Skip to main content

research: Wheat

Is uptake of rust-resistant wheat linked to gender equality?

Sieg Snapp presents research on agroecological approaches to maize farming in Malawi and Zimbabwe at Tropentag 2022. (Photo: Ramiro Ortega Landa/CIMMYT)

Farmers, development practitioners and scientists gathered at Tropentag 2022 between September 14-16 to answer a question that will affect all our futures: can agroecological farming feed the world?

Tropentag is an annual interdisciplinary conference on research in tropical and subtropical agriculture, natural resource management and rural development, jointly organized by nine European universities and the Council for Tropical and Subtropical Agricultural Research (ATSAF e.V), in cooperation with the GIZ Fund International Agricultural Research (FIA).

This year’s event explored the potential of agroecology to contribute to improved nutrition, enhanced natural resource management and farm incomes.

Sieg Snapp, Director of the Sustainable Agrifood Systems (SAS) program at the International Maize and Wheat Improvement Center (CIMMYT) presented on agroecology approaches to enhance learning in a changing world based on experiences with maize-based cropping systems in southern Africa. Snapp suggested that accelerated learning and adaptative capacity are key to the local generation of suitable solutions to agricultural problems, and proposed agroecology as a foundational approach that emphasizes understanding principles, harnessing biological processes, and enhancing local capacity.

Snapp shared how an agroecology living laboratory in Malawi has supported farmer agency around soil health, crop diversification and sustainable intensification since 2013, while living labs are being established in “food territories” in Zimbabwe to support innovation and strategies for evaluating the benefits of farm-scale agroecology approaches. She also explored solutions for pest management, inclusive financing modalities and collaborative innovation generation between farmers and researchers.

Gender and disease-resistant varieties

Michael Euler, Agricultural Resource Economist at CIMMYT, presented in the conference session on technology adoption and dissemination for smallholder farms, which included contributions on the adoption and impact of improved forage production, use of biogas facilities, agroecological management practices, improved wheat seeds, and access to and use genetic diversity in gene banks.

Based on data from CIMMYT’s Accelerating Genetic Gains in Maize and Wheat (AGG) project in Ethiopia, Euler presented a study on how intra-household decision-making dynamics influence the adoption of rust-resistant wheat varieties.

By using questionnaires that were addressed separately to male and female spouses in the household, researchers obtained insights on perceived individual roles in decision-making and agreements. The study found that an increase in the role of the female spouse in household farming decisions is positively associated with the uptake of rust-resistant varieties.

Additional sessions from the event focused on crops and cropping systems, animal production systems, food security and nutrition, agroecology, and food processing and quality.

Annual Report 2021 launched

Today, the International Maize and Wheat Improvement Center (CIMMYT) is excited to share with you the Annual Report 2021: From Discovery to Scaling Up.

Read the CIMMYT Annual Report 2021Read the web version of the Annual Report 2021

Download the Annual Report 2021 in PDF format

Download the financial statements 2021

Our latest Annual Report captures the three ways in which CIMMYT science makes a difference:

  1. The scientific pathway from discovery and validation: In 2021, we embarked on an ambitious initiative to apply environmental genome-wide association methods to predict how today’s maize, rice, sorghum, cassava, groundnut, and bean varieties will perform in the future under climate scenarios, and help them succeed in three or four decades from now.
  2. Translating science to innovation: Last year, we made important strides in boosting the resilience of maize and wheat to a hotter and drier world — and to the threats of ever-evolving and invasive pests and diseases.
  3. Scaling up innovation for farmers and society: In collaboration with dozens of public- and private-sector partners in the countries where we work, in 2021 we scaled up sustainable technologies and farming practices for hundreds of thousands of farmers.

CIMMYT director general Bram Govaerts presented the current challenges: “A global food crisis fueled by conflict, trade disruptions, soaring commodity prices and climate change.” He also expressed CIMMYT is ready to respond to the immediate and long-term threats facing humanity. “We have solid, science-informed solutions, policy recommendations and proven methodologies that will help avert the global food security crisis that looms,” he said.

We want to thank all our funders and partners for their collaboration and support, year after year.

Stepping up for South Asian women

Women play an integral role in all stages of agrifood systems, yet their unpaid labor is often culturally and economically devalued and ignored. As agriculture becomes more female-oriented, women are left with a double workload of caring in the home and laboring in the fields, leaving no time for leisure. Training programs are often developed with only male farmers in mind, and women can be completely excluded when it comes to mechanization.

The Cereal Systems Initiative for South Asia (CSISA), established by the International Maize and Wheat Improvement Center (CIMMYT), and implemented jointly with the International Food Policy Research Institute (IFPRI), the International Water Management Institute (IWMI) and the International Rice Research Institute (IRRI), is empowering women to become active participants in farming, improving their abilities and confidence through training, expanded access to machinery and better crop management practices. To celebrate International Day of Rural Women, here are stories from three of the women CIMMYT has helped.

Equality in agricultural opportunities

Nisha Chaudhary and her husband Kamal were engaged in agriculture, poultry and pig farming in Nepal, but struggled to provide for their family of seven; their combined income was never sufficient for them to make ends meet.

Through the CSISA COVID-19 Response and Resilience Activity, CIMMYT introduced Chaudhary to mechanization’s advantages and supported her to connect with banks, cooperatives, and machinery dealers to access financial support to introduce agriculture machinery into the family business. She became the first farmer in her village to acquire a mini combine rice mill and offer milling services. The following month, Chaudhary received additional tutoring from the Activity, this time in business management and mill repair and maintenance.

Learning about mechanization was eye-opening for Chaudhary, particularly as the Bankatti community that she comes from uses traditional methods or travels great distances to process grains using machines hired out by other communities.

Chaudhary’s primary income is now from her milling services, offering post-harvest processing services to 100 households and earning more than $150 USD each month; after deducting expenses, she is still able to save around $50 USD every month. She has bought four more cows, increasing the number of cattle she owns from 12 to 16, and is able to make her own for her livestock, saving an additional $20 USD per month.

Giving rural women the credit they deserve

As part of its response to the pandemic, CSISA launched a COVID-19 Response Activity aimed at supporting farmers and service providers to access subsidies and collateral-free loans via the Government of Nepal Kisan Credit Card (KCC) scheme, designed to support agriculture-related businesses. Through this scheme, farmers received hands-on training in providing after-sales support to customers, as well as mentoring to learn how to operate machinery and use it to generate sales and income.

Smallholder female farmers have been subject to many hardships due to lack of access to finance. They are forced to sell produce at low prices and buy inputs at high prices, which makes them suffer financially and physically. Now, loans through appropriate intermediaries can foster rural entrepreneurship and the service delivery business model.

The KCC scheme gave Chaudhary financial security just when she needed it. Her next step, with her newfound confidence, respect of her community, and the support of a collateral-free loan from KCC, will be to launch her own poultry farm agri-business.

Eradicating discrimination in mechanization

The CSISA Mechanization and Extension Activity (CSISA-MEA) enables smallholder female farmers to discover the advantages of scale-appropriate mechanization and its benefits: increased productivity, reduced labor costs, improved financial stability and greater food security.

Rokeya Begum was a stay-at-home mother to three children in Bangladesh and aspired to give her daughter a good education. However, her husband found it difficult to sustain the family as a factory worker due to the high cost of their daughter’s education.

As a result, Begum opted to work in an agriculture machinery manufacturing workshop like her husband. She was initially hesitant to work in a male-dominated workplace but on the other hand realized that this job would mean she could pursue the dream she had for her daughter. She immediately began using her earnings to fund her daughter’s education, who is currently in high school.

Begum was part of the grinding and painting departments at M/S Uttara Metal Industries in Bogura, Bangladesh, for five years. Her weekly wage was equivalent to $12 USD – insufficient to support her family or sustain a decent quality of life.

CSISA-MEA included Begum in skills training, which proved to be a gamechanger. She participated in CIMMYT’s training on spray gun painting, as well as in fettling and grinding skills. As part of both training programs, she learnt how to handle an air compressor paint gun and painting materials, as well as different painting methods. She has also learnt more about keeping herself safe at work using personal protective equipment. “Before the training, I did not know about the health risks – now I don’t work without PPE,” she said.

Begum used to paint the traditional way with a brush, but now the owner permits her to paint with a spray gun with her increased expertise. As a result, she has been promoted from day laborer to contractual employee in painting and grinding, with a new weekly salary of $50 USD. Her confidence has grown to the extent that she is comfortable in an engineering workshop among male coworkers.

Farmer Malti Devi in her field, where she grew wheat through zero-till. (Photo: Nima Chodon/CIMMYT)

Harvesting the benefits of improved practices

Farmer and mother of six, Malti Devi has an infectious smile that hardly reveals the toil and labor of her everyday farm work in India.

She grows wheat on nearly 0.45 acres of leased land. Her husband, a barber, earns an ordinary income that is insufficient for a family of eight. Despite the challenges, Devi has managed to earn income through her efforts in the field and by working as a daily wager in nearby fields.

To support women farmers like Devi, CSISA made efforts to build relationships via on-the-ground partnerships with civil society, women’s cooperatives like JEEViKa in Bihar and Mission Shakti in Odisha, or self-help groups. The team provides in-field demonstrations, training, workshops on best practices and support with access to better seed varieties and extension services. CSISA’s integrated approaches reach these women with information and associated technology that best serves them, while being climate-smart and sustainable.

Devi expressed that due to zero-till practice encouraged by the CSISA team, she saved time in the planting season, which she devoted to working on other’s fields for extra income. “The traditional method would have left me struggling for time, on the field or at home. Practices like zero-till ensured our crop was harvested on time with reduced input costs and resources and enabled a good harvest for consumption, and we could also sell some produce.”

Devi has ensured self-sufficiency for her family through her efforts and hopes to make use of the support in better crop management on offer from CSISA for wheat and other crops.

Cover photo: Rokeya Begum has increased her workshop salary through support from CSISA. (Photo: Abdul Mumin)

Technology addresses gender inequality in wheat farming

Despite the development of improved wheat varieties with increased productivity, farming systems in the Global South are still marred by inequitable access based on gender and other social characteristics.

At the International Maize and Wheat Improvement Center (CIMMYT), scientists present a case for wheat varietal improvement programs to include gender-sensitive technology development, dissemination and evaluation in order to remove barriers for women, poor and marginalized farmers.

Focusing on Ethiopia and India due to their large wheat economies and challenges with inequality, researchers assessed the barriers preventing male and female smallholders from using modern wheat varieties. Issues covered through evaluation could include wheat varietal trait preferences, adoption of technology, and decision-making and labor-use changes associated with new varieties.

Concluding the paper is the argument that institutional arrangements in research and development (R&D) programs must transform to address gender equity and inclusivity in wheat improvement.

Read the study: Gender, wheat trait preferences, and innovation uptake: Lessons from Ethiopia and India

Cover photo: Rural farmers associated with JEEViKa-Bihar attend a public wheat harvest activity organized by the Cereal Systems in South Asia (CSISA) project in Nagwa village, India, to encourage conservation agriculture practices in the region. (Photo: Nima Chodon/CIMMYT)

Drought and heat tolerance in bread wheat landraces

Climate change is predicted to cause losses of more than 20% in agricultural production by 2050. With a growing global population, crops adapted to the effects of climate change, such as drought and heat, are necessary for the maintenance of productivity levels to meet the demand for food.

Scientists from the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with scientists from the Universidad Autónoma Agraria Antonio Narro, set out to analyze bread wheat landrace traits against seven climactic variables: mean temperature, maximum temperature, precipitation, precipitation seasonality, heat index of mean temperature, heat index of maximum temperature, and drought index. The method used genome-environment associations (GEA) and environmental genome-wide association scans (EnvGWAS), which have traditionally been poorly applied in this type of research.

Based on a sample of 990 bread wheat landraces from the CIMMYT genebank, the study discovered proteins associated with tolerance to drought and heat. With these results, new genotypes with resistant alleles can be selected for breeding programs to produce resistant varieties adapted to extreme environments and the effects of climate change.

Read the study: Worldwide Selection Footprints for Drought and Heat in Bread Wheat (Triticum aestivum L.)

This work was implemented by CIMMYT as part of the Seeds of Discovery (SeeD) Initiative in collaboration with Universidad Autónoma Agraria Antonio Narro (UAAAN), made possible by the generous support of the MasAgro project funded by the Government of Mexico’s Secretariat of Agriculture and Rural Development (SADER). Any opinions, findings, conclusion, or recommendations expressed in this publication are those of the author(s) and do not necessarily reflect the view of SADER.

Cover photo: Field hand collecting wheat in Ciudad Obregon, Mexico. (Photo: Peter Lowe/CIMMYT)

Developing climate change resistant wheat

The International Maize and Wheat Improvement Center (CIMMYT) are at the forefront of dealing with the impact of climate change by developing wheat varieties with tolerance to heat and drought.

Wheat constitutes as much as 60% of daily calorie intake in developing countries. However, rising temperatures caused by climate change is reducing farmers’ yields.

Matthew Reynolds, Wheat Physiologist, and Maria Itria Ibba, Cereal Chemist, share how their work contributes towards securing food security and nutrition by breeding new wheat varieties.

Read the original article: Develoing climate change-resistant wheat

Expanding BISA expertise to new horizons in South Asia

Ten years ago, a foundation was laid on the principles of Norman Borlaug to translate agrarian challenges into opportunities through collaboration between the International Maize and Wheat Improvement Centre (CIMMYT) and the Indian Council of Agricultural Research (ICAR). This major step toward sustainable food and nutrition security was taken through the establishment of the Borlaug Institute for South Asia (BISA) as an independent, non-profit research organization.

Today, BISA is a global name in agriculture research with a vision to promote food security, nutrition, stable livelihoods, and eco-friendly practices in South Asia. Given the prominent challenges of climate change in these economically fragile agroecosystems, the partnership between BISA, ICAR, and CIMMYT plays a pivotal role in developing improved wheat and maize varieties with climate-smart and conservation agriculture-based practices.

A decade of impact

One of the most significant outcomes of BISA’s work has been its contribution to building a vast, solid network for evaluating and disseminating new high-yielding and climate-resilient wheat varieties for India and other South Asian countries in close partnership with ICAR and CIMMYT. BISA’s transformative solutions and science-led research are critical to targeting stressed resources and attaining global food security.

With support from ICAR and CIMMYT, BISA has developed state-of-the-art research facilities at its three strategically selected research stations, having 1,200 acres of land that the Government of India, jointly with the respective state governments, generously granted to the project. Located in three disparate agro-climatic and socioeconomic environments, these sites are model research farms supporting agriculture research in South Asia. The learning labs at BISA emphasize that scaling climate-smart villages also strengthen climate-resilient agriculture, primarily through addressing challenges such as residue burning. BISA’s collaborative and inclusive approach is more relevant today when the world is grappling with various food and nutrition insecurity challenges.

Time for expansion

BISA envisages attracting countries from south Asia, the Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) and the South Asian Association for Regional Cooperation (SAARC), as well as National Agricultural Research Systems (NARS), national research institutes, private sector companies, and civil society organizations as active partners for expanding reach in the region. To this end, BISA has completed extensive work in Nepal and Bangladesh and has extended its services to Bhutan and Sri Lanka.

Still, more needs to be done in South Asian countries. Therefore, there is an urgent need for a strong commitment to harnessing the best of international scientific discoveries with local efforts. Collective action is to be garnered to provide trusted and effective mechanisms for developing and sharing cutting-edge agricultural technologies in the South Asian region.

Himanshu Pathak, Director General of ICAR, with Bram Govaerts, Director General of CIMMYT, discuss how BISA’s work can create food security in South Asia. (Photo: BISA)

To this end, a BISA High-Level Meeting was organized on September 1 and 2 in Delhi, with senior government representatives from the NARS in Bhutan, Sri Lanka, Pakistan, Nepal, Bangladesh, and India. The meeting provided a forum to identify opportunities to co-create and deploy innovative, multidisciplinary solutions to effectively address the transboundary challenges related to food, nutrition, and environmental security faced by farming communities in South Asia. This platform strives to unite the scientific community and thought leaders to support research and development across the agriculture domain.

Delegates from these countries felt that there is a need for a robust program of germplasm exchange within the region, which is essential to strengthening agriculture’s resilience. All countries expressed a significant need to raise their capacity of young researchers in advanced research techniques related to genomics, phenotyping, climate-smart agriculture, precision agriculture, and digital technologies. Delegates also discussed BISA’s role as a research and innovation regional catalyst, innovation hub, and integrated research platform to build resilient agrifood systems and achieve long-term sustainability and resilience for food security in South Asia.

BISA’s farm-ready research, from setting up climate-resilient villages and developing viable alternatives to rice residue burning to facilitating an open exchange of elite germplasm and cutting-edge technologies, reflects not only the vision of CIMMYT but also the philosophy of our mutual inspiration, Borlaug, who believed strongly in sharing knowledge and “taking it to the farmer”.

Cover photo: Delegates from Bhutan, Sri Lanka, Nepal, Pakistan, Bangladesh, and India meet to deliberate on the significant issues in South Asia’s agriculture sector. (Photo: BISA)

The right time for the right place

Wheat is a strategically important crop for Afghanistan because as a major source of nutrition — accounting for up to 60% of a family’s daily caloric intake — it is linked directly to national food security. However, despite occupying over 2.5 million hectares of arable land across the country, Afghanistan does not currently produce enough wheat to meet the needs of a growing population. On average, annual production is estimated at around 5 million metric tons — 2 million metric tons less than needed — and as a result Afghanistan makes up this significant shortfall by importing wheat flour from neighboring countries where wheat productivity is significantly higher.

There is tremendous potential to increase national wheat productivity by introducing improved agronomic practices and making use of suitable farming technologies. However, given Afghanistan’s vast agro-ecological diversity, it is essential that best practices are recommended based on local conditions, as these vary greatly across the country.

Take seeding, for instance. Sowing wheat seed at the optimum time has been shown to help maximize yields and significant research has been undertaken to determine the optimal sowing dates for winter and spring wheat in different areas. These times are governed not only by environmental requirements and growing cycles, but also by the need to avoid certain diseases and insect pests, which may be more prevalent at specific times of year.

But these can vary widely even within a season. For example, research shows that the best time to sow irrigated winter wheat in Afghanistan’s hot and arid western provinces is from the second week of October up until the end of the month. However, the optimum window falls one month later in the more mountainous and forested provinces of the East, and even later for rain-fed wheat.

The same distinctions apply to seeding and fertilizer application rates, which can vary subtly between similar regions. Consider that the optimum seed rate for irrigated wheat sown using the broadcast method is the same in both the Northern and Central zones, 25-30 kilograms per jerib (approx. half an acre). One might expect the optimum rates for row cultivation to match, but in fact they differ by two kilograms. This might not seem like much, but given how significantly seed density and spacing influence crop yield and quality, these figures are vital knowledge for farmers looking to maximize their yield potential.

To help disseminate these research-based recommendations to farmers and local agricultural extension staff, researchers at the International Maize and Wheat Improvement Center (CIMMYT) have partnered with Afghanistan’s Ministry of Agriculture, Irrigation and Livestock, Michigan State University’s Global Center for Food Systems Innovation and the USAID to compile four new booklets featuring zone-specific advice for irrigated and rain-fed systems in each of Afghanistan’s main agro-ecological zones.

Covering between four and ten provinces each, these guides include localized recommendations for the best sowing dates, nutrient management, weed management, and best practices in irrigation, arming wheat farmers with the key information they need to effectively increase production in their area and support the country’s wider food security needs.

More information is available in the booklets below:

Zone-Specific Recommendations for: Northern Region

Zone-Specific Recommendations for: Central Region

Zone-Specific Recommendations for: Eastern Region

Zone-Specific Recommendations for: Western Region

Cover photo: The optimal time for wheat sowing in Afghanistan varies by region according to the country’s vast agro-ecological diversity. CIMMYT recommends a localized approach. (Photo: Rajiv Sharma/CIMMYT)

Special issue on gender research in agriculture highlights CIMMYT’s work on gender inclusivity

A new special issue on gender research in agriculture highlights nine influential papers published in the past three years on gender research on crop systems including maize.

The virtual special issue, published earlier this month in Outlook on Agriculture, features work by International Maize and Wheat Improvement Center (CIMMYT) scientists on gender inclusivity in maize systems in Africa and South Asia.

In the Global South, women contribute substantial labor to agriculture but continue to face barriers in accessing agricultural resources, tools and technologies and making decisions on farms.

Combatting gender inequality is crucial for increasing agricultural productivity and reducing global hunger and poverty and should be a goal in and of itself. Evidence suggests that if women in the Global South had access to the same productive resources as men, farm yields could rise by up to 30 percent, increasing total agricultural output by up to 4 percent and decreasing the number of hungry people around the world by up to 17 percent.

The latest virtual special issue includes a review of existing research by CIMMYT gender experts, exploring issues and options in supporting gender inclusivity through maize breeding and the current evidence of differences in male and female farmers’ preferences for maize traits and varieties. The team also identified key research priorities to encourage more gender-intentional maize breeding, including innovative methods to assess farmer preferences and increased focus in intrahousehold decision-making dynamics.

The issue also features a study by CIMMYT and Rothamsted Research researchers on differences in preferred maize traits and farming practices among female and male farmers in southern Africa. The team found that female plot managers and household heads were more likely to use different maize varieties and several different farming practices to male plot managers and household heads. Incorporating farming practices used by female farmers into selection by maize breeding teams would provide an immediate entry point for gender-intentionality.

Also included is a recent paper by CIMMYT gender researchers which outlines the evidence base for wheat trait preferences and uptake of new farming technologies among male and female smallholder farmers in Ethiopia and India. The team highlight the need for wheat improvement programs in Ethiopia and India to include more gender-sensitive technology development, evaluation and dissemination, covering gender differences in wheat trait preferences, technology adoption and associated decision-making and land-use changes, as well as economic and nutritional benefits.

In a study carried out in the Eastern Gangetic Plains of South Asia, CIMMYT scientists investigated how changes in weed management practices to zero tillage – a method which minimizes soil disturbance – affect gender roles. The team found that switching to zero tillage did not increase the burden of roles and responsibilities to women and saved households valuable time on the farm. The scientists also found that both women and men’s knowledge of weed management practices were balanced, showing that zero tillage has potential as a gender inclusive farming practice for agricultural development.

Also featured in the special issue is a study by CIMMYT experts investigating gender relations across the maize value chain in rural Mozambique. The team found that men were mostly responsible for marketing maize and making decisions at both the farm level and higher levels of the value chain. The researchers also found that cultural restrictions and gender differences in accessing transport excluded women from participating in markets.

Finally, the collection features a study authored by researchers from Tribhuvan University, Nepal and CIMMYT exploring the interaction between labour outmigration, changing gender roles and their effects on maize systems in rural Nepal. The scientists found that the remittance incomes sent home by migrants and raising farm animals increased maize yields. They further found that when women spent more time doing household chores, rearing farm animals and engaging in community activities, maize yields suffered, although any losses were offset by remittance incomes.

Read the study: Virtual Special Issue: Importance of a gender focus in agricultural research for development

Cover photo: Women make up a substantial part of the global agriculture workforce, but their role is often limited. (Credit: Apollo Habtamu/ILRI)

Weather data and crop disease simulations can power predictions of wheat blast outbreaks, new study shows

Cutting-edge models for crops and crop diseases, boosted by high-resolution climate datasets, could propel the development of early warning systems for wheat blast in Asia, helping to safeguard farmers’ grain supplies and livelihoods from this deadly and mysterious crop disease, according to a recent study by scientists at the International Maize and Wheat Improvement Center (CIMMYT).

Originally from the Americas, wheat blast shocked farmers and experts in 2016 by striking 15,000 hectares of Bangladesh wheat fields, laying waste to a third of the crops. The complex interactions of wheat and the fungus, Magnaporthe oryzae pathotype Triticum (MoT), which causes blast, are not fully understood. Few current wheat varieties carry genetic resistance to it and fungicides only partly control it. Warm temperatures and high humidity favor MoT spore production and spores can fly far on winds and high-altitude currents.

Mean potential wheat blast disease infections (NPI) across Asia, based on disease and crop infection model simulations using air temperature and humidity data from 1980-2019. Black dots represent wheat growing areas with presumably unsuitable climates for wheat blast. The x and y axes indicate longitude and latitude.

“Using a wheat blast infection model with data for Asia air temperatures and humidity during 1980-2019, we found high potential for blast on wheat crops in Bangladesh, Myanmar, and areas of India, whereas the cooler and drier weather in countries such as Afghanistan and Pakistan appear to render their wheat crops as unlikely for MoT establishment,” said Carlo Montes, a CIMMYT agricultural climatologist and first author of the paper, published in the International Journal of Biometeorology. “Our findings and approach are directly relevant for work to strengthen monitoring and forecasting tools for wheat blast and other crop diseases, as well as building farmers’ and agronomists’ disease control capacity.”

Montes emphasized the urgency of those efforts, noting that some 13 million hectares in South Asia are sown to wheat in rotation with rice and nearly all the region’s wheat varieties are susceptible to wheat blast.

Read the full study: Variable climate suitability for wheat blast (Magnaporthe oryzae pathotype Triticum) in Asia: Results from a continental‑scale modeling approach

Cover photo: Researchers take part in a wheat blast screening and surveillance course in Bangladesh. (Photo: CIMMYT/Tim Krupnik)

After the flood

Heavy summer rains have led to severe floods in Pakistan, affecting over 800,000 hectares of land. Rural areas in the southern coastal provinces have been hardest hit with water levels remaining high throughout the Indus River system. This compounds the existing inequalities in livelihoods and represents significant humanitarian as well as agricultural impacts.

Due to flood damage, the estimated direct crop loss by economists stands at around $2.3 billion. Reports indicate that over 32 million people have been displaced by the flooding and urgent humanitarian needs include access to food, water, shelter, and public health.

The International Maize and Wheat Improvement Center (CIMMYT) strongly encourages enhanced investment in ensuring that our agricultural systems can adapt to as well as mitigate climate change impacts. In the current context, the development and distribution of improved wheat seed must be seen as a central pillar of flood response to secure wheat-dependent livelihoods.

No single drop, be it geo-political or climatic, will tip the balance on our global food system. But we must be increasingly aware of the compounding and amplifying effects of each crisis and develop strategies towards more sustainable agri-food systems.

Read the full study: One drop at a time: recent heavy rain has led to flooding in Pakistan, devastating agricultural land, and rural communities

Cover photo: Current areas of cropland and flood-affected crop land in Pakistan. This highlights the significant impacts of the flood waters, particularly on cropland in southern parts of the country. The boundaries shown on this map do not imply official endorsement or acceptance.

Drought-tolerant maize and use of forecasting in agriculture praised by the Bill & Melinda Gates Foundation

The work of maize and wheat scientists at CGIAR and the International Maize and Wheat Improvement Center (CIMMYT) has been featured in the latest Goalkeepers report from the Bill & Melinda Gates Foundation, which launches with the Global Goals Awards on September 20 and an open-to-all live-streamed event on September 21. 

In analysis of why the Ukraine crisis is heavily impacting Africa, the report’s introduction from Bill Gates delves into reasons behind reliance on crop imports. Most farmers in Africa are smallholders with small plots of land and have limited capacity to use fertilizers or have access to irrigation. This means that any shock to the food system, such as the disruption to the global supply chain caused by the Ukraine conflict, hugely impacts the yield levels, threatening food and nutritional security.

Conflict is not the only risk to food systems in Africa. Climate change is the most prominent challenge that the continent’s smallholder farmers continue to face.

Developed through support from the Bill & Melinda Gates Foundation, DroughtTego, a CIMMYT-derived hybrid maize with increased resistance to hotter, drier climates, produces an average of 66% more grain per acre in Kenya. Scaled through public-private partnerships, DroughtTego seeds can increase farmer income by providing more than enough to feed a family of six for an entire year, enabling them to invest the additional money in sending their children to school or building new homes.

CIMMYT and CGIAR scientists have also been using predictive modeling to speed up plant breeding and develop new varieties that can perform well even in drought stress-prone environments of Africa. Artificial intelligence helps in processing the genomic information of crops alongside the environmental data, such as soil samples and satellite imagery. The results create a vision of what farms will need to look like in the future, enabling scientists to determine which type of crop varieties can better succeed in specific locations.

Predictive epidemiological modeling can highlight where plant diseases, such as wheat rust, may possibly spread. An early warning system, developed by a partnership between CIMMYT, the University of Cambridge, the UK Met Office, the Ethiopian Agricultural Research Institute (EIAR), the Agricultural Transformation Institute (ATI) and the Ethiopian Ministry of Agriculture, successfully alerted farmers in Ethiopia to an outbreak of the disease so that they could take preventive measures. The resulting outcome was the country’s largest wheat harvest ever recorded, instead of a devastating rust epidemic.

A LinkedIn post from Bill Gates also emphasized CIMMYT’s research, asking which crop accounts for around 30% of calorie intake for people in sub-Saharan Africa — the answer being “maize”.

Inclusion in this report highlights the global impact of CIMMYT’s work on farmers and world food systems, which is only possible through successful partnerships with organizations like the Bill & Melinda Gates Foundation.

Cover photo: A farmer in Zaka District, Zimbabwe, experiences a drought that could affect crop yields. (Photo: Johnson Siamachira/CIMMYT) 

Kh. Abul Khayer

Kh. Abul Khayer is a machinery development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He conducts demonstrations, adaptive trials and field days, and coordinates participatory trails on major cereals, vegetables, oilseeds and grain legumes. He collects and reports on data from farmer participatory trials, and assists on monitoring and evaluation of project activities.

For the Cereal Systems Initiative for South Asia (CSISA), Khayer conducts training needs assessments and imparts formal and informal training to partners, farmers and service providers in cooperation with CSISA team members. He analyzes and creates the project scope and milestones.

Khayer interacts with and organizes meetings with various stakeholders and partners to discuss, streamline and aid the implementation of field activities. He facilitates partnerships with a wide range of clientele from public and private sector organizations, including farmers’ groups.

The future of wheat

CIMMYT’s experimental station in Obregón, a small city in Mexico’s state of Sonora, is considered a mecca for wheat research and breeding. In 1945, Norman Borlaug arrived as a geneticist for a special project between the Mexican government and the Rockefeller Foundation, to help local farmers with wheat production. After a few years, his strong bond with the community, students and interns was key to making a remarkable difference on wheat research that save millions from famine and won him the Nobel Peace Prize. A legacy that has lasted for many decades.

At Obregón, scientists have access to state-of-the-art field facilities and an ideal location, in the northern Yaqui Valley. The station’s dry climate and favorable temperature in winter is suitable to assess yield potential, while its hot summers are ideal to study wheat’s tolerance to different stressors.

Here, scientists and field workers work hard all year round to ensure the future of wheat. Varieties grown in all continents have CIMMYT and Sonoran DNA.

SPECIAL THANKS TO: Jeanie Borlaug Laube. Jesús Larraguibel Artola, President of PIEAES (Patronato para la Investigación y Experimentación Agrícola del Estado de Sonora A.C.). Asociación de Organismos de Agricultores del Sur de Sonora A.C. (AOASS) Global Wheat Program, CIMMYT: Alison Bentley (Program Director), Karim Ammar, Rodrigo Rascón, Carolina Rivera, Alberto Mendoza, Leonardo Crespo and Nele Verhulst.

CREDITS: Production: Alfonso Cortés, Marta Millere and Silvia Rico, CIMMYT. Additional drone shots: Courtesy of INIFAP and PIEAES. Post-production: Silvia Rico, CIMMYT

MUSIC: The Way Up created by Evert Z. Licensed from Artlist.io (License owner: CIMMYT. Creator Pro License Number – 159864). Eclipse created by EFGR. Licensed from Artlist.io (License owner: CIMMYT. Creator Pro License Number – 159864).

Setting a standard: improving field trial data

“In Afghanistan, wheat is synonymous with food,” says Rajiv K. Sharma, formerly a senior scientist at the International Maize and Wheat Improvement Center (CIMMYT). Standing at about 250kg per year, the country’s per capita consumption of the crop is among the highest in the world. However, Afghanistan does not have a robust wheat research and development system. The majority of wheat varieties have been introduced from outside the country and the national wheat seed replacement rate is one of the lowest in the world at around 5%.

In a bid to strengthen research and development and boost crop productivity in the country, CIMMYT scientists have collaborated with Michigan State University and USAID to design a new, illustrated manual for wheat researchers, intended to aid them during experiments and facilitate smooth and timely data collection. As applied wheat research requires the monitoring and measurement of both qualitative and quantitative traits by different researchers across multiple locations, consistency of approach is crucial.

As well as providing descriptions of characteristics like glaucousness (the presence or absence of leaf waxes) and advice on measuring leaf area, the manual provides several different scales for determining the extent to which a wheat plant is affected by frost damage, cereal rusts or foliar diseases like Septoria and powdery mildew. Covering everything from leaf angle to chlorophyll content, this resource ensures that scientists throughout Afghanistan are supported to follow the same observation and measurement protocols while recording trial data, ensuring a standardized approach, thus bolstering the country’s wheat research sector and ensuring the data is also aligned to international projects.

The manual has since been distributed to National Agricultural Research System (NARS) researchers and other stakeholders across the country, accompanied by a number of CIMMYT-led trainings on how best to use the resource.

Download the manual here: Wheat Field Trial Data Collection Manual

Cover photo: Researchers check for stand reduction in wheat seedlings in Afghanistan. (Credit: CIMMYT)