.5 billion people worldwide consume wheat-based foods; those in lower- to middle-income countries dependent on imports from Russia and Ukraine are particularly affected. Some of the world’s poorest countries, such as Bangladesh, Sudan and Yemen, rely heavily on Russian and Ukrainian wheat. Given the highly interconnected nature of contemporary agrifood systems, few will remain unaffected by this new global food shock.

Mitigate the immediate crisis

The first priority, according to the authors, is to mitigate the immediate crisis by boosting wheat production in existing high- and low-productivity areas, ensuring grain access and blending wheat flour with other low-cost cereals. Bundled agronomic and breeding improvements and sustainable farming practices can reduce dependence on imported grain and fertilizer, while coordinated, multilateral policies can help conserve grain stocks for human consumption and avert trade restrictions.

Increase the resilience of wheat supply

In the medium term, the authors emphasized the need to increase the local, regional, and global resilience of the wheat supply. This can be done by expanding production within agro-ecological boundaries, supporting national wheat self-sufficiency and providing technical assistance, to increase the production of high-yielding disease-resistant wheat and to mainstream capacity for pest and disease monitoring.

Transition to system-level resilience

Finally, to reach crucially needed resilience in the world’s agrifood system, long-term measures must be taken that encompass agroecosystem diversity, address gender disparities in agriculture and rural communities and sustain increased investment in a holistic, agrifood transition.

“The current global food crisis underscores and compounds existing inequalities in our global food system,” Bentley said. “A transition to agrifood system resilience requires us to urgently balance global food supply needs with the multi-layered challenges of climate change, achieving gender equity, nutritional sufficiency and livelihood security.”


RELATED RESEARCH PUBLICATIONS:

Near- to long-term measures to stabilize global wheat supplies and food security

This research is supported by CGIAR Trust Fund Contributors.

INTERVIEW OPPORTUNITIES:

Alison Bentley – Director, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT THE MEDIA TEAM:

Marcia MacNeil, Head of Communications, CIMMYT. m.macneil@cgiar.org, +52 5558042004 ext. 2019.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 5558042004 ext. 1167.

Ricardo Curiel, Communications Manager, CIMMYT. r.curiel@cgiar.org, +52 5558042004 ext. 1144.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is an international organization focused on non-profit agricultural research and training that empowers farmers through science and innovation to nourish the world in the midst of a climate crisis.

Applying high-quality science and strong partnerships, CIMMYT works to achieve a world with healthier and more prosperous people, free from global food crises and with more resilient agrifood systems. CIMMYT’s research brings enhanced productivity and better profits to farmers, mitigates the effects of the climate crisis, and reduces the environmental impact of agriculture.

CIMMYT is a member of CGIAR, a global research partnership for a food secure future dedicated to reducing poverty, enhancing food and nutrition security, and improving natural resources.

For more information, visit staging.cimmyt.org.

Cross-center learning between CIMMYT and WorldFish

Alison Bentley presents at a joint seminar between CIMMYT and WorldFish. (Photo: Sarah McLaughlin/CIMMYT)

“Now more than ever, we need to build greater resilience across our global food system,” said Alison Bentley, Director of Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), to introduce her part of a joint seminar between CIMMYT and WorldFish. The two CGIAR research centers may appear to have different focuses, but the pairing draws attention to many opportunities for intra-CGIAR collaboration to address the looming global food crisis.

Beginning with Ahmed Nasr-Allah, Country Director (Egypt) at WorldFish, the presentation explored Integrated Agriculture and Aquaculture (IAA) systems for food security. Over the coming decades, population growth and increased scarcity of water pose a challenge for food production and agriculture, so water efficiency needs to be maximized.

Nasr-Allah explained that wheat nutrients improve soil quality, which in turn positively impacts fish quality when using water running off growing crops. He gave an example of a farmer who allocated more space on his farm to irrigate and store water and fish, which enabled him to produce higher crop yields. Further research between WorldFish and CIMMYT in this area could be examining nutrient flow from the fish system to the crop system.

Second to present was Bentley, looking at shock-proofing wheat to build future resilience. “It’s important we understand where the risks lie in our global system so we can respond to shocks,” she explained, citing data on global import dependency on Ukrainian and Russian wheat. She went on to describe potential solutions to combat the predicted yield decrease in wheat in the Global South, including substituting a proportion of wheat flour with other under-utilized crops in products, without impacting flour quality or consumer evaluation.

Linking to WorldFish’s work, Bentley highlighted the need to use water more effectively by combining new varieties with enhanced mechanization options to improve crop management, and the potential of optimizing individual components in fish and wheat rotations that could then be combined for greater impact.

The third session was with WorldFish Scientist Sarah Freed, who discussed designing integrated production practices to meet diverse needs. She invited event attendees to consider whether the lessons learnt from challenges in rice growing areas, such as climate change, poverty, food and nutrition insecurity, and increased demand, could be applicable solutions to problems in wheat growing areas.

Using biophysical and sociocultural insights from rice-fish innovations as an example, she listed five recommendations for design: identify objectives; identify a range of production options; use a co-design process; implement fit-for-purpose design and evaluation; and enable adaptation. Of particular interest was the co-design process with people who are involved at all levels, from landowners to rice farmers to laborers, so that the design benefits a variety of stakeholders. Freed also noted that decisions taken for economic reasons, such as extending the shrimp season, can lead to increased soil salinity, which means the ground can no longer incorporate diverse crops.

All three speakers concluded the event by acknowledging the potential in combining their research areas to determine and implement food security solutions.