Skip to main content

research: Sustainable agrifood systems

Show and tell: when technology adoption becomes farmer-driven

What does the CASFESA project have to show for two-and-a-half years in Kenya?

Many poor smallholder farmers in Africa bear the brunt of infertile soils. Research offers a partial solution: Conservation Agriculture (CA) helps farmers improve soil productivity through sustainable intensification.

show-and-tellPicture2
Farmers evaluating maize stand on the conventional versus conservation agriculture plots during field days organized in Embu.

Participants of the project closing workshop held on March 5, 2015.
And some smallholders in Africa are already reaping CA benefits. For example, the Conservation Agriculture and Smallholder Farmers in Eastern and Southern Africa (CASFESA) Project worked with farmers and other partners in Kenya and Ethiopia since 2012. CASFESA’s aim was to buffer small-scale farmers by enhancing farm resilience through better natural resource management in maize based systems.

In Kenya, CASFESA ran for two-and-a-half years in Embu County. At a summative closing workshop held at Embu on 5 March 2015, farmers shared their CASFESA experience. For some of them, the project transformed their farming with remarkable benefits, due to their commitment, as well as the commitment of other key actors in CA dissemination such as the Kenya Agricultural and Livestock Research Organization.

In Kenya, CASFESA promoted three main technologies targeting maize farmers. The technologies are maize and legume intercropping, residue retention and zero tillage with permanent furrows and ridges. Thirty farmers in 15 randomly selected villages volunteered their farms for demonstrations showcasing the three technologies in tandem. Practical demonstrations were done during farmer field days in the selected villages to compare the performance of maize and beans using conservation agriculture and using normal practice. Intercropping is not new and is already very common in the area.

Moti Jaleta, CASFESA Project Coordinator, observed, “From a quick adoption monitoring survey, we noticed about 60 percent of the sample farmers have tried at least some of these techniques with keen interest to continue. The success of the CASFESA Project in Embu has been in getting these technologies to the farmers through practical demonstration, and linking them with farm input suppliers. With this, I believe we have accomplished our task in supporting the smallholders to improve their crop management.”

Participants of the project closing workshop held on March 5, 2015.
Participants of the project closing workshop held on March 5, 2015.

Farmers evaluating maize stand on the conventional versus conservation agriculture plots during field days organized in Embu.

Indeed, a good number of farmers in the villages started using zero tillage with permanent furrows and ridges covered with maize residue. But there was a hitch: initially, adopting the full suite of sustainable-intensification practices appeared unpopular. And why was this? Not because of the practices themselves but because most farmers use maize residue for animal feed. This made residue retention for mulching and enhancing soil fertility a big challenge. So how did the farmers themselves – independent of the researchers – get around these unfavorable trade-offs? Let’s hear it from them.

One farmer, Nancy Mbeere, who adopted CA, harvested an additional eight bags of maize from her small farm. And she did not keep her new know-how to herself: “I have trained my three neighbors on this new technique and they have already started using furrows and ridges and residue retention in their maize shamba [farms].”

Nancy and her neighbors found a solution on animal fodder. “We agreed to have one in every three rows remain in the field as residue and use the other two as feed,” explained Nancy.

For Bethwel Kathiomi, another CA farmer, when his farm had two very good seasons, other farmers approached him for tips on his new-found farming technique. “People kept stopping by my farm to ask questions, and I was happy to share this information with them.”

At the closure workshop, farmers attending committed to continue sharing their experiences and successes, and to support each other through small groups to learn, and access inputs like fertilizers, herbicides and improved seeds. This community commitment should lead to greater CA adoption, given the attention CA benefits are drawing going by the experience of Bethwel and Nancy. It would therefore appear that in this particular case, CA has successfully moved from researchers to farmers, who are now the ones propagating CA practices. Good news indeed for impact, reach and sustainability!

MasAgro impacts: four years harvesting sustainability in Mexico’s farmlands

Luz Paola LĂłpez, Sustainable Intensification Program for Latin America

The “Impactos #4MasAgro” communications campaign that CIMMYT’s Sustainable Intensification Program for Latin America conducted from 23 September-1 December in Mexico, published the results that the MasAgro initiative has obtained during the four years it has been operating in farmers’ fields in Mexico.

One of the campaign’s objectives was to promote MasAgro as an inclusive farm production model and position Mexico as a disseminator of agricultural technology that seeks to achieve global prosperity and food security. Among the impacts publicized in the campaign were:

  • The National Agricultural and Livestock Survey indicated that between 2012 and 2014, conservation agriculture increased by 12%, while crop rotation increased by 7.2%; both were actively promoted by MasAgro.
  • According to Mexico’s Agricultural and Livestock Information Service, in 2014 the average maize yield in temperate regions was 2.39 t/ha, while in MasAgro’s areas of influence, it was 4 t/ha.
  • The income of maize farmers who participate in MasAgro increased 9-31%, while wheat farmers’ income increased up to 25%.
  • Forty-two national seed companies that work with MasAgro Maize now hold 28% of the improved maize seed market.
  • MasAgro’s improved seed, technologies, and sustainable cropping practices have been adopted on 440,000 ha, and MasAgro has had indirect impact on 1 million ha through training, field events, etc.
  • Nine Mexican students have received scholarships and trained to obtain Ph.Ds. in wheat physiology at universities in Australia, Chile, the US, and the UK.
  • A Maize and Wheat Molecular Atlas has been developed that contains maps showing the characteristics (soil type, climate, and adaptation) of sites where native landraces have been collected, along with demographic information (race, use, and productivity), and space, time, and genetic distances.

The campaign became known in social networks through the hashtag #4MasAgro, which had 3,468,237 hits. We also used our own publications, such as the EnlACe Bulletin, which published 11 special issues, and MasAgro MĂłvil, which sent out 6,214 messages on impacts to its users. In addition, 34 articles were published in Mexican newspapers and news sites, 9 interviews were broadcast over the radio and 2 on television, with an estimated audience of 2,843,345.

There’s no doubt that the campaign’s success was due to the participation of MasAgro collaborators, given that institutions, farmers, scientists, and extension agents took up the messages and spread them through social networks, at meetings and other events. In conclusion, “Impactos #4MasAgro” is a great example of a team working to communicate agricultural innovations.

 

Looking towards the future: Govaerts examines food security and nutrition in a changing world

Bram Govaerts shares a quote from Dr. Norman Borlaug with the audience: “I personally cannot live comfortably in the midst of abject hunger and poverty and human misery, if I have the possibilities of—even in a modest way, with the help of my many scientific colleagues—of doing something about improving the lives of these many young children.” Photo: Jennifer Johnson

Bram Govaerts, associate director of the Global Conservation Agriculture Program (GCAP) and leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) program, made a presentation on the future prognosis of food security and the actions that must be taken to achieve it at the Prospectiva del Mundo (World Prospective) Mexico 2015 conference on 25 June. The conference, organized by the National Autonomous University of Mexico (UNAM) and the Mexican chapter of the World Future Society, brought together national and international experts in fields such as development, education, finance and agriculture.

These experts were gathered in order to draft a “charter of human duties,” an initiative proposed by the late Nobel Laureate Jos Saramago, who believed that there was a global need for a charter that would define the responsibilities, not just the rights, that each human being has to the development of their surroundings. The charter will later be presented to the United Nations.

Govaerts co-presided over a panel on nutrition and food production alongside Fernando Soto Baquero, FAO representative in Mexico. The panelists were tasked to propose duties for the charter and to answer the question: “How can we improve food distribution in a way that does not harm consumers while maintaining a profitable industry?”

In his presentation, Govaerts highlighted the challenges facing food security in the coming years. “It is not just a question of producing more food, but of producing food that is more nutritious and affordable, with less impact on the environment,” said the recipient of the 2014 Borlaug Award for Field Research and Application. “We must end hidden hunger.”

He emphasized the necessity of using the genetic materials stored in CIMMYT’s gene banks to develop improved varieties, and to ensure that these varieties can be productively used by farmers. “CIMMYT is the home of one of the greatest jewels in the world: 130 thousand wheat accessions and 35 thousand maize accessions that represent the global biodiversity of these grains. However, if we don’t take advantage of our stored genetic material to create better varieties, our collection is nothing more than a refrigerator full of boxes.”

Govaerts proposed five duties for the charter of human obligations: investing  in research for sustainable rural development; giving priority to family farming and small and medium producers; more equal opportunity for farmers, especially women; sustainable intensification; and further developing market opportunities for producers. He ended his presentation with a call to action, urging the audience to take the world’s duty to agriculture to heart.

“We have a great challenge before us, and a great decision to make: we will need to feed 9 billion people in 2050, and we can either do it unsustainably or sustainably. There is a lot of potential in this room, but we cannot feed 9 billion people on potential alone. We need everyone’s help and actions, and I invite you to join us.”

Farmers bring a direct seeder/fertilizer to a field in Oaxaca, Mexico. Photo: Jelle Van Loon
Farmers bring a direct seeder/fertilizer to a field in Oaxaca, Mexico. Photo: Jelle Van Loon

Director General Martin Kropff on Science Week 2015: “Taking CIMMYT to the next level”

During Science Week (15-18 June) held at CIMMYT headquarters in El BatĂĄn, Mexico, scientists from around the world gathered to share the successes and review the activities of different CIMMYT programs. Attendees sought to find solutions to help meet global food needs related to basic cereals, as well as combat poverty and face the challenges posed by climate change.

CIMMYT staff from around the world came together to discuss key points and identify new opportunities for improving work quality, learn-change processes, work plans for the coming decades and CIMMYT’s role in science and development.

“The main objective of this Science Week is to take CIMMYT to a higher level of quality and create more impacts,” said CIMMYT Director General Martin Kropff, who welcomed scientists from all over the world. Kropff highlighted the importance of research to learn change processes for the next decades and reaffirm CIMMYT’s goals while interacting with external partners.

For Kropff, Science Week is an opportunity to develop better communication channels so that the ideas of all participants can help formulate a new strategy that fosters better cooperation among the different CIMMYT programs in order to achieve the best impacts.

Kropff also mentioned the importance of CIMMYT’s genetic breeding work, the work done in our germplasm banks and of strategies aimed at achieving sustainable intensification of cereal production worldwide.

Science Week 2015 participants at welcome and introduction ceremony. Photo: CIMMYT
Science Week 2015 participants at welcome and introduction ceremony. Photo: CIMMYT

“CIMMYT is a great institution and has grown very quickly, so it is necessary to put all our scientists to work and develop new plans, new projects and new ways of making future impacts,” said Kropff.

In his final remarks, the Director General said he was very happy to be part of CIMMYT because of the great scope for improvement that events like Science Week provide. “This is the best start one could have, to know all CIMMYT staff worldwide and that they know me, so we can communicate more openly,” Kropff said.

CIMMYT to host international conservation agriculture workshop during China Science Week

Postgraduates discussing and preparing the CA runoff demonstration with Professors Li Lingling and Zhang at Dingxi Research Station in preparation for the workshop. Photos: Jack McHugh/CIMMYT
Postgraduates discussing and preparing the CA runoff demonstration with Professors Li Lingling and Zhang at Dingxi Research Station in preparation for the workshop. Photos: Jack McHugh/CIMMYT

An international conservation agriculture (CA) workshop to be held during China Science Week (30 June–4 July 2015) will bring CIMMYT CA researchers, colleagues and national researchers together with the objective of building agro-ecological capacity among researchers in western China. At the workshop, hosted by CIMMYT-China, participants will discuss subjects such as CA successes and the science and practical agronomy underpinning CA, and will view field displays of CA benefits.

The workshop will advance international exchange and future collaboration through CIMMYT-China’s Global Conservation Agriculture Program (GCAP). China, a vital component of GCAP, plays an ever-increasing role in agricultural development across Asia and Africa. For example, GCAP-China collaborator Zhang Anping from the Nanjing Research Institute of Agricultural Mechanization recently returned from a 12-month machinery development program in Zimbabwe sponsored by the Chinese Government. Zhang will be hosting CIMMYT-GCAP on an agricultural machinery tour in Shandong Province following China Science Week.

Internationally renowned experts will be joined by CIMMYT’s GCAP team who will provide training and present CA research, development and extension practices, and share their expertise on CA issues that arise across Africa, Latin America and South Asia. Danny Decombel, Crop Nutritionist who has lived and worked in China for 27 years, will provide insights on nutrient and plant management and monitoring systems. Carl Timler of Wageningen University will provide hands-on training on the use of Farm DESIGN computer models and other farming system analytical tools. Farm DESIGN is a product of Wageningen University’s Farming Systems Ecology group.

National scientists will discuss new technologies, scientific advances and scholarly publications in China. Representatives from Gansu Agricultural University, The Grassland Institute of Lanzhou University, Gansu Academy of Agricultural Sciences and local agronomy consultants, in partnership with GCAP-China, will also be organizing the event.

Common farming practices on the Loess Plateau near Dingxi to be visited during the workshop.
Common farming practices on the Loess Plateau near Dingxi to be visited during the workshop.

In addition to the workshop, a participatory learning field day will be held at Dingxi Research Station in Gansu Province. During the field day, participants will learn about challenges to CA adoption, and will view demonstrations of conventional vs. CA treatment of water-holding capacity, infiltration, runoff, soil strength, plant nutrition levels and crop water use.

CIMMYT representatives attending will include Bruno Gerard, GCAP Director; M.L. Jat, Senior Cropping System Agronomist; Frederic Baudron, Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) Project Leader; Santiago Lopez Ridaura, GCAP Systems Agronomist; and Tim Krupnik, Systems Agronomist.

Also in attendance will be professors John Bennett (University of Southern Queensland Australia), Enamel Haque (Murdoch University Perth Australia) and Jeremy Whish (CSIRO Australia). National representatives include Yang Changrong, expert in agro-ecology; Lan Yubin, leading expert in precision agriculture at South China Agricultural University; Pan Genxing, expert in soil biology and amendments at Nanjing Agricultural University; and Wang Yingkuan, Editor-in-Chief of the International Journal of Agricultural & Biological Engineering and Vice Secretary General of Chinese Society of Agricultural Engineering.

Conservation agriculture in Africa: where does it fit?

Conservation agriculture (CA) encompasses the principles of minimum soil disturbance, retention of crop residues on the soil and diversification through crop rotations and associations. Worldwide, CA adoption exceeds 125 million hectares. Its benefits include reduced production costs and soil degradation, more effective and efficient use of resources like water and fertilizer, and greater overall cropping system productivity. CA-based practices have recently regained scientific attention as part of newly emerging concepts such as sustainable intensification, ecological intensification and climate-smart agriculture.

CIMMYT’s increasing efforts to promote CA in Sub-Saharan Africa began at a regional hub in southern Africa in 2004, moved to eastern Africa in 2009, and subsequently expanded to other Africa locations. In Africa, conservation agriculture has benefitted from significant donor attention and the call to address multiple agricultural challenges, which include the pressure of expanding populations on land resources, declining soil fertility, low productivity, and the negative effects of climate variability.

Research has proven the biophysical and economic benefits of CA for Africa, yet CA adoption and spatial expansion by African farmers is relatively low, compared to its acceptance in similar agro-ecologies in the Americas and Australia.

The lack of widespread adoption in Africa has led some researchers to question the suitability of CA for smallholder farmers in Africa or the wisdom of spending resources to study and promote it. A divide between CA-for-Africa proponents and opponents in the research community has opened, obscuring issues and hindering unbiased examination of CA opportunities and constraints. Adding to the uncertainty, there is little research in Africa to assess where CA might make the best impact or, more generally, where conditions are simply too marginal for cropping systems of any type.

AFTER 10 YEARS OF RESEARCH, WE FEEL IT IS CRITICAL TO LOOK OBJECTIVELY AT WHERE WE ARE WITH CA IN AFRICA. Specifically: What is CIMMYT’s comparative advantage in the research and development of CA systems? Does “business-as-usual” — that is, conventional tillage systems — provide better outcomes? Is there any form of alternative agriculture being adopted more quickly or widely than CA? Do we gain anything if we lose our comparative advantage as a leading global CA research institute and only focus on “good agronomic practices”?

We believe that CA has great promise for smallholder farmers in sub-Saharan Africa but CIMMYT and other organizations may have approached its study and extension from the wrong angle. In particular, CA has often been promoted in Africa as a way to raise yields. In fact, short-term yield gains are common from better moisture capture and retention under CA, in seasons with erratic and prolonged dry spells. But yield benefits from CA are normally not immediate; they generally begin to appear after two-to-five cropping seasons. Smallholder farm households often live at the edge of food insecurity year-in and year-out and are undisposed to risk an innovation that raises system productivity only in the medium term.

In contrast, the adoption of CA outside of Africa has been driven by benefits such as energy savings, reduced erosion, more timely sowing, and enhanced water- and nutrient-use efficiency. Furthermore, CA adopters worldwide have typically been large-scale commercial farmers who seek enhanced and sustainable profits and, as a consequence, ways to cut production costs. So how can their positive experience apply to smallholders and be used for proper targeting and extension of CA systems in Africa?

IN OUR OPINION, CIMMYT AND ITS PARTNERS SHOULD FOCUS ON (1) identifying the key drivers that have facilitated adoption of CA worldwide and (2) delineating the niches in Africa where these drivers are present, meaning where CA is likely to fit. As a start, we may wish to look at settings where:

  • Farm energy is scarce or expensive (whether provided by motors, draft animals or human labor ).
  • Timely planting is crucial, soil degradation extensive, and climate-related stress common. (This niche might be bigger than we think in Africa)

WE BELIEVE THAT CHALLENGES HAVE TOO OFTEN BEEN CONFUSED WITH BARRIERS TO ADOPTION. Too much time and effort have been spent highlighting challenges arising when implementing CA, instead of actively looking for ways to overcome them through technological and institutional innovations, including improved working arrangements between multiple actors. Furthermore, we feel that far too many resources are being channelled by CIMMYT’s Global Conservation Agriculture and Socioeconomics Programs into diagnostic studies, without commensurate investments in applied research for innovations to address the challenges.

Future research with farmers and other stakeholders should explore opportunities to ensure that CA systems meet smallholder farmers’ needs. It should also aim to target CA principles and practices in areas where highest returns are expected. In conclusion, we believe that BUSINESS AS USUAL IS NOT AN OPTION and that, in many places where CIMMYT works, CA IS IN DEMAND to alleviate labor bottlenecks, improve the timeliness of operations, control erosion and improve water- and nutrient-use efficiency. Should this demand be ignored? Of course challenges exist, but research – and international research in particular – should not simply document challenges but also provide solutions.

Christian ThierfelderChristian Thierfelder is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked since 2004 in CA projects in Malawi, Mozambique, Zambia and Zimbabwe and has conducted applied and strategic research on-farm and on-station to adapt CA to the needs of smallholder farmers in southern Africa. Through effective partnerships he has reached out to more than 10,000 farmers in southern Africa. He guided the research programs of 25 B.Sc., M.Sc. and Ph.D. students, and has authored and co-authored more than 30 research articles in high-impact peer-reviewed journals and books.

Frederic Baudron
A CIMMYT systems agronomist based in Addis Ababa, Ethiopia, Frédéric Baudron trained as a tropical agronomist, specialized as a livestock scientist and worked for various development programs targeting the interface between people (mainly farmers) and wildlife. He then completed a PhD in plant production systems. Projects he leads include Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI), implemented in Ethiopia, Kenya, Tanzania and Zimbabwe.

IsaiahNyagumboIsaiah Nyagumbo is a CIMMYT cropping systems agronomist based in Harare, Zimbabwe. He has worked in water harvesting and soil conservation research initiatives and was a pioneer of CA work on smallholder farming systems in Zimbabwe since the 1990s. Isaiah currently leads the agronomy component of the CIMMYT managed and ACIAR funded regional program ‘Sustainable Intensification of Maize-Legume Systems in Eastern and Southern Africa (SIMLESA)’ operating in 5 countries of Eastern and Southern Africa. Isaiah has also authored and contributed to regional research publications focusing mainly on CA, agricultural water management, water harvesting and technology dissemination.

For further detail regarding these views, stay tuned for the upcoming paper:

Baudron, F., Thierfelder, C., Nyagumbo, I., Gérard B., 2015. Where to target conservation agriculture? How to overcome challenges associated with its implementation? Experience from Eastern and Southern Africa. Forthcoming (expected in early-July) in Environments.

Growing land scarcity, the Borlaug hypothesis and the rise of megafarms

Derek Byerlee, former director of the CIMMYT economics program (1987-94) and current visiting scholar at Stanford University and adjunct professor at Georgetown University, presented some of his latest research at a brown bag lunch at CIMMYT headquarters on 1 May. His presentation, “Growing Land Scarcity, the Borlaug Hypothesis and the Rise of Megafarms,” examined the economic and environmental benefits and repercussions of cropland expansion, the recent rise of agribusiness and the delicate balance between crop intensification and deforestation.

The “Borlaug Hypothesis” is the idea that increasing crop yields can help prevent cropland expansion and deforestation, thus alleviating hunger and poverty without dramatically increasing environmental impact. Developed by the legendary Nobel Prize Laureate and CIMMYT scientist Norman Borlaug, the postulate is controversial in environmental circles, and some researchers have published studies showing that higher crop yields in the tropics increase incentives to clear forests, thus making investments in crop research potentially counterproductive to sustainable growth.

Byerlee noted that the world has increased per capita cereal production by about 40 percent over the last 50 years on about half the arable land per capita that it used in 1961. Models developed by Byerlee and his associates show that, without CGIAR work since 1965 to develop improved crop varieties, the land area devoted to food crops would have increased by 18 to 27 million hectares, mostly in developing countries. Byerlee supports Borlaug’s claim that broad-based investment in crop research and development indeed contributes to saving the world’s forests, although estimates by Byerlee and his associates are an order of magnitude lower than those of Borlaug.

Investment in crop intensification may be more important than ever, as the world’s growing population demands ever-growing quantities of food and land. “Meta-analysis of demand estimates suggests that, given current yield trends, agriculture will require an additional 200 to 450 million hectares of land by 2030 — as much as the entire combined land area of India and South Africa,” Byerlee said. At the same time, Byerlee found that an estimated 450 million hectares of land could be available for crop expansion but is concentrated in just a few countries and its cultivation could have negative impacts on the environment and on people already using that land for other purposes.

Linked to the question of where crops should be cultivated is the issue of who will cultivate them, especially on the land frontier. Byerlee described the recent rise of “megafarms” run by agribusiness companies and examined their economic benefits (or lack thereof) in comparison to traditional family farms that still prevail across the world. Byerlee argued that family farms were more efficient, equitable and contribute to more growth than megafarms, which benefit from professional management and technologies that allow for larger scale but do not display significant cost advantages over traditional family farms. Byerlee ultimately recommends models that combine agribusiness and smallholder farms for best results.

Please click here to view the full presentation.

First international training workshop on farming systems analysis in India

The international training workshop “Approaches for integrated analysis of agricultural systems in South Asia: Field, to farm, to landscape scale,” jointly organized by CIMMYT and the Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute (CSSRI), was held at Karnal, Haryana, India, during 18-23 May. The workshop targeted farming systems and agricultural development researchers in South Asia and provided an overview of the approaches and tools used to assess agricultural systems.

Workshop participants and facilitators. Photo: CIMMYT
Workshop participants and facilitators. Photo: CIMMYT

Compared to the rest of the world, South Asia’s natural resources are 3-5 times more stressed due to population and economic pressures. Several agricultural technologies and practices have been developed to address resource management challenges. However, researchers need to conduct specialized analyses of complex farming systems to find out which technologies are appropriate for farmers.

The training workshop allowed participants to share their experiences in the field and create better methods to ensure successful interventions. P.C. Sharma, Head of the Crop Improvement Program, CSSRI, commenced the workshop and greeted the participants, who comprised 30 young researchers from national research institutions and universities in India, Nepal and Bangladesh. Santiago LĂłpez Ridaura, CIMMYT Global Conservation Agriculture Program Systems Agronomist, presented workshop objectives, which included introducing participants to integrated farming systems analysis as well as to modeling tools and technology designed for specific farming communities.

“This course is the first of its kind in the region,” emphasized M.L. Jat, CIMMYT Cropping Systems Agronomist. “It is unique, demand-driven and organized to strengthen the capacity of young researchers in the region so that they may more effectively help build livelihood security for smallholder farmers.”

D.K. Sharma, CSSRI Director, stressed the need for systems research in the region and how partnerships with centers ike CIMMYT have helped to successfully implement conservation agriculture, sustainable intensification and other practices. Sharma also described CSSRI’s farmer participatory model, which provides farmers with land for cultivation against their annual compensation, thereby improving livelihoods.

A book on sustainable intensification was released. Photo: CIMMYT
A book on sustainable intensification was released. Photo: CIMMYT

Workshop attendees participated in modeling, analysis and participatory exercises that helped them to better understand the challenges of technology adoption in the field. Participants also visited farms, where they learned farmers’ needs first-hand and observed the complexity of different farming systems.

The workshop was supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), the Cereal Systems Initiative for South Asia (CSISA) and the Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI) project of the Australian Centre for International Agricultural Research’s (ACIAR). Other attendees included Mahesh Gathala, CIMMYT Cropping Systems Agronomist and SRFSI Project Leader; Jeroen Groot, Wageningen University Farming Systems Modeling Specialist; David Berre, CIMMYT Farming Systems Agronomist; Timothy Krupnik, CIMMYT Agronomist; and Alison Laing, Cropping Systems Modeler at ACIAR CSIRO Climate Adaptation Flagship.

Impact in farmers’ fields is the driving force of science and innovation in agriculture, says new CIMMYT DG Martin Kropff

Agricultural research for development must reconcile approaches that place resource-poor farmers at the center, said CIMMYT’s new Director General addressing staff at CIMMYT headquarters near Mexico City on his first day in the new job.

“Our mission at CIMMYT is to use science and innovation to improve livelihoods, particularly in the developing world. Research projects must be centered on the impact in farmers’ fields,” said Kropff, who joined CIMMYT this week from Wageningen University and Research Center in the Netherlands, where he was Rector Magnificus and Vice Chairman of the Executive Board.

The world of agricultural research for development is changing; yields need to increase but increases alone are insufficient, added Kropff. A joint approach based on innovations in breeding, solid agronomy based on precision farming, systems research and innovations in the value chain are all essential to have the greatest impact in farmers’ fields, Kropff continued.

“CIMMYT’s scientific expertise is unparalleled in the public sector, with expertise in breeding, sustainable intensification, genomics, statistics and the social sciences,” Kropff said.

“CIMMYT is the flagship institute within the CGIAR and must be at the forefront of new reforms,” he said. One of his top priorities will be to align CIMMYT with the new CGIAR Strategic Results Framework and the CGIAR Research Programs (CRP reforms). The CGIAR is a 15-member consortium of international agricultural researchers of which CIMMYT is a member and leads the CRPs on MAIZE and WHEAT. Prior to joining CIMMYT, Kropff was member of the Consortium Board.

Standing with his wife, Nynke Nammensma, Kropff opened his address in Spanish to applause. “My job is to listen to you, and hear your vision for CIMMYT as we start a new phase of our journey together,” he said. “It’s important to have a direct connection with all staff and a visible presence”.

Well-positioned for next phase, CSISA India plans for monsoon cropping season

As Phase II of the Cereal Systems Initiative for South Asia (CSISA) draws to a close in India, it is well positioned for a Phase III, according to Andrew McDonald, CIMMYT Cropping Systems Agronomist and CSISA Project Leader speaking at the Objective 1 planning and evaluation meeting for the 2015 monsoon cropping season held in Kathmandu, Nepal, on 22-24 April. The meeting was attended by CSISA’s Objective 1 teams from the Bihar, eastern Uttar Pradesh, Odisha and Tamil Nadu hubs, comprising diverse disciplinary experts from CIMMYT, the International Food Policy Research Institute (IFPRI), the International Livestock Research Institute (ILRI) and the International Rice Research Institute (IRRI).

Phase II began in October 2012 and will be completed in October of this year. The external evaluation report, commissioned by the United States Agency for International Development (USAID), commended the uniqueness of CSISA’s work with service providers and farmers, its staff’s dedication and the strong collaboration among CSISA partners. CSISA was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems, and operates rural “innovation hubs” throughout Bangladesh, India and Nepal.

The teams took a critical view of activities from the previous monsoon cropping season and highlighted priority areas for this year. “Sustainable intensification of cropping systems should be the centerpiece of our growth strategy. Rice followed by mustard followed by spring maize or green gram is a great system that can help us achieve 300% cropping intensity,” said R.K. Malik, CIMMYT Senior Agronomist and CSISA Objective 1 Leader. “We need to focus not only on how to create new service providers but also on how existing ones can be used as master trainers. This will help fill the gap of field technicians and further strengthen delivery,” Malik explained, regarding CSISA’s network of more than 1,800 service providers.

Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee
Andrew McDonald, CSISA Project Leader, speaks at CSISA’s planning and evaluation meeting in Kathmandu, Nepal. Photo: Ashwamegh Banerjee

Leading discussions on the Odisha hub, Sudhir Yadav, IRRI Irrigated Systems Agronomist, emphasized the importance of identifying the non-negotiable steps for successful technology implementation. “The performance of zero tillage, for example, depends on soil type, date of seeding and whether the crop is rainfed or receives supplementary irrigation,” said Yadav. CSISA successfully introduced zero tillage in Odisha’s Mayurbhanj District, where it has enabled crop intensification thanks to the retention of residual soil moisture.

The meeting served as a platform for representatives from Catholic Relief Services’ (CRS) Improved Rice-based Rainfed Agricultural Systems project to showcase lessons in managing rainfed rice systems in northern Bihar.

CSISA is currently in discussions with USAID and the Bill & Melinda Gates Foundation (BMGF) to design the technical program, and determine the scope, geography, duration and budget of Phase III.

CIMMYT remembers vital legacy of gender specialist Paula Kantor

Paula Kantor.
Paula Kantor.

EL BATAN, Mexico (CIMMYT) ‑ CIMMYT is sad to announce the tragic death of our friend and respected colleague, gender and development specialist Paula Kantor.

Paula died on May 13, in the aftermath of an attack on the hotel where she was staying in Kabul, Afghanistan.

“We extend our deepest condolences to her family, friends and colleagues,” said Thomas Lumpkin, CIMMYT’s director general.

“Paula’s desire to help people and make lasting change in their lives often led her into challenging settings. Her dedication and bravery was much admired by those who knew her and she leaves a lasting legacy upon which future research on gender and food security should build.”

Paula joined CIMMYT as a senior scientist (gender and development specialist) in February 2015 to lead an ambitious new project aimed at empowering and improving the livelihoods of women, men and youth in important wheat-growing areas of Afghanistan, Ethiopia and Pakistan.

“We’re shocked and left speechless by the tragic loss,” said Olaf Erenstein, director of socio-economics at CIMMYT. “Paula was such a caring, committed, energetic and talented colleague. She inspired everyone she worked with – and it’s so sad that her life and career were prematurely ended. She will be sorely missed – our deepest sympathies to her family, friends and colleagues throughout the world.”

At the time of her death at age 46, Paula had many years of experience in the area of gender and social development. She was an established and respected professional and prolific writer, having published more than a dozen peer-reviewed academic publications, some 10 peer-reviewed monographs and briefs, 15 other publications and 10 conference papers during her lifetime.

Dynamic Career

Before joining CIMMYT, Paula served as a senior gender scientist with CGIAR sister organization WorldFish for three years from 2012.

At WorldFish, working in Bangladesh, Malaysia and Egypt, Paula contributed significantly to the design and development of gender-transformative approaches for the CGIAR Research Programs (CRP) on Aquatic Agricultural Systems (AAS) and Livestock and Fish.

She coached many of her colleagues in a range of pursuits, and among many noteworthy achievements, she mentored an international non-governmental organization in its efforts to deliver gender programming to women fish retailers in Egypt.

“It is such a tragic, shocking waste of a remarkable talent,” said Patrick Dugan, WorldFish deputy director general and CRP AAS Director.

“Her commitment to gender, and wider social equality inspired the people she worked with. She’ll be sorely missed by us all.”

For two years previously, Paula worked at the International Center for Research on Women (ICRW) in Washington, D.C., developing intervention research programs in the area of gender and rural livelihoods, including a focus on gender and agricultural value chains.

From 2008 to 2010, Paula was based in Kabul, working as director and manager of the gender and livelihoods research portfolios at the Afghanistan Research and Evaluation Unit (AREU), an independent research agency.

After earning a doctoral degree focused on international economic development and gender from the University of North Carolina at Chapel Hill in 2000, she taught in the Departments of Consumer Science and Women’s Studies at the University of Wisconsin-Madison.

An American citizen from North Carolina, after earning a Bachelor of Science in Economics from the Wharton School of the University of Pennsylvania in 1990, Paula earned a master’s degree in Gender and Development from Britain’s Institute of Development Studies at the University of Sussex.

“Paula was a key pillar in our gender work and a dear friend to many of us,” said Lone Badstue, CIMMYT gender specialist.

“It was a privilege to work with her. She had a strong passion for ensuring that her work made a difference. It’s hard to imagine how to move forward, but I am convinced that Paula would want us to do that and to make the difference for which she strived.”

Paula is survived by her mother and father, Barbara and Anthony Kantor, her brother Anthony John, her sister Laura Styrlund (Charles), her niece Lindsay and her nephew Christopher.

If you would like to offer your condolences you can send us a message to cimmyt@cgiar.org. CIMMYT will deliver all messages received to Paula’s family. Thank you for your thoughts and support.

Low-cost innovations to benefit smallholder farmers in Nepal

A new investment by the U.S. Agency for International Development (USAID) in the Cereal Systems Initiative for South Asia in Nepal (CSISA-NP) was launched on 10 April, 2015 at a public event in Kathmandu. The investment by USAID India and USAID Washington, totalling US$ 4 million over four years, aims to work with the private and public sectors to benefit smallholder farmers by integrating scale-appropriate mechanization technologies with resource conservation and management best practices.

“For a country where 75 percent of the population makes its livelihoods in agriculture, these partnerships are absolutely important. Agriculture development, as we know, is one of the surest routes out of poverty,” remarked Beth Dunford, Mission Director, USAID Nepal at the launch. Eight million Nepalis still live in extreme poverty and almost 3 million Nepalis live in recurring food insecurity. “We also know that growth tied to gains in agricultural productivity is up to three times more effective at raising the incomes of the poor than growth from any other sector,” Dunford added.

The new phase of CSISA-NP, an initiative led by the International Maize and Wheat Improvement Center (CIMMYT), will build on successes and lessons learned from the ongoing work of CSISA Nepal, currently funded by USAID Nepal, and will continue to focus on districts in the mid-West and far-West regions of Nepal. It will complement USAID’s Feed the Future program, KISAN, which works to improve agricultural productivity and incomes for over one million Nepalis.

Beth Dunford, Mission Director, USAID Nepal, giving welcome remarks at the CSISA-NP new phase launch. Photo: Anuradha Dhar/CIMMYT
Beth Dunford, Mission Director, USAID Nepal, giving welcome remarks at the CSISA-NP
new phase launch. Photo: Anuradha Dhar/CIMMYT

The new workplan will be implemented in close collaboration with the Ministry of Agriculture and Nepal Agricultural Research Council, to strengthen seed value chains for timely access to improved varieties by farmers, promote sustainable intensification of agricultural systems through increasing lentil cultivation and better-bet management, increase wheat productivity using new technologies and better farming practices and facilitate precise and effective use of nutrients to increase crop yield.

A specific component of the new investment is designed to support and build the capacity of change agents like medium-sized seed companies, agro‐dealers and mechanized service providers. “Building on its success of working with the Indian private sector, CSISA will expand the program in Nepal to facilitate application of specialized, commercially-viable equipment for small and marginal farmers,” highlighted Bahiru Duguma, Director, Food Security Office, USAID India.

“CSISA supports more than 1,600 service providers in eastern Uttar Pradesh and Bihar in India and we want to replicate that success in Nepal of working with local entrepreneurs to help reach farmers with mechanized technologies,” said Andrew McDonald, CSISA Project Leader.

Rajendra Prasad Adhikari, Joint Secretary, Policy and International Cooperation Co-ordination Division, Ministry of Agricultural Development welcomed this initiative and said that this launch is very timely as the agricultural ministry has just developed and endorsed an agricultural mechanization promotion policy and the Nepal Agricultural Development Strategy is in its final shape.

The launch was well attended by representatives from the Nepal Ministry of Agriculture, Nepal Agricultural Research Council, Agriculture and Forestry University and USAID officials and received positive media coverage in Nepal.

Maize workshop sets stage for doubling production in India by 2025

The 58th All India Coordinated Annual Maize Workshop was held at Punjab Agricultural University (PAU) in Ludhiana, India during 4-6 April. The workshop brought together nearly 200 scientists in India working on maize research and development, as well as representatives from seed companies. The All India Coordinated Research Project (AICRP) on Maize was the first crop research project established in India in 1957 and served as a model for all following crop projects in the country.

Felicitation of B.M. Prasanna during the 58th All India Coordinated Maize Workshop (from right to left: J.S. Sandhu, A.S. Khehra, Gurbachan Singh, B.S. Dhillon, B.M. Prasanna and H.S. Dhaliwal). Photos: J.S. Chasms.
Felicitation of B.M. Prasanna during the 58th All India Coordinated Maize Workshop (from right to left: J.S. Sandhu, A.S. Khehra, Gurbachan Singh, B.S. Dhillon, B.M. Prasanna and H.S. Dhaliwal). Photos: J.S. Chasms.

“We need to double maize production and productivity in India through multi-institutional, multi-pronged strategies,” said B.M. Prasanna, director of CIMMYT’s global maize program, during the workshop’s keynote lecture. He went on to explain how “this can be achieved through germplasm enhancement, broadening the phenotyping scale and precision and accelerating breeding through doubled haploid technology, among other improved technologies and management practices.”

“The partnership between the Indian Council of Agricultural Research (ICAR) and CIMMYT over the last several decades has benefited the Indian breeding program immensely, from providing germplasm to receiving support for human resource development,” said O.P. Yadav, Director of the Indian Institute of Maize Research (IIMR). Yadav presented AICRP-Maize’s 2014 achievements, such as the release of 17 new varieties and national maize production reaching its highest level (24 million tons).

A panel discussion co-chaired by Prasanna and J.S. Sandhu, Deputy Director General-Crop Science at ICAR, entitled “Doubling maize production in India by 2025: Opportunities and Challenges” drew representatives from several public and private institutions working on maize. Prasanna and A.S. Khehra, former PAU Vice-Chancellor, were congratulated for their outstanding achievements in maize research, including the release of several improved maize varieties and advances in genetics and molecular breeding.

Inaugural function of the 58th All India Coordinated Maize Workshop (from left to right: H.S. Dhaliwal, O.P. Yadav, A.S. Khehra, J.S. Sandhu, Gurbachan Singh, B.S. Dhillon, S.K. Sharma, I.S. Solanki and B. Singh.)
Inaugural function of the 58th All India Coordinated Maize Workshop (from left to right: H.S. Dhaliwal, O.P. Yadav, A.S. Khehra, J.S. Sandhu, Gurbachan Singh, B.S. Dhillon, S.K. Sharma, I.S. Solanki and B. Singh.)

“Genetic gains must also translate to yield gains in farmers’ fields,” Prasanna declared. “We must effectively integrate improved varieties that meet the needs of farming communities with sustainable intensification practices.”

The workshop closed with an overview of achievements and finalization of a 2015 work plan, with scientists from AICRP-Maize Centres and CIMMYT providing input. Also in attendance were Gurbachan Singh, Chairman of India’s Agricultural Service Recruitment Board; BS Dhillon, Vice-Chancellor of PAU; SK Sharma, Chairman of IIMR’s Research and Advisory Committee; IS Solanki, Assistant Director of ICAR’s General-Food Crops; and S.K. Vasal, retired CIMMYT Distinguished Scientist.

Two-wheeled tractors key to smallholder mechanization in Africa

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project held its second review and planning meeting, as well as mid-term review, during a five-day event in Hawassa, Ethiopia. This was followed by country site visits by the review team.

“The goal of FACASI is to improve farm power balance, reduce labor drudgery and minimize biomass trade-offs in eastern and southern Africa through accelerated delivery and adoption by smallholders of two-wheeled tractor (2WT)-based technologies,” said J.C. Achora, Knowledge and Information Manager, African Conservation Tillage Network. The meeting highlighted the importance of 2WT technologies to smallholders through five field visits, consisting of a youth community project, a vocational youth training institution, government research centers and manufacturing plants.

“Opportunities for use of two-wheeled tractors exist,” said Achora. “New projects coming up will ignite the demand for the two-wheeled tractors, and could trigger an increase in imports and manufacturing in Africa. Perhaps not too far in the future two-wheeled tractors could be the stepping stone to smallholder farm mechanization in Africa.”

FACASI participants learned and shared experiences on small-scale agricultural machinery, specifically the two-wheeled tractor, in diverse environments. Participants observed and drew lessons from services that support small-farm mechanization and associated business models.

Other places visited included the Hawassa research station for demonstrations of seeders and multi-use shellers and threshers, the Ato Tibebe Selemon Metal works, and the Selam Hawassa Business and Vocational College, which provides disadvantaged youth with practical training in metal fabrication and assembly and electrical installations. The last visit was to the Metals and Engineering Corporation (METEC), which integrates engineering into machines and installs industrial facilities.