Skip to main content

research: Sustainable agrifood systems

Promoting resilient diversification options through maize and climate smart practices in India

“Declining water table, deteriorating soil health, labor shortages, increasing energy prices, and more frequent climate extremes are among the major long-term threats to food security in India,” stated ML Jat, CIMMYT senior cropping systems agronomist, at the Stakeholders’ Consultation on Promoting Resilient Diversification Options through Maize and Climate Smart Practices on 20 May 2013 in Karnal, Haryana, India.

India5
About 300 stakeholders from a range of public and private organizations attended the consultation, including representatives from the Indian Council of Agricultural Research (ICAR), Central Soil Salinity Research Institute (CSSRI), Directorate of Wheat Research (DWR), Ministry of Agriculture, Government of India, the Indian Maize Development Association (IMDA), the International Plant Nutrition Institute (IPNI), the Haryana Agricultural University (HAU), and the State Department of Agriculture, Government of India. After a welcome speech by DK Sharma, CSSRI director, RS Paroda, chairman of the Haryana Farmers Commission at the Government of Haryana and the chief guest of the function, explained the reasons behind the meeting, stressing the criticality of the current situation. “On one hand, we are facing many problems threatening our agricultural system,” he said, “on the other, we are exploring the possibilities of a second Green Revolution for sustainable food and nutritional security in India.” This cannot be achieved without multistakeholder partnerships, as the tasks are numerous: “We need to combine new technologies with active and strategic partnerships, establish an environment in which farmers can easily access markets, and create new business models to make agriculture more attractive to the youth and to women.”

JS Sandhu, agriculture commissioner at the Ministry of Agriculture, Government of India, and the event’s guest of honor, commented on climate extremes which caused a decline in food production during 2012- 13. He stressed the importance of technologies helping with adaptation to and mitigation of climate change effects, such as zero tillage, direct seeded rice, or tools like GreenSeeker, but also the need to diversify rice with maize and other economically competitive and more water efficient crops in the north-western part of India. “Maize is the queen of cereals,” added Alok K Sikka, the event’s chair and deputy director general of the Natural Resource Management at ICAR, “but there has been a 66% decline in maize growing areas in Haryana since the Green Revolution in 1966.” To achieve long-term sustainable ecological intensification of farming systems, Sikka added, conservation agriculture is crucial. Accordingly, several new research initiatives have begun at ICAR focusing on natural resource management. “Partnerships and synergies with advanced research institutes like CIMMYT, CRPs MAIZE, WHEAT, and Climate Change, Agriculture and Food Security (CCAFS), and other research-for-development organizations are critical for impact at scale,” concluded Sikka.

As part of the consultation, panel discussions were held on resilient diversification options through maize (chaired by Sain Dass, IMDA president) and on promoting climate smart practices (chaired by Indu Sharma, DWR director); the discussions were followed by a plenary session chaired by DP Singh (Natural Resource Management expert, Haryana Farmers Commission). The panel discussions reiterated what was said during the presentations and added several new areas of focus, for example the use of information and communication technologies and knowledge networks to provide farmers with real time access to information in an easy-to-understand form.

The event was jointly organized under the aegis of CRPs CCAFS and WHEAT by CIMMYT in collaboration with CSSRI, ICAR, Haryana Farmers Commission, HAU, State Department of Agriculture, Government of Haryana, Ministry of Agriculture, Government of India and Farmer Cooperatives of Climate Smart Villages.

Giving power to African farmers: learning from the Indian experience

Bhopal-096From 29 April to 10 May, 16 agricultural engineers, agronomists, machinery importers, and machinery manufacturers from Ethiopia, Kenya, Tanzania, and Zimbabwe took part in a study tour in India organized by CIMMYT, the Indian Council of Agricultural Research (ICAR), the Australian Centre for International Agricultural Research (ACIAR), and the Australian International Food Security Centre (AIFSC). The tour was organized as part of the “Farm Mechanization and Conservation Agriculture for Sustainable Intensification” (FACASI) project to identify opportunities for exchange of technologies and expertise between India and Africa and strengthen South-South collaborations in the area of farm mechanization. The project is funded by AIFSC and managed by ACIAR.

India is the world’s largest producer of pulses, and the second largest producer of wheat, rice, potatoes, and groundnuts. But would India’s agricultural performance be that high if the number of tractors in the country was divided by six and the number of draught animals by three? Such a reduction in farm power would bring Indian agriculture close to the current situation of Kenya and Tanzania. In India, most agricultural operations are mechanized, including planting, harvesting, threshing, shelling, and transportation to the market; in Africa, these are generally accomplished manually. Bringing African agriculture closer to the situation in India is the goal of the FACASI project. This tour was designed as the first step in the construction of an enduring trilateral partnership between Africa, India, and Australia, consolidated by CIMMYT, to facilitate exchange of research and development results in the area of farm mechanization.

During his opening speech, S. Ayyapan, ICAR director general, stressed the importance of farm mechanization for agricultural intensification, pointed at the commonalities between the circumstances of Indian and African smallholders, and invited the group to develop concrete country-specific proposals regarding possible partnerships with India. The participants then spent five days at the Central Institute of Agricultural Engineering (CIAE) in Bhopal, Madhya Pradesh state, where they were exposed to various low-cost gender-friendly technologies for post-harvest operations and weeding; sowing, fertilizing, spraying, and harvesting technologies adapted to animal traction; two-wheel and four-wheel tractors; as well as conservation agriculture based technologies. Through calibration exercises and other field activities, participants gained hands-on experience with these machines. The group also visited the Central Farm Machinery Training and Testing Institute in Budni.

The second part of the study tour took place in the states of Punjab and Haryana, where the group interacted with scientists from the Punjab Agricultural University (PAU) and the Borlaug Institute for South Asia (BISA), and was exposed to various Indian innovations including laser land levelers operated by two-wheel tractors, relay direct seeders, multi-crop planters, crop threshers, and rotary weeders. They also participated in a discussion session organized by a farmer cooperative society at Noorpur-Bet focusing on institutional innovations encouraging farmer access to mechanization, and interacted intensively with Indian agribusinesses such as National Agro-Industry, Dashmesh Mechanical Engineering, Amar Agro Industries, and All India Machinery Manufacturers Association.

The study tour was concluded by a visit of the Central Soil and Salinity Research Institute (CSSRI) in Karnal to observe the role of conservation agriculture in reclaiming degraded land, and a visit to the Indian Wheat Research Centre in Karnal.

The lessons learnt in India will be put in practice in Ethiopia, Kenya, Tanzania, and Zimbabwe through the FACASI project. The study tour has generated several ideas for the development of new machines by African engineers and created contacts between Indian manufacturers and African machinery importers which may materialize into business opportunities.

Agricultural Innovation Systems: what do they mean to the work we do?

DSC_7906On daily basis, we interact with farmers, extension workers, researchers, seed companies, government officials, and many others. Our work would not be possible without these actors, many of whom focus on bringing new products, new processes, new policies, and new forms of organization into economic use. In their attempts to bring about change in agriculture, these multiple stakeholders are all part of what may be seen as agricultural innovation systems (AIS). However, CIMMYT’s engagement with AIS and its role within innovation platforms was not discussed more closely until recently. To review CIMMYT’s role and current approach to the AIS framework, summarize what has been done, and touch upon future plans, CRP MAIZE, the Global Conservation Agriculture Program (GCAP), and the Royal Tropical Institute (KIT) organized a workshop on “Agricultural Innovation Systems: what does it mean to the work we do?” The day-long event took place at CIMMYT-El Batán on 11 April 2013; it was attended by over 30 participants from several CIMMYT departments, programs, and regional offices, and facilitated by Remco Mur and Mariana Wongtschowski from KIT.

What led to this cooperation between KIT and CRP MAIZE? When presented with the challenges of CRP MAIZE, such as lifting 10 million people out of extreme poverty in 10 years, David Watson, CRP MAIZE program manager, realized that innovations systems and innovation platforms are often seen as key in achieving these high-aiming goals. “I looked on the ground, but there was no explicit agricultural innovation expertise,” Watson said, explaining why CRP MAIZE contacted KIT to take stock of innovation platform structures and operation processes in CRP MAIZE projects, and suggest ways to strengthen the AIS approach and multi-stakeholder interaction structures.

Wongtschowski presented some of the KIT report findings. Addressing the strong technology focus of CIMMYT, she stressed that innovation is not only about developing technology, but also about setting up mechanisms that would put the technology into practice. “Innovation emerges from interaction,” Wongtschowski added, casting more light on the potential role of CIMMYT, “and while researchers may play a role, their role isn’t the most important one.” Jens Andersson, CIMMYT innovation systems scientist based in Zimbabwe, provided a reflection on the KIT report focusing on the implications of adopting an AIS framework for CIMMYT’s organization of research and its partnerships. “At CIMMYT, we look at innovation platforms as a means to reach impact at scale, or as a vehicle for technology transfer,” he said; but, as the report states, feedback loops from farmers and other stakeholders back to the researchers are often missing. At the same time, innovation platforms play a key role in articulating demand for research within the AIS framework. Yet, as Andersson pointed out, there are a number of problematic assumptions about how stakeholders interact within such platforms. For example, it is generally assumed that once an innovation platform has been established, stakeholders can voice their demands. “We have to be wary of those who talk very little,” Andersson said, alluding to the often silent majority of women farmers in meetings. “They might talk little because they can’t express their ideas,” he explained, pointing to the continued role of research in identifying demand. Then he followed with a photograph from first-year on-farm trial plots under conventional ridgeand- tillage and conservation agriculture in southern Africa. Against all expectation, the maize on the conservation agriculture plot was significantly taller than the conventionally grown maize, despite the same fertilizer regime and the absence of soil cover and nitrogen-mineralizing soil tillage in the conservation agriculture treatment. Behind this mystery lies another assumption about stakeholder participation: are farmers participating in researchers’ field trials because of their keen interest in a technology package, or do they have other reasons? In this case, the trialhosting farmer ‘helped’ the researcher by deliberately planting the conventional treatment late so that the researcher’s treatment would look better. The farmer sought to secure the farm inputs supplied to him also for next season. In this area, farmers’ biggest struggle is to source expensive inputs, notably fertilizer, and the input-supported trials of the researcher provided an opportunity. Farmer participation was thus motivated by a constraint beyond the field scale. “If we don’t research and understand how the wider system works, we can’t effectively introduce new technologies,” Andersson concluded his argument for a system-oriented research.

The workshop’s morning section was wrapped up with a group discussion on the changes necessary for successful innovation. Participants discussed and presented their ideas on what could be improved in our daily work regarding AIS. One question recurred several times during the lively discussions: is it our role to always be the facilitator within innovation platforms, or should this role be carried out by farmers’ associations or other actors?

The afternoon session was devoted to presentations by Bram Govaerts, leader of the Take it to the Farmer component of MasAgro, and Michael Misiko, GCAP innovation specialist, who focused on innovation platforms and their components within Take it to the Farmer and SIMLESA, respectively. While providing an overview of Take it to the Farmer, Govaerts stressed the importance, complexity, and history of farmer organizations as parts of agricultural innovation systems, reiterating Andersson’s previous statement on the importance of understanding the system. Misiko focused on the forms of and need for innovation platforms within SIMLESA. The foundations of SIMLESA lie on integration and partnerships of systems and institutions, sustainable innovation, and impact. However, the organizations operating within SIMLESA are often poorly clustered, sometimes completely detached from the commodities with which they work. According to Misiko, the next step towards further efficiency of the project is a higher level of integration of institutions within SIMLESA’s innovation platform systems.

Bruno Gerard, GCAP director, and Watson, concluded the workshop with reflections on AIS and their roles. “Innovation platforms and innovation approaches should not be taken as the next silver bullet to achieve impact scale,” said Gerard. “They are a mean rather than an end. They are critical for better understanding of social processes within farming systems and for putting technical innovations in context as they can provide important missing knowledge for researchers, farmers, and other actors, including the private sector, in a co-learning fashion.” Gerard pointed out some of the drawbacks as well; innovation platforms and approaches are often resource-intensive and difficult to scale out and scale up due to their context-specificity. “But they can generate valuable, more generic lessons on adoption, adoptability, and the way forward,” he added. “As researchers we have to be careful to intervene more as a catalyst and honest broker and not be too central in order to achieve positive long-term changes. We have to think of a good exit strategy from the beginning. At GCAP, innovations approaches are one piece of the puzzle within our systems research framework and impact pathways,” Gerard concluded.DSC_0004

SIMLESA progressing and gearing up for Phase II

IMG_0883Over 200 researchers, policy makers, donors, seed companies, and NGO representatives from Africa and Australia gathered in Chimoio, Mozambique, during 17-23 March 2013 for the third SIMLESA (Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa) annual regional planning and review meeting to discuss the project’s progress and achievements, share lessons learned throughout the last three years, and deliberate over better ways to design and implement future activities in the SIMLESA target (Ethiopia, Kenya, Tanzania, Malawi, and Mozambique) and spillover countries (Botswana, Uganda, South Sudan, and Zambia).

“SIMLESA had attained a ‘steady flight path’ and is on track to deliver significant impacts,” noted Derek Byerlee, Program Steering Committee (PSC) co-chair, and the Mid-Term Review (MTR) conducted last year supports his words: “The MTR Team has reviewed progress by objectives and the overall execution of the Program, and finds that in general it has made very good progress in its first two years.” Bekele Shiferaw, Program Management Committee chair, then highlighted MTR’s recommendations, including the following: SIMLESA should take concrete steps to overcome current socio-economic research capacity constraints in national agricultural research systems and in the areas of value chains, informal analyses, business management, participatory agronomy, and breeding research; focus on ‘smart’ sequences for testing conservation agriculture technologies with farmers resulting in step-wise adoption; and create representative and effective innovation platforms with clear roles, structures, and functions.

As SIMLESA Phase I is ending next year, participants brainstormed on key issues anticipated in Phase II, concluding that the overall approach should be holistic, flexible in dealing with complex systems, and should aim to devise effective ways to target different group of farmers, as one size does not fit all. Furthermore, it was noted that Phase II should focus on changing the mindset of farmers. “There are so many different technologies bombarding farmers. The real work therefore lies in dealing with the psychological, social, cultural, and environmental factors of the farmer that will determine the adoption of introduced technologies,” noted one of the participating groups during the plenary session. Following the discussion on Phase II, Byerlee shared PSC’s vision: apply a broader approach to system intensification (conservation agriculture elements, soil fertility, pest management, and diversification); be more country specific; create empowering, location-specific, and sustainable innovation platforms; and pay more attention to institutions and policies vis-à-vis technology.

In the words of Inacio Maposse, Agricultural Research Institute of Mozambique (IIAM) director general and PSC member, Phase II is not necessary only because Phase I is ending but also “because we want to add another dimension to the program, and perhaps a different philosophy, one that will lead us to success. And for me, success means to get farmers smile sustainably. Smile because they are better off. For this to happen, we have to design Phase II with heart and wisdom. We need Phase II because we are yet to produce significant adoption and impact on the farming communities.” John Dixon (senior advisor for cropping systems and economics and principal regional coordinator for Africa and South Asia, Australian Centre for International Agricultural Research) added another reason for why to continue with SIMLESA: “Where resources are limited, sustainable intensification is the only option to feed the extra two billion people by 2050.”

Mellissa Wood, Australian International Food Security Centre (AIFSC) director, then explained some of the reasons behind the close cooperation between Australia and Africa: “Australia and Africa share many common agricultural challenges, including limiting soils, highly variable climates, pests, and diseases.” Consequently, AIFSC aims to accelerate adoption; bridge the gap between research and development; find new ways to support African agricultural growth through adoption, policy, scale-out, improved market access, diversification, and nutrition.

In her closing remarks, Marianne BĂ€nziger (CIMMYT deputy director general for research and partnerships) called on the Phase II planners to design holistic packages that entail success and ensure SIMLESA provides farmers in the five target countries with diverse opportunities for improving their livelihoods. “Farmers should be able to get incomes not only from maize and legumes but also from other farm enterprises. You should come up with possible and realistic interventions in realistic time frames,” BĂ€nziger concluded.

Throughout the meeting, implementing partners, researchers, and seed companies showcased their achievements and products at the ‘SIMLESA poster village.’ Participants learned about farmers’ perspectives and practices through field visits to Sussudenga maize breeding and exploratory trial sites, participatory variety trials in Vanduzi and Polytechnic Institute of Manica, and conservation agriculture and innovation platforms scaling out sites in Makate.

Farm mechanization & conservation agriculture for sustainable intensification project launched

If asked “What is the most limiting factor to cereal production in sub-Saharan Africa,” most agronomists would say water, nitrogen, or phosphorus. Could farm power also have a place in this list? From 25 to 30 March 2013, a multidisciplinary group of 40 agronomists, agricultural engineers, economists, anthropologists, and private sector representatives from Kenya, Tanzania, Australia, India, and other countries attended a meeting in Arusha, Tanzania, to officially launch the ‘Farm Mechanization & Conservation Agriculture for Sustainable Intensification’ project, supported by the Australian International Food Security Centre (AIFSC) and managed by the Australian Centre for International Agricultural Research (ACIAR). The meeting focused largely on planning for activities that will take place in Kenya and Tanzania, but the project will eventually explore opportunities to accelerate the delivery and adoption of two-wheel tractors (2WTs) based conservation agriculture (CA) and other 2WT-based technologies (transport, shelling, threshing) by smallholders in Ethiopia, Kenya, Tanzania, and Zimbabwe. This project will be implemented over the next four years by CIMMYT and its partners.

Why do these issues matter? In many countries, the number of tractors has declined in the past decades (as a result of structural adjustment plans, for example), and so did the number of draught animals in many parts of the continent (due to biomass shortage, droughts, diseases, etc.). As a result, African agriculture increasingly relies on human muscle power. This problem is compounded by labor shortages arising from an ageing population, rural-urban migration, and HIV/ AIDS. Even in areas where rural population is increasing faster than the cultivated area, labor may be in short supply during critical field operations due to competition with more rewarding sectors, such as construction and mining. One consequence of low farm mechanization is high labor drudgery, which disproportionately affects women, as they play a predominant role in weeding, threshing, shelling, and transport by head-loading, and which makes farming unattractive to the youth. Sustainable intensification in sub-Saharan Africa appears unlikely if the issue of inadequate and declining farm power is not addressed. Power supply could be increased through appropriate and equitable mechanization, while power demand could be reduced through power saving technologies such as CA. Synergies can be exploited between these two avenues: for example, the elimination of soil inversion in CA systems reduces power requirements —typically by a factor of two— making the use of lower powered and more affordable tractors such as 2WTs a viable option. 2WTs are already present in Eastern and Southern Africa, albeit in low numbers and seldom used for CA in most countries. Several CA planters adapted for 2WTs have also been developed recently and are now commercially available. These are both manufactured outside (e.g. China, Brazil) and in the region (e.g. in Kenya and Tanzania).

The first set of the project’s activities will aim at identifying likely farmer demand by defining main sources of unmet power demand and labor drudgery. This will help determine the choice of technologies – from the 2WT-based technologies available for CA (seed drilling, strip tillage, ripping, etc.) and non-CA operations (transport, threshing, shelling) – to evaluate on-station and on farm, with participation of farmers and other stakeholders involved in technology transfer. The second set of activities will aim at identifying and testing site-specific unsubsidized business models – utilizing private sector service providers to support market systems – that will enable efficient and equitable delivery of the most promising 2WT-based technologies to a large number of smallholders; technologies affordable to the resource-poor and women-headed households. The project will also examine the institutional and policy constraints and opportunities that may affect the adoption of 2WT-based technologies in the four countries. Finally, it will create awareness on 2WT-based technologies in the sub-region and share knowledge and information with other regions, thanks to the establishment of a permanent knowledge platform hosted by the African Conservation Tillage network.

Jharkhand, India: Social learning on conservation agriculture in smallholder rainfed systems

Jharkhand-IndiaOn 13 March 2013, a social learning exercise was organized jointly by Birsa Agricultural University (BAU) and CIMMYT under the aegis of an IFAD supported “Sustainable Intensification of Maize-livestock Farming Systems in Hill Areas of South Asia” project. Multi-stakeholders gathered at a conservation agriculture (CA) based platform at a BAU research farm. AK Singh (Government of Jharkhand principal agriculture secretary) graced the event as the chief guest, and MP Pandey (BAU vice-chancellor) chaired the meeting. Other key participants included JS Chaudhary (State Agricultural Management and Extension Training Institute (SAMETI) director), Ranjit Singh (Soil Conservation director, Government of Jharkhand), DK Singh Drone (BAU research director), and other officials, scientists, Jharkhand Government development agents, representatives from BAU, Krishi Vigyan Kendras (district level extension and training centers), NGOs, and private sector, seed-fertilizer dealers, and 62 selected innovative farmers from Ranchi, Gumla, and Khunti districts. All participants joined the event to share their experiences with CA-based crop management technologies in rainfed smallholder systems of Jharkhand.

CIMMYT senior cropping system agronomist ML Jat highlighted the key CA-based crop management technologies currently being developed and adapted under the IFAD project. “These technologies are contributing to sustainable intensification in smallholder rainfed systems of Jharkhand,” explained Jat, as a range of relevant CA machinery was demonstrated to the participants. “CA-based management technologies have shown a tremendous potential for arresting land degradation,” noted Pandey during the field interactions. “Integrating genotypes and management practices is the way towards sustainable intensification of Jharkhand farming, as the cropping intensity in the state is merely 115%,” he added. Watching the demonstrations and hearing about farmers’ experiences, AK Singh was impressed with the CAbased crop management technologies and their relevance to Jharkhand farmers. He appreciated CIMMYT’s efforts in this area and noted that it is necessary to “establish more public-private partnerships to disseminate the technologies for the benefit of their end-users.” He then stated that it would be great to “see the collaborative work between the State Agriculture Department, SAMETI, Agriculture Technology Management Agency (ATMA), and CIMMYT to be replicated in 500 villages of Jharkhand.”

Jharkhand-India2The project aims to conduct farmer participatory trials to eventually achieve mass adoption in the villages of Jharkhand. As the awareness of the project’s successes increases, so does the demand for CA technology. “Local machine manufacturers are encouraged to come forward to assemble and fabricate CA machines adapted to local farmers’ needs,” AK Singh reassured the participants. Further assurance on efficient dissemination of the knowledge and technology among farmers was provided by Chaudhary: “SAMETI utilizes a strong grassroots network of ATMA at district and block levels.” Recognizing the potential of CIMMYT and its dedication to the case, Chaudhary expressed his wish to work more closely with CIMMYT: “With your expertise, we could more efficiently train district and block levels agricultural official s and extension agents, and thus contribute towards state level extension mechanism enrichment.”

The field day, organized and attended by experts on diverse subjects willing to share their expertise, managed to bring about extensive promotion of CA-based methods.

CIMMYT-India interacts with farmers at IARI Agriculture Science Fair

Science-Fair1Pusa Krishi Vigyan Mela, a farmers’ fair organized by the Indian Agricultural Research Institute (IARI) annually since 1972, was held during 6-8 March 2013 in New Delhi, India. Every year, agriculture institutes and universities gather at the fair to disseminate their upgraded technology through exhibitions. This year, the focus was on “Agricultural technologies for farmers’ prosperity” and for the very first time IARI invited CGIAR centers, including CIMMYT, to display their technological innovation and experience.

CIMMYT took the opportunity to raise awareness on conservation agriculture technologies and receive feedback from farmers and agricultural scientists. The CIMMYT team consisted of B.R. Kamboj, Dalip Kumar, and Er. Kapil Singla who were accompanied by Anil Bana (Haryana) and supported by scientists and colleagues from CIMMYT-Delhi. They demonstrated conservation agriculture technologies and throughout the three days interacted with thousands of people, mainly farmers (both men and women), researcher, and scientists, but also school children who came to learn from the exhibition.

On inauguration day, Sharad Pawar, Union Minister for Agriculture and Food Processing Industries, Government of India, strongly emphasized the importance and need to develop new farm technologies to ensure food and nutritional security in the country and to enhance farm profitability and overall agricultural development. The visiting farmers showed keen interest in conservation agriculture and asked for conservation agriculture literature published in the local language to be distributed among farmers. According to the farmers, more follow-up sessions with the government’s extension workers are needed for better uptake of new technologies.

Science-Fair2The socioeconomics team of CIMMYT India (Mamta Mehar and Subash Ghimire) also joined the fair to interact with farmers and learn about their perspectives on new technologies and farming-related constraints. Although the farmers came from different states, they mentioned having several common problems: the unavailability of quality seeds and other input on time, weather uncertainty, unpredictability of rainfall, and temperature variability. Farmers from Haryana and Rajasthan also talked about increasing pollution, degrading soil quality, and emergence of new type of insects and pests for which they would like to seek solutions. They were concerned about limited access to knowledge and low awareness on new technologies, especially those that help to manage climate change related risks. The socioeconomics team also learned that farmers are aware that using more than the advised amount of fertilizers and pesticides may harm the soil, but they do so anyways because they are afraid of the appearance of insects, pests, etc. as a result of unforeseen weather changes.

The interactions with farmers were particularly useful, as they motivated the socioeconomics team to ensure the CCAFS project researches coping mechanisms that would allow farmers to manage climate variability risks. CIMMYT-India hopes to go back to Pusa Krishi Vigyan Mela next year to gain more valuable knowledge directly from Indian farmers.

Resource-conserving practices for smallholder farmers in Africa

“Today Embu farmers are reaping benefits associated with conservation agriculture, where SIMLESA started activities in 2010,” said Charles Wanjau, District Agricultural Officer, Embu East. “We hope that through CASFESA, the benefits that accrued from the SIMLESA project will spread to many more farmers in Embu and beyond for improved food security.”

Wanjau was referring to the project “Conservation Agriculture and Smallholder Farmers in Eastern and Southern Africa,” that begun in June 2012 in Ethiopia and January 2013 in Kenya, with EU-IFAD funding for a period of two and half years. The project will leverage institutional innovations and policies for sustainable intensification and food security in Ethiopia, Kenya, and Malawi, and demonstrate conservation agriculture as a sustainable and profitable farming practice in randomly selected villages. The effort is also meant to assess the effects of markets and institutions on adoption and impacts, through baseline and impact studies in both treatment and counterfactual (control) villages. In Kenya, activities are under way in 15 villages mainly in Embu-West and Embu-East Districts to establish researcher/farmer managed demonstration plots on the farms of two volunteer farmers per village. The demo plots are planted with farmer’s preferred maize and bean varieties using locally recommended seed rates and fertility inputs.

The first CASFESA stakeholder workshop in Kenya was held at Embu on 22 February 2013 and attended by 30 farmers hosting demo plots, 16 officers (mostly frontline extension agents) from the Ministry of Agriculture, and scientists from CIMMYT and the Kenyan Agricultural Research Institute (KARI). Other participants included the Kenyan Equity Bank, Kilimo Salama and Organic Africa representatives, providing farming credits insurance and inputs, respectively. The workshop included updates on project objectives and work plans, along with planning for the next year.

CIMMYT agronomist Fred Kanampiu presented on the fine points of conservation agriculture, followed by KARI-Embu agronomist, Alfred Micheni, who shared the KARI-SIMLESA experiences and take-aways for the CASFESA work plan. CIMMYT socioeconomist Moti Jaleta gave an in-depth talk on project objectives, meth odologies, selected sites, and plans for coming months.

Subsequent workshop discussions centered on demonstration planting details: between row and within row seed spacings, crop varieties to be sown, and land preparation. In-depth observations were drawn from farmers and the extension providers’ experiences. Also discussed were the Ministry of Agriculture recommendations, which encourage tillage, and when to inter-crop maize and beans. The varied labor roles of women and men came up in conversations, with the conclusion that women typically do the bulk of planting, weeding, and harvesting. There was an on-station demonstration of conservation agriculture practices— particularly ridge planting for maize—under the supervision of Kanampiu and Micheni. This was important because all (farmers and extension providers) needed to see a successful case before embarking on establishment of proposed demos based on furrows and tillage conservation tillage practice. The workshop ended with some notable positives, such as an agreement among stakeholders regarding planting procedures and periods, as well as great enthusiasm among farmers.

CASFESA-stakeholkders-planning-meeting_Embu_Kenya

Women driving changes in agriculture

Marianne BĂ€nziger is the Deputy Director General for Research and Partnerships for CIMMYT.

mbanziger_womensDayMarianne started her career with CIMMYT as a post-doctoral fellow in 1994 working in Maize Physiology to develop varieties tolerant to low soil fertility and drought. She was based at the CIMMYT office in Zimbabwe during 1996-2004, after which she was appointed Director of the Maize Program, based in Nairobi. In 2009 Marianne became the DDG-Research. In that capacity, she led the development of the CGIAR research programs for maize and wheat.

Why did you choose agriculture?

I chose agriculture because it’s a science that impacts people’s lives. It’s as simple as that. I was also attracted to that it builds up on a wide range of disciplines – biology, chemistry, math, socioeconomics.

Your maize breeding work in Eastern and Southern Africa had, and still has, an enormous impact. Do you think that as a woman you gave a specific gender perspective to your research?

I lived in Africa for almost 15 years and it was impossible to ignore the people — the families — who struggled to improve their livelihoods. I saw them every day. We interacted frequently with both men and women farmers. In the environments we worked, the concern of the women farmers was more on avenues that improved household food security while the men were more concerned about selling their crops and generating income. Of course, families need both: Enough food to eat and income to pay for education fees, health costs, and things like farm inputs.

Another very obvious learning was that Africa has many strong women who drive change across the continent. You find them among farmers, among professionals, and among researchers alike.

Did you work differently as a woman breeder?

There have been books written about differences in men and women “behavior” or “traits” – In my opinion, these are stereotypes and they often break down. Every person puts their imprint, their personality, on their work, for better or worse, whether with “male” and “female” stereo-typed traits.

Did you have rural women in mind when you were developing different varieties of maize?

Interacting with farmers in Africa, I tried to understand how they make decisions and how those decisions link with and meet up with real options in the value chain. For instance, there was a stronger preference for hybrids by male farmers while female farmers preferred OPVs (open-pollinated varieties, which allow farmers to save seeds). We created an integrated breeding program that offered both OPVs and hybrids. The first generation of successful products was OPVs, “women typed” products. However, the reason for them to become available early on had to do with the seed sector ability to scale them up more rapidly as compared drought tolerant hybrids, not whether they were “female” or “male” preferred. The lesson learned is that researchers can craft gender differentiated options, we however need to understand the value chain to ensure that those options indeed become available and accessible at farm level.

Why did women prefer OPVs?

It gave them a greater sense of security about their ability to feed their families. Because they could save seed from year-to-year they felt more in control of their lives. Men preferred hybrids because they had a higher yield which meant more money in the market.

Unfortunately, preferences too often get treated as an either/or issue. We involved schools in rural areas in executing on-farm trials. I remember one particular instance talking to the headmaster of a school located in a drought prone area. I learned that classes had only one schoolbook which they had to share and pass around more than 50 children. Except for two old benches everybody was sitting on the floor. I asked him if the children – under these circumstances – were able to get a quality education and go to secondary school later on. He said the greatest concern wasn’t the lack of benches or books but that the children came to school and fell asleep because they were hungry. They were hungry because they only got one meal a day.

That school was in a drought-prone area and it made me once again realize how real and prominent food insecurity was. So, if you are a mother in such an environment, clearly the first thing you are concerned about is feeding your family and have a sense of control that you can achieve that. Setting food security as a priority does not mean that the woman would not want to grow hybrids as her family becomes more food secure. She also wants income for books and school fees. She would like to see her children learning a profession and likely leave agriculture. We must understand that poverty and hunger are intertwined and do our best to address both.

What do you think are the priorities to empower rural women in regions where we work?

Last week, I was in India at a meeting with farmers – both men and women – and one of the women stood up and said, “We want to have the same access to information and opportunities as men have.”

In the past, women have been deprived of information, of access to credit, and of the same opportunities offered to men. Fortunately many organizations including governmental organization begin to put more proactive gender strategies in place. We can and must ensure that more women get access to empowering information and opportunities. In our case, we are right now engaging in a gender audit of our projects, looking for new avenues to empower women. This is not just about analyzing how women or men think, but asking ourselves how we can empower women through our interventions. We however also have to accept that certain, indeed many, interventions have benefits to men and women alike. So doing a gender audit isn’t about being able to tick off the box and say ‘we addressed the gender aspects of this project’. It is about enriching our understanding how interventions, people, society, value chains, opportunities connect and then choosing more effective interventions that improve the livelihoods of the poor.

What advice would you give to young women scientists?

Pursue your dreams and be what you would like to be. I’d offer that advice to everyone, independent of whether they are a woman or a man, tall or short, or one nationality or the other.

First ever high-level foreign delegation visits BISA-Ludhiana

20130206_160220On 6 February 2013, the Borlaug Institute for South Asia (BISA) in Ladowal, Punjab, India, received a delegation consisting of eight members of the German Parliament —Harald Ebner, Alexander SĂŒĂŸmair, Max Lehmer, Heinz Paula, Alois Gerig, Eric Schweickert, Mechthild Heil, and Gabriele Groneberg— and Sabine Raddatz (counselor for Food, Agriculture, and Consumer Affairs, Embassy of the Federal Republic of Germany, India). The first ever high-level foreign delegation was welcomed by the CIMMYT-BISA team including Raj Gupta, ML Jat, HS Sidhu, Christian Böber, Tek Sapkota, and other BISA staff.

The purpose of the visit was to discuss food security issues in the context of resource degradation and climate change, and BISA’s role in assisting South Asian national agriculture research systems in addressing these challenges. In the beginning, Raj Gupta provided background information on the vision, mission, and partnerships of CIMMYT/BISA with national agriculture research systems. ML Jat then summarized the themes currently covered by BISA activities: (1) research infrastructure and farm development; (2) research on new maize and wheat germplasm, precision conservation agriculture, climate resilient production systems, and farm typology smart mechanization; (3) capacity enhancement through advanced courses, programs for visiting scientists, students, and interns, and exposure visits; and (4) partnerships and networking.

The delegation visited BISA farm and facilities to observe and better understand activities focusing on water table depletion, labor scarcity, residue burning, soil health deterioration, and climate change. The BISA team demonstrated no-till wheat with seven-ton surface residue of Sasbenia planted with front mounted knife roller (developed by BISA) and rear mounted turbo Happy Seeder in a single pass, and explained the advantages of this eco-friendly technology (including time, energy, and cost savings; reduction of environmental pollution; and climate adaptation). The long-term effects of residues on the likelihood of fungal disease manifestation were of particular interest to the German delegation. “There has been no evidence so far showing that keeping residuals might lead to a higher likelihood of diseases in the future,” Gupta addressed the concerns. “However, it will be monitored under the long-term conservation agriculture trials.”

When the delegation noticed a completely damaged winter maize crop on the other side of the fence of the BISA field, they were curious about what happened. “This is a result of severe frost injury, which shows the importance of developing cold tolerant maize germplasm,” explained ML Jat. Abiotic stress tolerant germplasm development is one of the issues on BISA’s agenda.

The visitors also observed BISA efforts on sustainable intensification of the cotton-wheat system, the second most important wheat based system in South Asia. They then discussed the application of pesticides and herbicides, assessment of different irrigation technologies, and crop management systems. Before leaving the BISA site, the delegation visited the new generation precision conservation agriculture machinery developed, adapted, and currently fin-etuned at BISA-Ludhiana. “BISA can play a critical role in smart farm mechanization in South Asia and other parts of the world by creating connections between stakeholders,” commented Er Baldev Singh, president of Agricultural Machinery Manufacturers Association of India.

The members of parliament appreciated HS Sidhu and his team for their work on smart mechanization innovation for smallholder farmers.

photo

‘One cannot eat tobacco!’ SIMLEZA field tour in eastern Zambia

DSCN0425In rural areas surrounding Chipata in eastern Zambia, tobacco, cotton, and maize seem to dominate the agricultural landscape. If you look closer, you will also see smaller fields with groundnuts, cowpeas, soybeans, and sunflowers. But there is yet another dimension of diversity: the different growth stages and (inadequate) fertilization levels of the crops have resulted in a patchwork of yellow to deep green fields of many sizes and shapes, with various degrees of weed infestation. In this smallholder farming area with an average annual rainfall of more than 1,000 mm, it is neither easy to stay ahead of the weeds on all fields, nor to buy enough fertilizer for a healthy crop.

The SIMLEZA (Sustainable Intensification of Maize- Legume Systems Eastern Province of Zambia) project implemented by CIMMYT and partners seeks to address production and sustainability constraints through on-farm testing and demonstration of improved maize and legume varieties (soybeans and cowpeas) and agronomic practices that build on conservation agriculture (CA) principles. CA addresses the high labor demand of local agriculture. It can drastically reduce smallholder farmers’ workload at the beginning of the season, replacing hand-made ridge-and-furrows with direct seeding on the flat with a pointed stick (dibble-stick) and herbicide use for weed control. As a SIMLEZA demonstration farmer, who had been given the tool and herbicides for testing, exclaimed: “[up until now] I have been punishing myself!”

The second major issue – the need for higher fertilizer inputs – is more difficult to resolve. Zambia’s fertilizer subsidy program has increased fertilizer access for poor rural households, but the scheme provides only two bags at reduced prices and is thus insufficient to cover farmers’ total land area. SIMLEZA’s focus on improving intercropping and crop rotation with legumes seeks to decrease farmers’ reliance on cash-demanding fertilizers. Nitrogen fixed by legumes benefits the following year’s crop on that plot and reduces the need for expensive mineral fertilizers. But farmers will have to increase their land areas dedicated to legumes, if this is to really work at farm scale. The good news is that a short group discussion in the Khokwe community revealed farmers’ interest in doing just that.

When asked what the best crops for making money are, cotton and tobacco appeared to be the least popular. The simple explanation for the apparent contradiction between the large area dedicated to tobacco and farmers’ dislike of it was: “One cannot eat tobacco!” While legumes such as groundnuts, common beans, and soya topped the list of favorite cash crops, the volumes traded are small and do not reach the urban market of Chipata. In Chipata, farmers complain, buyers are few and prices low, despite the export demand for legumes. Thus, dedicating land to tobacco is the result of late payments to farmers and decreasing prices of legumes in the past years. Increasing smallholder farmers’ legume production and simultaneously linking them to more distant and profitable markets is one of the major challenges in the years to come.

In Malawi, a stone’s throw away, this shift towards increased legume production is already happening. The agricultural landscape has far less tobacco than before, as legumes such as soybeans and groundnuts are increasingly replacing it. Dwindling prices for tobacco and free provision of seeds by government have undoubtedly stimulated poor farmers’ uptake of these legumes and boosted volumes traded. Together with its partners, Total LandCare, the Ministry of Agriculture and Livestock, and the Zambia Agriculture Research Institute (ZARI), SIMLEZA aims to contribute to a similar productivity-enhancing change in the agricultural landscape of Zambia.

Global Maize Program meeting: The old and the new intersect in Kathmandu

Lone Badstue (CIMMYT gender and monitoring and evaluation specialist; third from left, bottom) talks with four coordinators of community-based seed production groups in Nepal (top, from right). Also present are Katrine Danielsen, Senior Advisor, Social Development and Gender Equity of the Royal Tropical Institute of Denmark (far left), and Kamala Sapkota, intern working in the Hill Maize Research Project (second from left).

 

Applying advanced technologies and reconciling dramatic growth in funding, staffing, and complex partnerships with the need to speed farmers’ access to options for better food security and incomes were the themes of discussion among more than 60 specialists in maize breeding, agronomy, socioeconomics, and diverse related disciplines who met in Kathmandu, Nepal, during 28-31 January 2013. “This was a great opportunity for old and new staff to get acquainted and help launch the vibrant evolution of our Program to meet clients and stakeholders’ needs,” said GMP director B.M. Prasanna. “The participation of colleagues from other programs and organizations was crucial, allowing us to identify and address logjams and potential synergies and continue our journey toward being an institution, rather than a mere collection of isolated projects.”

Continue reading

One size doesn’t fit all: training on farm household typology

Since adopting a one-size-fits-all approach in technology generation and dissemination is unlikely to bring positive results, it is necessary to understand what intervention works for whom, where, and how in order for a program to be successful. Developing farm household typologies to target technology with respect to farmers’ endowments and environmental setting is one of the key components of the SIMLESA (Sustainable Intensification of Maize and Legume Cropping Systems in Southern and Eastern Africa) initiative. To identify farm household typologies from baseline surveys carried out in Ethiopia, Kenya, Tanzania, Malawi, and Mozambique, the initiative organized a two-week workshop between November and December 2012 at the University of Queensland, Brisbane, Australia. The event was attended by economists from the five SIMLESA countries and organized by Daniel Rodriguez, leader of Queensland Australia component of the SIMLESA project.

The first week consisted of lectures by experts in household typologies and household modeling in developing countries, econometric modeling of adoption and impact (facilitated by Menale Kassie of CIMMYT and John Asfau of the University of Queensland), household survey data mining, and the use of survey data to parameterize household models. The participants then prepared and delivered brief presentations covering the objectives, research questions, and hypotheses of the key publications distributed among them; methods and main results; and implications of the publications to their own work.

Reflecting their respective survey datasets, the workshop participants then developed a methodology to identify farm household typologies and, subsequently, a new tool using the free R statistical software. The tool was distributed to each of the participants. The utilized approach not only automates the process, but also ensures that the same methodology is applied to each country’s survey dataset, thereby enabling an easier comparison of the results. The workshop was concluded by a short presentation from each participant outlining their findings.
The feedback on the workshop was very positive: many participants intend to instruct their colleagues in their home countries on the techniques they learned to use during the workshop. The Australian SIMLESA team will continue to provide support on the use of R, as well as access to the script to identify household typologies.
typology

Value chain analysis training: putting farmers first

Value-chain-trainingUnderstanding the value chain of maize and legume crops and the ability to define various actors as well as their contributions and constraints along the value chain is crucial in identifying feasible interventions. Since these activities fall within the scope of the SIMLESA (Sustainable Intensification of Maize and Legume Cropping Systems in Southern and Eastern Africa) initiative, national partners and CIMMYT staff took part in a training and writing workshop on value chain analysis held in Addis Ababa, Ethiopia, from 09 to 16 January 2013. The workshop was attended by 14 participants (8 national partners from Ethiopia, Kenya, Tanzania, and Mozambique, and 6 CIMMYT employees), and facilitated by Mot Jaleta (CIMMYT). Its objectives included capacity building and finalizing of pending reports related to Objective 1 of the program (to develop and target opportunities for impact through baseline studies and analysis of input and output value chains with particular reference to maize and legume seed systems and local markets), and among the topics covered were basic concepts of value chain analysis, quantitative methods in value chain analysis, and the identification of opportunities, constraints, and interventions at various stages along the value chain.

In his opening remarks, SIMLESA program leader Mulugetta Mekuria stressed the importance of the socioeconomic component of SIMLESA for technology development and dissemination through interaction with local communities and other stakeholders. “The Objective 1 team should be part and parcel of the technology development process, constantly monitoring and evaluating, and not only waiting till the project ends to do an ex-post study,” stated Mekuria. He also emphasized the importance of understanding the opportunities and constraints underlying the SIMLESA maize and legume input and output markets and highlighted the need for SIMLESA to continue placing the interests of smallholder farmers at the center of the program.

The workshop was concluded by presentations on the progress made on the value chain analysis reports by individual countries. Menale Kassie, SIMLESA socioeconomic component coordinator, then thanked all participants for their attendance and contributions. The participants considered the training a successful platform for learning and sharing experiences, and partners requested more similar technical trainings in the future.

Gender integration and data analysis: a better way to move forward

Data-analysisGender mainstreaming in agricultural development is on the agenda of national governments and the international development community (for more information on CIMMYT and gender mainstreaming see “Integrating gender into WHEAT and MAIZE CRPs: A leap forward”). Building upon the 2012 World Development Report: Gender Equality and Development warning that the failure to recognize the roles, differences, and inequities between men and women could pose a serious threat to the effectiveness of agricultural development strategies, the Australian International Food Security Center (AIFSC) approved the Adoption Pathways project in Eastern and Southern Africa. The project aims to collect gender disaggregated data to achieve better understanding of technology adoption, agricultural productivity, and food security in the regions.

To contribute to the objective, the International Food Policy Research Institute (IFPRI) facilitated a training on gender integration and analytical tools in agricultural research and gender disaggregated survey instruments design. The training took place during 08-12 January 2013 in Addis Ababa, Ethiopia, and was attended by over 20 participants from 5 countries (Ethiopia, Kenya, Malawi, Mozambique, and Tanzania) involved in the Adoption Pathways project and the SIMLESA (Sustainable Intensification of Maize and Legume Cropping Systems in Southern and Eastern Africa) initiative. The training materials were based on case studies from IFPRI projects such as the Gender, Agriculture, and Assets Project (GAAP), and the training itself focused on the concepts of gender; gender in agricultural research; gender livelihood conceptual framework; qualitative methods; the relationship between gender, agriculture, and assets; Women’s Empowerment in Agriculture Index (WEAI); and the need for gender disaggregated surveys. The training also provided concrete advice and feedback on how to analyze gender disaggregated data and covered the needs and opportunities for dissemination and outreach, including ways to share results and plans to synthesize lessons learned. Finally, it enabled participants to identify plans for next steps, including updating and refining the SIMLESA survey instrument with gender component.