Skip to main content

research: Sustainable agrifood systems

Highlights of the 12th Asian Maize Conference

The 12th Asian Maize Conference and Expert Consultation on “Maize for Food, Feed, Nutrition and Environmental Security” convened in Bangkok, Thailand from 31 October to 1 November 2014.

Organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), CIMMYT, the Food and Agriculture Organization (FAO) of the United Nations and the Thai Department of Agriculture (DoA), the Conference brought together around 350 researchers, policy-makers, service providers, innovative farmers and representatives of various organizations from across the public and private sector.

All photos: APAARI

Maize scientist Dr. Saira Bano from Pakistan is presented an award for best poster by Dr. Hiroyuki Konuma, Assistant Director General of FAO RAP
Maize scientist Dr. Saira Bano from Pakistan is presented an award for best poster by Dr. Hiroyuki Konuma, Assistant Director General of FAO RAP

Dr. B.M. Prasanna, Director of the CIMMYT Global Maize Progam, receives a plaque of appreciation from FAO and APAARI for his contributions to the successful organization of the conference and for strengthening regional maize research and development partnerships.
Dr. B.M. Prasanna, Director of the CIMMYT Global Maize Progam, receives a plaque of appreciation from FAO and APAARI for his contributions to the successful organization of the conference and for strengthening regional maize research and development partnerships.

Dr. Tom Lupkin, CIMMYT Director General, with participants Dr. H.S. Gupta, director general of the Borlaug Institute for South Asia (BISA) and Dr. H.S. Sidhu, Senior Research Engineer, CIMMYT India.
Dr. Tom Lupkin, CIMMYT Director General, with participants Dr. H.S. Gupta, director general of the Borlaug Institute for South Asia (BISA) and Dr. H.S. Sidhu, Senior Research Engineer, CIMMYT India.

Participants and poster presenters from India, S.V. Manjunatha, M.G. Mallikarjuna and S. Hooda Karambir.
Participants and poster presenters from India, S.V. Manjunatha, M.G. Mallikarjuna and S. Hooda Karambir.

Dr. Mulugetta Mekuria, SIMLESA Project Leader, presents on sustainable intensification of maize-based systems.
Dr. Mulugetta Mekuria, SIMLESA Project Leader, presents on sustainable intensification of maize-based systems.

Dr. Mark Holderness, the Executive Secretary of the Global Forum on Agricultural Research (GFAR), asks a question.
Dr. Mark Holderness, the Executive Secretary of the Global Forum on Agricultural Research (GFAR), asks a question.

Research on climate-resilient wheat keeps Green Revolution on track

hans-braun

EL BATAN, Mexico (CIMMYT) — Hans Braun, director of the Global Wheat Program at the International Maize and Wheat Improvement Center (CIMMYT), gestures toward an expansive field of green wheat shimmering in the hot sunlight outside his office.

“If we don’t prepare crops resilient to heat and drought, the effects of climate change will increase the risk of worldwide famine and conflict,” he explained. “That’s why CIMMYT is part of an international research program to develop new climate change-resistant varieties.”

As the global population grows from a current 7 billion to a projected 9.6 billion by 2050, wheat breeders involved in the battle to ensure food security face many challenges.
Already, U.N. food agencies estimate that at least 805 million people do not get enough food and that more than 2 billion suffer from micronutrient deficiency, or “hidden hunger.”

Globally, wheat provides 20 percent of the world’s daily protein and calories, according to the Wheat Initiative. Wheat production must grow 60 percent over the next 35 years to keep pace with demand, statistics from the Food and Agriculture Organization of the United Nations show – an achievable goal only if wheat yields increase from the current level of below 1 percent annually to at least 1.7 percent per year.

The scientists that Braun leads are on the front lines – tackling the climate change threat in laboratories and at wheat research stations throughout Mexico and in 13 other countries.

LIFE-SAVING GRAIN

Wheat is vital to global food security. In particular, since CIMMYT scientist Norman Borlaug, who died in 2009 at age 95, led efforts to develop semi-dwarf wheat varieties in the mid-20th century that helped save more than 1 billion lives in Pakistan, India and other areas of the developing world.

Borlaug started work on wheat improvement in the mid-1940s in Mexico – where CIMMYT is headquartered near Mexico City. The country became self-sufficient in wheat production in the early 1960s.

Borlaug was awarded the Nobel Peace Prize in 1970 for his work, and in his acceptance speech paid tribute to the “army of hunger fighters” with whom he had worked.
However, in contemporary times, some critics have cast a shadow over his work, questioning the altruistic aims of the project that became widely known as the Green Revolution.

They argue that the modern high-yielding crop varieties did not help poor farmers, but caused environmental damage through overuse of fertilizers, water resources and the degradation of soils.

Other condemnations include claims that food scarcity is a mere political construct, that food provision has helped governments suppress disgruntled masses and that vast wheat mono-croplands compromise agricultural and wild biodiversity.
However, a 2003 report in “Science” magazine analyzed the overall impact of the Green Revolution in the 20th Century. The authors, economists from Yale University and Williams College, found that without the long-term increase in food crop productivity and lower food prices resulting from the Green Revolution, the world would have experienced “a human welfare crisis.”

“Caloric intake per capita in the developing world would have been 13.3 to 14.4 percent lower and the proportion of children malnourished would have been from 6.1 to 7.9 percent higher,” authors Robert Evanson and Douglas Gollen wrote.

“Put in perspective, this suggests that the Green Revolution succeeded in raising the health status of 32 to 42 million preschool children. Infant and child mortality would have been considerably higher in developing countries as well.”

Braun acknowledges certain points made by critics of the Green Revolution, but asks how else developing countries would have met the food demands of their rapidly-expanding populations with less environmental impact.

“It’s very easy to look back 50 years and criticize,” Braun said. “People forget that at the time, new farm technologies were an incredible success. We have to put it into context – saving hundreds of millions of lives from starvation was the priority and the Green Revolution did just that.”

CLIMATE-RESILIENT WHEAT

Fast-forward and today much of CIMMYT’s current work remains steadily focused on improving wheat yields, but now with an emphasis on ensuring sustainable productivity and reducing agriculture’s environmental footprint.

Scientists are engaged in an international five-year project to develop climate-resilient wheat. They estimate that in tropical and sub-tropical regions, wheat yields will decrease by 10 percent for each 1-degree rise in minimum night-time temperature, which means that production levels could decline by 30 percent in South Asia. About 20 percent of the world’s wheat is produced in the region.

CIMMYT is collaborating with Kansas State University, Cornell University and the U.S. Department of Agriculture on the project, which is funded by the U.S. Agency for International Development (USAID) as part of Feed the Future, the U.S. government’s global hunger and food security initiative.

Field evaluations are conducted in Mexico, Pakistan and at the Borlaug Institute for South Asia (BISA) in India.

BOOSTING INFRASTRUCTURE

According to Braun, one of the biggest challenges over the next 30 years is to develop better production systems in addition to resource-efficient crops.

For example, a great deal of water is used in food production and demand can and should be cut in half, he said. “We need to focus on sustainable intensification in ways that won’t overuse natural resources.”

To aid in these efforts, CIMMYT has developed international research programs on conservation and precision agriculture.

In conservation agriculture, farmers reduce or stop tilling the soil, leaving crop residues on the surface of the field and rotate crops to sustainably increase productivity. Precision agriculture involves such technologies as light sensors to determine crop vigor and gauge nitrogen fertilizer dosages to determine exactly what plants need.

“This reduces nitrate runoff into waterways and greenhouse gas emissions,” Braun explained. CIMMYT and its partners are also breeding wheat lines that are better at taking up and using fertilizer.

“Wheat in developing countries currently uses only 30 percent of the fertilizer applied,” he said. “There are promising options to double that rate, but developing and deploying them require significant investments.”

“I’m very optimistic that we can produce 60 to 70 percent more wheat to meet demand – society is beginning to recognize that food production is one of humanity’s biggest challenges – today and in the future,” Braun summarized.

“We have or can develop the technologies needed, but politicians must recognize that investment in agriculture is not a problem, it’s a solution – the longer we wait the bigger the potential problems and challenges we face.”

Braun continued, “We also need policymakers to reach agreement that global climate change is a big problem that absolutely must be addressed so that we can gain access to sufficient resources and more fully develop appropriate technologies.”

12th Asian Maize Conference

(From left to right) Anan Suwannarat (Director General, Thai Department of Agriculture), Hiroyuki Konuma (Assistant Director General, FAO-RAP), Raj Paroda (Executive Secretary, APAARI) and Thomas Lumpkin (Director General, CIMMYT) open the 12th Asian Maize Conference by revealing the accompanying Books of Extended Summaries and Abstracts.

The 12th Asian Maize Conference is taking place in Bangkok from 30 October to 1 November, bringing together more than 350 leading agricultural researchers, policy-makers, farmers and service providers from across the public and private sectors. The conference, “Maize for Food, Feed, Nutrition and Environmental Security,” was organized by the Asia-Pacific Association of Agricultural Research Institutions (APAARI), the International Maize and Wheat Improvement Center (CIMMYT), the Food and Agriculture Organization (FAO) of the United Nations and the Thai Department of Agriculture, and will culminate in 10 major recommendations to set in place a roadmap for a sustainable intensification strategy for maize in Asia.

The objectives of the conference are to assess specific priorities to enhance maize production and productivity in the region, share the latest knowledge on cutting-edge maize technologies and generate awareness among institutions and stakeholders of better uses of maize as food, feed, fodder and as an industrial crop in Asia.

“This forum provides us with a platform to create synergies among institutions and stakeholders, all of whom recognize the enormous value of maize as a food and feed crop,” said guest of honor Anan Suwannarat, Director General of the Thai Department of Agriculture.

The area, production and yield of maize have increased several-fold over the last 50 years; much of that growth has occurred in the developing world. Compared to other cereals, maize has recorded the fastest annual growth in Asia (around 4 percent). The demand for maize in Asia has been growing in response to changing consumer interests and to feed the growing livestock sector.

“Among cereals, maize offers immense opportunities to address both food and nutrition security in Asia,” said Dr. Raj Paroda, APAARI executive secretary and conference co-chair. “Exciting scientific achievements in the recent past have led to higher annual growth in maize than all other cereals in the region. We now need to effectively harness the existing potential by out-scaling innovations in maize to have greater impact on the livelihoods of smallholder farmers.”

At the same time, maize production and productivity in several Asian countries is severely constrained by an array of factors, including lack of access to improved seeds and other critical production-related inputs, lack of training and knowledge transfer for resource-poor farmers, and abiotic and biotic stresses, the magnitude and dynamics of which are rapidly increasing due to climate change. However, there remains great scope to increase the production area of maize in the region, as well as tremendous opportunities for productivity increases and innovations in crop improvement, management and diversification.

According to Dr. Thomas A. Lumpkin, CIMMYT director general and the other conference co-chair, “Sustainably increasing yields and stabilizing prices requires a concerted effort at the policy level, deployment of new technologies and long-term research investments to ensure that Asian farmers are prepared to respond to the enormous challenges facing agriculture.”

CIMMYT prepares to launch second phase of SIMLESA in Kenya and Tanzania

Dr. Fidelis Myaka, director of research and development with the Tanzanian Ministry of Agriculture, Food and Cooperatives, officially opens the meeting in Arusha, Tanzania.

Representatives from the Australian Center for International Agricultural Research (ACIAR), Queensland Alliance for Agricultural and Food Innovation (QAAFI), the International Center for Tropical Agriculture (CIAT), the national agricultural research systems (NARS) of Kenya and Tanzania, and CIMMYT scientists from Ethiopia, Kenya and Zimbabwe met between 14-17 October in Arusha, Tanzania, to finalize activities to meet the objectives of the second phase of CIMMYT’s Sustainable Intensification of Maize-Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project.

The joint meeting for the Kenya and Tanzania country teams was the third and last launch and planning meeting. It was also a follow-up of two previous operational meetings held in Lilongwe, Malawi, and Hawassa, Ethiopia.

Continue reading

Gender matters in farm power

The goals of the Farm Power and Conservation Agriculture for Sustainable Intensification (FACASI) project are to address the issues of declining farm power in eastern and southern Africa, and to reduce the labor burden that comes with low farm mechanization, by promoting small-scale mechanization based on two-wheel tractors. Farm power is particularly scarce for female-headed households (FHHs), That have limited access to human labor and often don’t own (or are culturally forbidden to operate) draft animals. FHHs are often the last households to access land preparation services, which leads to lower yields. Even in households headed by men, women supply most of the farm labor and perform highly labor-intensive tasks, such as weeding, threshing, shelling or transport of inputs and agricultural commodities to and from the market by head-loading.

Front row, from left to right: Mulunesh Tsegaye, FACASI gender and agriculture specialist; Katrine Danielsen KIT; Elizabeth Mukewa consultant; Mahlet Mariam, consultant; and David Kahan CIMMYT, business model specialist. Back row, from left to right: Anouka van Eerdewijk KIT; Lone Badstue CIMMYT strategic leader, gender research and mainstreaming; and Frédéric Baudron, FACASI project leader. Photo: Steffen Schulz/CIMMYT

Although mechanization has the potential to close the gender gap in agriculture, past efforts based on large four-wheel tractors have generally led to inequitable access to mechanization, favoring wealthier farmers, and have often widened the gender gap. Similarly, although most of the labor burden in agriculture is placed on women, it is often men’s tasks that are mechanized. Will small-scale mechanization follow the same pattern? Or will the use of less expensive two-wheel tractors promote equitable access to mechanization and contribute to closing the gender gap? In addition, will the versatility of these small machines accelerate the mechanization of tasks done by women? Or is women’s current labor burden unlikely to translate into demand for mechanization, regardless of its form, because of socio-cultural norms affecting gender dynamics? Finally, if women’s tasks are mechanized, will this create opportunities for them, or alienate them in their household chores?

To answer parts of these questions, a CRP MAIZE competitive grant was awarded to the Royal Tropical Institute (KIT) at the beginning of 2014 to conduct a gender analysis of small-scale mechanization in the FACASI sites of Ethiopia (Hawassa and Assela) and Kenya (Bungoma and Laikipia). The research team included: Anouka Van Eerdewijk, KIT gender advisor, Katrine Danielsen, KIT senior advisor; gender and rights; Elizabeth Mukewa, consultant in charge of the field work in Kenya; and Mahlet Mariam, consultant in charge of the field work in Ethiopia. The team presented its finding to the FACASI project in Addis Ababa on 10 October.

The first conclusion of the study is that women’s labor burden itself is unlikely to translate into demand for mechanization, because women’s labor is poorly valued, women’s labor burden is often not recognized and women have little control over the financial resources of the household. However, mechanizing men’s tasks could indirectly reduce women’s labor burden. For example, mechanizing land preparation and seeding – generally a task handled by men – may reduce the need for weeding – a task generally done by women – because of early planting and good crop establishment. In addition, mechanizing men’s tasks would reduce the need for women to prepare and transport food to men working in the field. Substituting mechanization for animal draft power could also reduce the number of livestock owned by the household, and reduce the labor needed for livestock feeding and manure collection, tasks which are generally done by women. Substituting mechanization for animal draft power could also reduce the number of livestock owned by the household, and reduce the labor needed for livestock feeding and manure collection, tasks which are generally done by women.

A second conclusion is that there are large variations in contexts, household types, and even between women in similar household types. For example, pooled labor is used to reduce the labor burden in some locations (e.g., Assela), but not in others (e.g., Laikipia).  In addition, women in male-headed households often don’t have control over resources for reducing their labor burden, whereas women in FHHs might have control, but are resource-constrained. In male-headed households where women do control part of the resources,women can choose options to reduce their labor burden and adopt mechanization. This is particularly true of women who own land and/or have a formal employment outside agriculture. These variations suggest that demand for, and the benefits of mechanization cannot be assumed, but need to be considered and monitored in context.

The findings of this study will be used to develop a set of gender sensitive indicators to monitor and evaluate FACASI. They will also guide a number of research activities in the project, including the testing of mechanization business models with women entrepreneurs, in which the adoption and benefits of mechanization can be further scrutinized for different household types and members.

Scale-appropriate mechanization: the intercontinental connection

CIMMYT aims to improve the livelihoods of poor farmers in the developing world by providing practical solutions for more efficient and sustainable farming. Among the options to improve efficiency, scale-appropriate and precise planting machinery is a crucial yet rarely satisfied need.

Mechanization efforts are ongoing across CIMMYT’s projects, with a strong focus on capacity building of functional small- and medium-scale engineering and manufacturing enterprises. Projects involved include ‘Farm Power and Conservation Agriculture for Sustainable Intensification’ in eastern and southern Africa, funded by the Australian Center for International AgriculturalResearch (ACIAR) and the Cereal Systems Initiative in South Asia (CSISA), funded by the Bill & Melinda Gates Foundation and USAID. CSISA collaborates closely with the machinery research and development work done on the farms of the Borlaug Institute for South Asia in India, CIMMYT conservation agriculture (CA) projects funded by the Australian Centre for International Agricultural Research, the Agri-Machinery Program based in Yinchuan, Ningxia, China, and the MasAgro Take It to the Farmer machinery and intelligent mechanization unit based in Mexico.

Applied research scientists and technicians assisting these projects work specifically to tackle problems in diverse farming conditions and for varying production systems. Despite their geographically diverse target areas, this team strives to reach a common focal point from which they can learn and compare technical advancements. These advancements are achieved through mutual machine technology testing programs, exchanging machines and expertise and evaluations of best solutions for scale-appropriate mechanization to boost sustainable intensification for resource poor farmers.

Recently, this collaboration model led to the export of several units of a toolbar-based, two-wheel tractor implement for bed shaping, direct seeding of different crops and precise fertilizer application. They will be tested by CIMMYT projects in Bangladesh, Ethiopia and Nepal. This multi-purpose, multi-crop equipment was developed to be CA-compatible and has been fine-tuned in Mexico, with design priorities that kept in mind the implement’s usefulness for smallholder farmers in other parts of the world. The machinery will be tested next in Zimbabwe and possibly India and Pakistan.

The team’s goal is to help developing countries and viable business models of local enterprises in specific regions to have access to good quality implements and tools at reasonable prices. This open-source prototyping strategy is based on the free sharing of technical designs and machinery construction plans. The strategy combines patent-free, lowcost replication blueprints of promising technologies with strong agronomical testing as the ultimate ‘make or break’ criterion. This crucial interaction sets CIMMYT’s engineering platforms apart from commercial options that determine research and development priorities based mainly on sales projections and marketing objectives.

The mechanization team strongly believes in the power of cross regional collaboration – a multidisciplinary work environment, connected intercontinentally with social stewardship and the potential to bring transformative changes to farmers’ fields across the developing world.

CIMMYT Ethiopia expands its agronomy work in wheat-based systems

CIMMYT Ethiopia joined the Ethiopian Highlands project of Africa RISING ‘Africa Research in Sustainable Intensification for the Next Generation’ in June. Using a strong participatory research methodology, researchers and farmers co- identify technologies and management practices for the sustainable intensification of the crop livestock systems of the Ethiopian highlands.

Wheat and barley are the dominant cereals in these farming systems. CIMMYT brings its expertise to the project in four research areas: soil and water conservation (CA and raised bed systems); small-scale mechanization (seeding, threshing and water pumping using two-wheel tractors); participatory variety selection of wheat; and community seed multiplication.

CIMMYT young agricultural scientist receives 2014 Borlaug Field Award

BGovaerts_bioOn 15 October, Dr. Bram Govaerts, Associate Director of the Global Conservation Agriculture Program of the International Maize and Wheat Improvement Center (CIMMYT), received the 2014 Norman Borlaug Award for Field Research and Application Endowed by the Rockefeller Foundation during the World Food Prize Borlaug Dialogue International Symposium in Des Moines, Iowa.

The 2014 Borlaug Field Award, as the prize is known, acknowledges “researchers under 40 who emulate the scientific innovation and dedication to food security demonstrated by the 1970 Nobel Peace Prize Laureate Dr. Norman Borlaug.” Bram was recognized for his leadership in developing sustainable intensification strategies in Mexico where he leads the MasAgro project and its “Take it to the Farmer” component, an innovative research and capacity building extension model that borrows its name from the late Nobel Laureate’s inspiring words.

To further celebrate this achievement, CIMMYT is making available a selection of Bram’s peer-reviewed articles. Consult the articles here.

The 2014 World Food Prize Laureate Dr. Sanjaya Rajaram, former director of CIMMYT’s Global Wheat Program, who received the “Nobel Prize of Agriculture” on 16 October, described Bram as “one of the new generation of hunger fighters who brings innovation, passion and an incredible dedication to the field.”

CIMMYT celebrates Bram’s achievement and is proud to make the most important findings of his research available to the agriculture and development community.

Wheat area expansion faces a headwind requiring increased spending on R&D to raise yields

 

Photo credit: Madan Raj Bhatta

 

Derek Byerlee is a visiting scholar at Stanford University.
Any views expressed are his own.

Over the last 50 years or so, the big increases in agricultural production have come through improved yields largely as a result of the Green Revolution.

From 1961 to 2011, per capita cereal production increased by 40 percent, while the amount of cropland per capita fell by half. In most regions, the total area of cropland has either reached a peak or declined. However, in three tropical regions, land expansion has been and still is a significant source of agricultural growth: Southeast Asia, tropical South America and sub-Saharan Africa.

Since 1990, wheat is the only major crop to experience an overall decline in area.

Looking to the future, how much land can be expected to come into production for cropping?

Currently, about 1,500 million hectares (Mha) of land is used for crops.

I project that additional demand for land will be 6 to 12 Mha each year for a total of 120 to 240 Mha increase from 2010 to 2030.

The higher projection allows a greater role for trade and thereby production by the lowest-cost producers who are often located in land-abundant countries.

These estimates are broadly in line with a synthesis by Erik Lambin & Patrick Meyfroidt who also include projections of the loss of land due to expansion of urban settlements and infrastructure as well as losses due to land degradation. Taking these losses into account, Tony Fischer provides an estimate of total additional gross cropland demand from 2010 to 2030 of 160 Mha to 340 Mha. Global models also suggest expansion of cropland to 2050 of about 300 Mha, given projected yield growth.

Is there enough land to satisfy demand? The Food and Agriculture Organization of the United Nations’s World Agriculture Towards 2030/2050 report estimates that some 1.4 billion hectares of currently uncultivated land that is not forested or in protected areas is suited to crop agriculture although they note that this is an optimistic estimate. A more conservative estimate of available land with at least moderate suitability for rainfed cultivation in low population-density areas – that is, non-forested, non-protected and with a population density of less than 25 people per square kilometer – is approximately 450 Mha.

At first glance, it would thus seem that projected demand for land (even under the scenarios of the higher demand estimates) over the next two decades can be accommodated by available uncultivated land.

However, most of this uncultivated land is concentrated in a few countries in Sub-Saharan Africa, Latin America, Eastern Europe and Central Asia and is often far from ports and roads.

A global analysis may also miss key constraints at the local level such as human diseases and unrecorded current land use that reduce effective land supply.

In addition, an expansion of land area of the order of 160 Mha (the lower-bound estimate of the estimated future land needs) could have significant biodiversity costs from conversion of natural ecosystems, even in the non-forested areas considered above.

Indeed, one of the sustainable development goals currently under discussion in international fora is to reduce deforestation to zero by 2030 – implying a closing of the land frontier. Finally with the exception of some areas in Russia, Ukraine and Kazakhstan, most of the available land is in the tropics and is unsuitable for wheat production.

Overall then, projections of future land availability for agriculture suggest a growing land scarcity, particularly for wheat, especially when taking into account that demand for food and feed will continue to rise with growing affluence in rapidly industrializing countries, as well as the use of land for biofuel feedstocks.

Growing scarcity together with high commodity prices have combined to stimulate global investor interest in farmland that underlies much of the recent discussion on intensification as a strategy to save land and concerns about a global ‘land grab’ by investors from land-scarce countries.

Wheat area is also being pushed out by other crops in many countries. Over the period 1993 to 2013, wheat area has fallen by 4.5 Mha, exceeded only by other winter cereals (barley, rye, and oats) that have collectively lost over 40 Mha.

During the same period, the area of oil crops (mostly soybeans, rapeseed and oil palm) has increased by an astonishing 100 Mha, maize by a hefty 53 Mha and rice by 20 Mha.

This year for example, North Dakota, a quintessential wheat-producing state in the United States, for the first time planted more soybeans than wheat.

In Argentina, soybeans rotated with maize have also displaced a significant wheat area, while in northern China, increasing maize area appears to be at the expense of spring wheat. Wheat area in the United States and China has fallen by 7 Mha and 6 Mha respectively since 1993. The major exceptions to these trends are India and Australia, where wheat area is up sharply.

All of this, of course, implies that increasing wheat yields will be especially critical to maintain its competitiveness and to save further land expansion into forests.

Norman Borlaug, the pioneer of the Green Revolution, long recognized that increased yields were not only essential to increasing global food security but also to saving forests.

This has now been enshrined in the environmental literature as the Borlaug Hypothesis. The real world is not so simple since there are situations where increasing yields may enhance crop profitability and encourage its expansion at the expense of forests. However, we found that just the CGIAR investment in germplasm is likely to have saved from 18-27 Mha of land from 1965-2000.

The bottom line is that increased spending on research and development (R&D) by national programs and CGIAR is a priority to achieving not only food security but confronting land scarcity.

None of the above considers the negative impacts of climate change, but a recent thoughtful analysis by David Lobell of Stanford University has shown that investing in R&D to adapt to climate change and maintain yields in the face of rising temperatures and increased drought is one of the most cost-effective ways to save forests and therefore mitigate climate change.

Surprisingly, wheat is the crop that faces the strongest headwind from both land scarcity and climate change. Wheat also appears to be grossly underfunded at the international level as measured by the budget provided to the WHEAT CRP – one of the lowest among the 15 CRPs. Tony Fischer, Honorary Research Fellow, at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), in a companion piece has shown that there are many promising avenues to higher R&D spending, both to raise yield potential and close large yield gaps.

 

Interested in this subject? Find out more information here:

Alexandratos, N., & Bruinsma, J. (2012). World agriculture towards 2030/2050: the 2012 revision (No. 12-03, p. 4). Rome, FAO: ESA Working paper.

Borlaug, N. 2007. “Feeding a Hungry World.” Science 318(5849):359–359.

Deininger, K.W., and D. Byerlee. 2011. Rising Global Interest in Farmland: Can it Yield Sustainable and Equitable Benefits? Washington D.C.: World Bank Publications.

Fischer RA, Byerlee D, Edmeades GL. 2014. Crop Yields and Food Security: Will Yield Increase Continue to Feed the World? Canberra: Aust. Cent. Int. Agric. Res.

Lambin, E. F. 2012. Global land availability: Malthus versus Ricardo. Global Food Security. 1; 83-87.

Lobell, D.B., U.L.C. Baldos, and T.W. Hertel. 2013. “Climate Adaptation as Mitigation: the Case of Agricultural Investments.” Environmental Research Letters 8(1):015012.

Stevenson, J.R., N. Villoria, D. Byerlee, T. Kelley, and M. Maredia.  2013. “Green Revolution Research Saved an Estimated 18 to 27 Million Hectares from Being Brought into Agricultural Production.” Proceedings of the National Academy of Sciences. Available at: 10.1073/pnas.1208065110 [Accessed May 13, 2013].

 

 Go back to: Wheat Matters

 

More maize seed outlets needed in remote areas to reach women farmers says new CIMMYT socio-economics study

An dealer displays KDV1 drought-tolerant seed at the Dryland Seed Company shop in Machakos, Kenya. The CIMMYT study observed that men and women engage with the seed market differently. Photo: Florence Sipalla/CIMMYT.

Preliminary results from a CIMMYT-led pilot study in 10 seed markets across eastern Kenya show that there is a significant difference in the way that men and women engage with improved maize seed markets. “In most major centers, you have at least twice as many men as women coming to buy seed,” said Vongai Kandiwa, CIMMYT gender and development specialist who designed and led the study. The patterns improve a bit when you move to centers that are closer to rural communities. “This tells us that to reach more women, it is important that seed outlets are closer to them in the remote areas.”

Continue reading

MAIZE CRP calls for grant proposals

MAIZE CRP has announced its third call for proposals as part of the Competitive Grants Initiative (CGI). The call is directed at researchers from outside CGIAR, allowing a greater variety of research partners worldwide to apply for funds to support research and capacity-building activities that will make a significant contribution to the MAIZE vision of success.

The full call for proposals is available on www.MAIZE.org and the deadline for applications is 17 October. Please share this news with your networks!

Photo courtesy of MAIZE.org

Last year, 17 institutions were offered grants, which can range between US$20,000-300,000; The total number of grants awarded to date is 37. For 2014, 11 specific research gaps have been identified within the MAIZE strategy of five Flagship Projects: sustainable intensification of farming systems; new tools and traits for breeding; stress-resilient and nutritious maize; stronger maize seed systems; and more inclusive and profitable maize futures.

Along with the Competitive Partner Grants initiative of the WHEAT CRP, these are the only model of such collaboration among the CRPs. By building a greater variety of partnerships, MAIZE hopes to capture a wider range of innovative ideas and skills, more capable to identify and respond to emerging challenges and maximize the potential for research to improve food systems and the livelihoods of smallholder farmers.

Future updates and news of the Competitive Grants Initiative will be shared in the MAIZE newsletter. For any further questions, please contact MAIZE Program Administrator Claudia Velasco (c.velasco@cgiar.org).

CSISA: Making a Difference in South Asia

Anu Dhar, Cynthia Mathys, Jennifer Johnson

Staff members of the Cereal Systems Initiative for South Asia (CSISA) are developing and implementing projects aimed at improving agricultural production and standards of living for farmers in South Asia, with excellent results. At their “Seed Summit for Enhancing the Seed Supply Chain in Eastern India” meeting in Patna, Bihar on 14-15 May they worked to design solutions to improve the delivery of high-yielding seed varieties in eastern India, a region that has traditionally suffered from lack of access to these varieties and low seed replacement rates. The meeting, which included over 60 seed experts from the government, research and private sectors, focused on topics such as better-targeted subsidies on seeds, improved storage infrastructure and stronger extension systems to increase accessibility and adoption of improved seed varieties.

The roundtable “Sustainable Intensification in South Asia’s Cereal Systems: Investment Strategies for Productivity Growth, Resource Conservation, and Climate Risk Management” was held on 19 May in New Delhi. It brought together 20 firms and entrepreneurs to build collaborative action plans and joint investment strategies under CSISA to identify new product tie-ins, joint ventures, technical collaborations and shared marketing channels in order to bring high-tech farming ideas to India’s risk-prone ecologies.

In India, CSISA seeks to increase crop yields through the provision of more accurate, location-specific fertilizer recommendations to maize and rice farmers with the “Crop Manager” decision-making tool. The web-based and mobile Android application uses information provided by farmers including field location, planting method, seed variety, typical yields and method of harvesting to create a personalized fertilizer application recommendation at critical crop growth stages to increase yield and profit.

CSISA-Nepal has initiated a series of participatory research trials in farmers’ fields, in order to promote maize triple cropping, the practice of planting maize during the spring period after winter crop harvesting, when fields would usually be fallow. The practice, while proven to be highly remunerative, is not widely popular. The trials seek to determine optimum management practices for maize in order to encourage triple cropping and to generate additional income for farmers.

Greater gender equality in agriculture is also an important goal of CSISA, supported through the creation of Kisan Sakhi, a support group to empower women farmers in Bihar, India by “disseminating new climate-resilient and sustainable farming technologies and practices that will reduce women’s drudgery and bridge the gender gap in agriculture.” A CSISA-Bangladesh project has already had a positive impact on the lives of rural women, providing new farming and pond management techniques that have helped them to greatly increase the productivity of their fish ponds and gain new respect within their families and communities.

MasAgro Móvil brings key crop Information to farmers’ mobile phones in Guanajuato

As of April, farmers in the central Mexican state of Guanajuato are now receiving localized agriculture updates and decision-making advice on their mobile telephones thanks to a service launched by MasAgro MĂłvil. This new development in MasAgro MĂłvil’s service is part of Guanajuato’s plan to modernize agriculture with CIMMYT-developed technologies. MasAgro MĂłvil, a project of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, along with other MasAgro tools, received an investment of 10.4 million pesos (US$ 804,000) thanks to the support of Miguel MĂĄrquez MĂĄrquez, governor of Guanajuato, who seeks to promote sustainable agriculture in his state.

The head of CIMMYT's GIS unit, Kai Sonder, demonstrating the use of GPS.
The head of CIMMYT’s GIS unit, Kai Sonder, demonstrating the use of GPS.

Javier Usabiaga Arroyo, Guanajuato’s secretary of agricultural development, announced on 31 May that approximately 755,000 farmers in Guanajuato will eventually have access to vital information through e-MasAgro, a virtual ecosystem that connects various agriculture-related information tools on one site, including MasAgro Móvil. Farmers “will receive technical information, recommendations, response to agricultural plagues and diseases and anything else they might need to improve their production,” he told the El Heraldo newspaper.

The regionalized service offered by MasAgro MĂłvil in Guanajuato has the potential to be a game-changer for smallholder and medium-scale farmers. After registering for the service, farmers receive short, simple, timely and free agricultural information on the most innovative and profitable conservation agriculture practices. Each message is compatible with the regionÂŽs agricultural cycle and provides information that is difficult for an average farmer to find. In the past few months, MasAgro MĂłvil has sent various messages specific to Guanajuato, focusing on fertilization and monitoring for diseases. It also began sending weekly weather forecasts, regionalized news and invitations to local events.

Photo: Guanajuato Communication Department

In the future, the service will add price alerts, crop health advice and more market-segmented information. The developers are also experimenting with messages that interact with the users, help retrieve user information and facilitate feedback. Abraham Menaldo, a consultant for MasAgro MĂłvil, said the feedback has been positive so far and farmers are eager to participate and interact. MasAgro MĂłvil’s goal is to expand this model to the rest of the country, which would replace the current service that sends information to each of MasAgro’s innovation centers, known as hubs.

Project leaders are developing collaborations to create parallel services in the states of Tlaxcala and Hidalgo. A communications campaign planned for autumn 2014 will encourage more farmers to use the system. Extension agents will identify places where farmers congregate, and visit in person to help them register on-site. The campaign will include a study of the target group’s perceptions of MasAgro, their livelihood and the future of farming. MasAgro MĂłvil’s website offers detailed information about services, future projects, program activities and CIMMYT’s partner-led mobile development projects around the world.

The site will eventually offer an online registration service to minimize some of the technological problems farmers have encountered, such as autocorrect mistakenly changing the spelling of a key word. MasAgro MĂłvil was recognized by the Inter-American Development Bank as an ideal tool to integrate farmers into the agricultural value chain in its report “The Next Global Breadbasket: How Latin America Can Feed the World: A Call to Action for Addressing Challenges & Developing Solutions.”

Sustainable intensification (GCAP)

Go back to Conservation Agriculture

The primary purpose of the CIMMYT Global Conservation Agriculture Program (GCAP) is to co-develop sustainable intensification options for and with smallholder farmers in maize- and wheat-based farming systems in Latin America, Africa and Asia. Doing so contributes to CGIAR intermediate development outcomes on food security and poverty reduction. GCAP initially focused on conservation agriculture (CA) principles and high-quality, site-specific field agronomy research in a wide range of agro-ecosystems. Over the past few years, GCAP broadened its research portfolio in close collaboration with the CIMMYT Socio-Economics Program (SEP) to more holistically address sustainable intensification pathways and tackle adoption and adoptability of technical innovations.

In short, sustainable intensification of agriculture seeks to increase farming enterprises’ productivity in regard to land, water, labor and input productivity of farming enterprises in a socially equitable manner while preserving the natural resource base and the environment. This is easier said than done as the sustainable intensification paradigm requires understanding of the complex interactions (synergies and trade-offs) between bio-physical, environmental and socio-economic/market/policy factors at different scales/levels (field, farm, landscape, regions) in order to develop viable options in changing rural environments.

Not being ‘lost in, but dealing with complexity’ is GCAP staff members’ primary concern in order to achieve impact at scale and propose site- and farm-specific integrated adoptable solutions. This requires the use of systems research approaches and the development and use of conceptual frameworks. An example of this is the partnership with Wageningen University funded by the MAIZE and WHEAT CRPs.

Reaching impact at scale also requires strategic partnerships with a wide range of stakeholders – from advanced research institutions to government and private extension agencies, non-governmental organizations (NGOs) and the private sector. GCAP’s flagship projects in South Asia (CSISA), Africa (SIMLESA) and Mexico (MasAgro/TTF) were all designed specifically to use agricultural research for development (AR4D) to intensify farming systems. At the same time, these projects implement innovative approaches with effective methodological use of gender and innovation. A specific program to backstop gender and innovation in GCAP projects is led by the Royal Institute of the Tropics (KIT) of the Netherlands and funded by the MAIZE and WHEAT CRPs.

GCAP operates on the principles that technical innovations and scientific progress have great potential to help smallholder farmers when properly put in context. Therefore, a large part of the GCAP research portfolio is still focused on technical innovations and on the following themes:

  • Conservation agriculture and its contribution to sustainable intensification (i.e. the Nebraska Declaration).
  • Small-scale mechanization and labor saving technologies (i.e. the FACASI project).
  • Decision support tools (DSTs) for site-specific nutrient/water management and precision agriculture/remote sensing for smallholders farmers.
  • Effective use of information and communication technologies.

For more information, please contact: Bruno Gerard (b.gerard@cgiar.org)

Strategic research theme leaders for sustainable intensification:

In East and Southern Africa: Peter Craufurd (p.craufurd@cgiar.org)
In South Asia: Andrew McDonald (a.mcdonald@cgiar.org)
In Latin America: Bram Govaerts (b.govaerts@cgiar.org)

 

CIMMYT and CIBIOGEM hold symposium on transgenics and society

CIMMYT, CIBIOGEM and the North Carolina State University (NCSU) transgenics and society group joined together at CIMMYT headquarters on 24 July for the symposium “Transgenics and Society: Towards a constructive dialogue that contributes to policies and regulatory frameworks.” The event was organized to highlight the importance of scientific and moral considerations surrounding individuals’ and hence society’s perspectives about transgenic crops and other emerging technologies.

Secretary for Information and Research Support of CIBIOGEM Dr. Laura Tovar Castillo, welcomed participants on behalf of Dr. Sol Ortiz GarcĂ­a, Executive Secretary of CIBIOGEM, and highlighted the importance of this symposium and of achieving constructive dialogue about transgenic technologies. Nearly 1 billion people are suffering from hunger and poverty worldwide, according to the Food and Agriculture Organization (FAO) of the United Nations.

Photo: CIMMYT

Kevin Pixley, director of the CIMMYT Genetics Resources Program, opened the event with a quote from Megan Clark, CEO of Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO): “In the next 50 years we will need to produce as much food as has been consumed over our entire human history.”

Climate change, depleted natural resources and overpopulation are just a few of the problems contributing to worldwide food insecurity. Pixley noted that this requires us to make a difference worldwide. “How are we going to help these people survive?” asked CIMMYT director general Tom Lumpkin in his welcome to participants. “CIMMYT is in favor of the technology of genetically modified organisms (GMOs). Though I do say that with words of caution, because we do want to support the developing world with access to this technology, but it is possible to make a bad GMO. I’ve traveled all around the world and seen lax handling of GMOs.”

The discussion was separated into two sessions. CIMMYT staff can view the presentations on InSide CIMMYT. The first session was led by Fred Gould, NCSU professor of entomology and transgenics. Gould’s presentation was titled “The Past, Present and Future of Genetic Engineering Technologies,” and discussed the past marketing of genetically engineered products, new technologies and the possibilities of many new GM technologies. Jennifer Kuzma, co-director of the Genetic Engineering and Society Program at NCSU, finished the first session with a discussion on the governance of genetically engineered organisms and how they are regulated in different countries. “We need to find a middle approach to incorporate values and science in the governance of genetically engineered organisms,” said Kuzma in a wrapup of her presentation.

The second half of the symposium presented the perspective of professionals who have deep ties in Mexican agriculture and also are concerned about the personal and moral issues that influence perceptions about GMOs. Presenters included: Concepción Rodríguez Maciel, associate researcher and professor at the Colegio de Postgraduados; Javier Becerril, professor of economics at the Universidad Autonoma de Yucatán; and Carolina Camacho, principal researcher in the CIMMYT Socioeconomics Program. The theme that ran through these presentations was the need for transgenic crops in Mexico compared with the difficulty of fully explaining the benefits and concerns of transgenic crops to small-scale farmers. Rodríguez Maciel said: “As a country, we have spent way too much time discussing biotechnology issues. It’s time to integrate all the different types of agriculture to face the challenges that climate change will bring. We do need to remember that we are talking to normal human beings and we need to speak their language.”

Jason Delborne, associate professor of science, policy and society at NCSU, rounded out the discussion with his presentation on how to conduct a productive and informative dialogue on transgenic research. He has developed a five-step process that is designed to facilitate a formal discussion regarding transgenic research and ease the general public into a conversation about transgenics that leads to productive action. Building on the foundations of this symposium, CIMMYT hopes to contribute to discussions in Mexico and elsewhere that generate better understanding of the scientific and personal perspectives that societies must acknowledge and address in developing their policies about transgenics (and next generations of technologies).

As highlighted by Jason Delborne, the most important step is often asking and addressing the right question, which in many cases during this symposium participants learned was not actually about transgenics. Instead, the right questions might be about conserving biodiversity, enhancing the ecological sustainability of agricultural practices, preserving the right to save grain for planting next crops, offering technologies that are affordable to resource-poor farmers or about how humankind will produce as much food in the next 50 years as has been consumed over the entire history of humanity.