Skip to main content

research: Sustainable agrifood systems

Participatory approaches to gender in agricultural development

When designing and implementing agricultural development projects, it is difficult to ensure that they are responsive to gender dynamics. For Mulunesh Tsegaye, a gender specialist attached to two projects working on the areas of nutrition and mechanization in Ethiopia, participatory approaches are the best way forward.

“I have lived and worked with communities. If you want to help a community, they know best how to do things for themselves. There are also issues of sustainability when you are not there forever. You need to make communities own what has been done in an effective participatory approach,” she said.

Maize dish prepared with QPM maize with cook Amina Ibrahim at NuME field day, Sayo village, Dano district
Maize dish prepared with QPM maize with cook Amina Ibrahim at NuME field day, Sayo village, Dano district. Photo: P. Lowe/CIMMYT

Including both men and women

The CIMMYT-led Nutritious Maize for Ethiopia (NuME) project uses demonstrations, field days, cooking demonstrations and messaging to encourage farmers to adopt and use improved quality protein maize (QPM) varieties, bred to contain the essential amino acids lysine and tryptophan that are usually lacking in maize-based diets. The Ethiopian government adopted a plan to plant QPM on 200,000 hectares by 2015-2017.

NuME’s project staff, and donor Canada’s Department of Foreign Affairs, Trade and Development (DFATD), are highly committed to gender-based approaches, meaning that Mulunesh’s initial role was to finalize the gender equality strategy and support implementation with partners.

By involving partners in an action planning workshop, Mulunesh helped them to follow a less technical and more gender-aware approach, for example by taking women’s time constraints into account when organizing events.

This involved introducing some challenging ideas. Due to men’s role as breadwinners and decision-makers in Ethiopian society, Mulunesh suggested inviting men to learn about better nutrition in the household in order to avoid perpetuating stereotypes about the gender division of labor.

“For a project to be gender-sensitive, nutrition education should not focus only on women but also on men to be practical. Of course, there were times when the project’s stakeholders resisted some of my ideas. They even questioned me: ‘How can we even ask men farmers to cook?’”

Now, men are always invited to nutrition education events, and are also presented in educational videos as active partners, even if they are not themselves cooking.

“Nutrition is a community and public health issue,” said Mulunesh. “Public involves both men and women, when you go down to the family level you have both husbands and wives. You cannot talk about nutrition separately from decision-making and access to resources.”

Faxuma Adam harvests green maize Sidameika Tura village, Arsi Negele Photo: Peter Lowe/ CIMMYT
Faxuma Adam harvests green maize Sidameika Tura village, Arsi Negele Photo: Peter Lowe/ CIMMYT
Empowering men and women through mechanization

The Farm Power and Conservation Agriculture for Sustainable Intensification (FACASI) project is involved in researching new technologies that can be used to mechanize farming at smaller scales. Introducing mechanization will likely alter who performs different tasks or ultimately benefits, meaning that a gender-sensitive approach is crucial.

Again, Mulunesh takes the participation perspective. “One of the issues of introducing mechanization is inclusiveness. You need to include women as co-designers from the beginning so that it will be easier for them to participate in their operation.”

“In general, the farmers tell us that almost every agricultural task involves both men and women. Plowing is mostly done by oxen operated by men, but recently, especially where there are female-headed households, women are plowing and it is becoming more acceptable. There are even recent findings from Southern Ethiopia that women may be considered attractive if they plow!”

Women and men are both involved to some extent with land preparation, planting, weeding, harvesting or helping with threshing. However, women do not just help in farming, they also cook, transport the food long distances for the men working in the farm, and also take care of children and cattle.

A study by the Dutch Royal Tropical Institute, Gender Matters in Farm Power, has already drawn some conclusions about gender relations in farm power that are being used as indicators for the gender performance of the mechanization project.

These indicators are important to track how labor activities change with the introduction of mechanization. “My main concern is that in most cases, when a job traditionally considered the role of women gets mechanized, becomes easier or highly paid, it is immediately taken over by men, which would imply a lot in terms of control over assets and income,” said Mulunesh.

Front row, from left to right: Mulunesh Tsegaye, FACASI gender and agriculture specialist; Katrine Danielsen KIT; Elizabeth Mukewa consultant; Mahlet Mariam, consultant; and David Kahan CIMMYT, business model specialist. Back row, from left to right: Anouka van Eerdewijk KIT; Lone Badstue CIMMYT strategic leader, gender research and mainstreaming; and Frédéric Baudron, FACASI project leader. Credit: Steffen Schulz/CIMMYT
Front row, from left to right: Mulunesh Tsegaye, FACASI gender and agriculture specialist; Katrine Danielsen KIT; Elizabeth Mukewa consultant; Mahlet Mariam, consultant; and David Kahan CIMMYT, business model specialist. Back row, from left to right: Anouka van Eerdewijk KIT; Lone Badstue CIMMYT strategic leader, gender research and mainstreaming; and Frédéric Baudron, FACASI project leader. Credit: Steffen Schulz/CIMMYT

Community conversations

In order to foster social change and identify the needs of women and vulnerable groups, Mulunesh initiated a community conversation program, based on lines first developed by the United Nations Development Programme. Pilots are ongoing in two districts in the south of Ethiopia; a total of four groups are involved, each of which may include 50-70 participants.

“You need to start piece-by-piece, because there are lots of issues around gender stereotypes, culture and religious issues. It is not that men are not willing to participate; rather it is because they are also victims of the socio-cultural system in place.”

When asked about the situation of women in the community, many people claim that things have already changed; discussions and joint decisions are occurring in the household and women are getting empowered in terms of access to resources. Over the coming year, Mulunesh will compare how information diffuses differently in gender-segregated or gender mixed groups.

FACASI is funded by the Australian International Food Security Research Centre, managed by the Australian Centre for International Agricultural Research and implemented by the International Maize and Wheat Improvement Center (CIMMYT).

NuME is funded by DFATD and managed by CIMMYT in collaboration with Ethiopian research institutions, international non-governmental organizations, universities and public and private seed companies in Ethiopia.

Moving beyond agriculture’s gender status quo

Photo: M. DeFreese/CIMMYT.
Photo: M. DeFreese/CIMMYT.

This opinion piece links to a seminar on  “Cooperation of CGIARs and academia in sustainable gender + intensification in IAR4D” given at CIMMYT by Margreet van der Burg, Senior University Lecturer/Researcher at Wageningen University, on International Women’s Day, 8 March. Any opinions expressed are her own.

Agricultural change is part of historical change and cannot be separated from social change processes. Therefore, we have to commit to also include women and others who were largely overlooked in agriculture in the past. We cannot live without agricultural produce; we would all die without food. Changes in agriculture will affect us all in various ways and on different scales. It is all our very interest. For research on agricultural innovation this implies in my view that we need to be determined in addressing and carefully integrating human social change processes into it from step one till the very end.

Taking part in processes of change is taking part in development. My take on development is that we commit ourselves to consciously work together towards inclusive development, meaning optimizing opportunities for all while valuing diversity and acknowledging we are all part of these change processes, albeit not from the same social positions. Therefore, to me, development definitely includes the support to increasing opportunities and chances for groups of people who historically have been becoming largely invisible and not heard nor adequately represented.

In most societies, women’s opportunities and chances are more limited than men’s, even where equal rights laws are in place. Deeply rooted mindsets and bodily ingrained routines we have all been learning as young children, make us feel most comfortable when we can operate without having to question them. We often see this around us, especially when confronted with life-changing circumstances, such as sudden poverty, war, migration and climate change. We are poorly prepared to try alternative options, may get worn out and even lose our sense of purpose. It takes a conscious and concerted effort to question and modify those immediate responses.

But we can all learn much more from unfamiliar “others” than we often do now. Praising being outstanding through exclusivity or privilege in opposition to “others” does not support change processes; but sharing and facilitating do. If we all are prepared to see, listen and together investigate how and why “differences” based on gender and other social dimensions work out, we can combine insights and move forward in ways most can profit from. “Deviants,” for instance, can help to point out sharply where societies fail, and can lead to better diagnostics. “Others” who mostly have no vested interest in the status quo, can become important agents of change in processes where a lot of bridging is needed to negotiate change.

In many societies, women are predominantly defined as “others,” as opposed to men. If we support women in voicing their perspectives, this will shed new light on change processes from various angles and scales. Within the large group of women, there are also differences. Some women might be in a better position to act as change agents within the social dynamics at stake. In many societies, young women get exposure to “others” — for instance, through education — and can become change agen

ts if the elder community members and they themselves work on bridging differences in a respectful way. Men can stand up as allies and help bridging differences to their fellows. Integrating these gender — social dynamics of change into international agricultural Research for Development (IAR4D) will be a challenging task in the coming years for not only women’s, but everyone’s benefit. I am very pleased to have and take my share!

MasAgro named a project transforming Mexico by leading university

MasAgro named a project transforming Mexico. Photographer: MasAgro/CIMMYT
MasAgro named a project transforming Mexico. Photographer: MasAgro/CIMMYT


MONTERREY, Mexico – The Sustainable Modernization of Traditional Agriculture (MasAgro) project of Mexico’s Secretariat of Agriculture, Livestock, Rural Development, Fisheries and Food, in close collaboration with the International Maize and Wheat Improvement Center (CIMMYT), was recognized by Universidad Tecnológico y Estudios Superiores de Monterrey (ITESM) as being one of “10 projects that are transforming Mexico.”

“This project is transforming Mexico and, four years after its launch, it has benefited more than 200,000 farmers,” said Silverio García Lara, professor at ITESM’s School of Engineering and Science, Monterrey campus. “The project focuses on the base of the productive and economic pyramid,” explained the researcher, who favors “developing cutting-edge technologies to regenerate and renew Mexican farming.”

ITESM is involved in a project focusing on biotechnology for food security that applies cutting-edge technologies to analyze MasAgro’s new maize varieties and ensure they meet the nutrition and processing quality parameters of the Mexican market, explained Natalia Palacios, the person responsible for CIMMYT’s Maize Quality Laboratory, in an information bulletin that was broadcast when the winning project was presented at the 46th Research and Development Congress held on 20-22 January at ITESM’s Student Center, Monterrey campus.

“We are very proud of MasAgro because its results in the lab and especially in farmers’ fields have been widely recognized both nationally and internationally; today ITESM, a research partner that has collaborated with us since the beginning, also recognizes the project,” said Bram Govaerts, Leader of CIMMYT’s Sustainable Intensification Strategy for Latin America.

Among MasAgro’s main achievements, Govaerts highlighted the adoption of sustainable intensification of basic grain production on half a million hectares. He also emphasized the development of 20 high yielding maize hybrids which, combined with MasAgro’s sustainable agronomic practices, have increased rainfed maize farmers’ income by 9-31%. According to Govaerts, 16 precision machines for use in different production situations, from subsistence to intensive or commercial farming, and different postharvest storage solutions are among the technologies that MasAgro offers.

“Our farmers out in the fields are very interested in innovating and obtaining new technologies coming from the labs and from international research institutions such as CIMMYT,” stated García Lara when presenting ITESM’s award for the work done by MasAgro.

NAAS fellow M.L. Jat talks climate change, sustainable agriculture

M.L. Jat shows resilient cropping system options for eastern Indo-Gangetic plains at BISA farm
M.L. Jat shows resilient cropping system options for eastern Indo-Gangetic plains at BISA farm

CIMMYT Senior Scientist M.L. Jat has received India’s National Academy of Agricultural Sciences (NAAS) fellowship in Natural Resource Management for his “outstanding contributions in developing and scaling” conservation agriculture-based management technologies for predominant cereal-based cropping systems in South Asia.

M.L.’s research on conservation agriculture (CA) – sustainable and profitable agriculture that improves livelihoods of farmers via minimal soil disturbance, permanent soil cover, and crop rotations – has guided improvements in soil and environmental health throughout South Asia. His work has led to policy level impacts in implementing CA practices such as precision land leveling, zero tillage, direct seeding, and crop residue management, and he has played a key role in building the capacity of CA stakeholders throughout the region.

Research such as M.L.’s is more important every day, as we learn to do more with less on a planet with finite resources and changing climate. Sustainable innovation, including climate-smart agriculture, is a major theme at the ongoing COP21 climate talks where global leaders are gathered to decide the future of our planet. M.L. tells us below how CA can play a part in climate change mitigation and adaptation, and the future of CA in South Asia.

What are the major threats global climate change poses to South Asian agriculture?

South Asia is one of the most vulnerable regions in the world to climate change. With a growing population of 1.6 billion people, the region hosts 40% of the world’s poor and malnourished on just 2.4% of the world’s land. Agriculture makes up over half of the region’s livelihoods, so warmer winters and extreme, erratic weather events such as droughts and floods have an even greater impact. Higher global temperatures will continue to add extreme pressure to finite land and other natural resources, threatening food security and livelihoods of smallholder farmers and the urban poor.

How does CA mitigate and help farmers adapt to climate change?

In South Asia, climate change is likely to reduce agricultural production 10‐50% by 2050 and beyond, so adaptation measures are needed now. Climate change has complex and local impacts, requiring scalable solutions to likewise be locally-adapted.

Climate-smart agriculture (CSA) practices such as CA not only minimize production costs and inputs, but also help farmers adapt to extreme weather events, reduce temporal variability in productivity, and mitigate greenhouse gas emissions, according to numerous data on CA management practices throughout the region.

What future developments are needed to help South Asian farmers adapt to climate change?

Targeting and access to CA sustainable intensification technologies, knowledge, and training – such as precision water and nutrient management or mechanized CA solutions specific to a farmer’s unique landscape – will be critical to cope with emerging risks of climate variability. Participatory and community-based approaches will be critical for scaled impact as well. For example, the climate smart village concept allows rural youth and women to be empowered not only by becoming CA practitioners but also by serving as knowledge providers to the local community, making them important actors in generating employment and scaling CA and other climate-smart practices.

Where do you see your research heading in the next 10-15 years?

Now that there are clear benefits of CA and CSA across a diversity of farms at a regional level, as well as increased awareness by stakeholders of potential challenges of resource degradation and food security in the face of climate change, scaling up CA and CSA interventions will be a priority. For example, the Government of Haryana in India has already initiated a program to introduce CSA in 500 climate smart villages. Thanks to this initiative, CA and CSA will benefit 10 million farms across the region in the next 10-15 years.

 

Climate-Smart Villages

Climate-Smart Villages are a community-based approach to adaptation and mitigation of climate change for villages in high-risk areas, which will likely suffer most from a changing climate. The project began in 2011 with 15 climate-smart villages in West Africa, East Africa and South Asia, and is expanding to Latin America and Southeast Asia. CIMMYT is leading the CCAFS-CSV project in South Asia.

Will we feed humanity by 2050?

Bram Govaerts, Leader of CIMMYT's program on Sustainable Intensification in Latin America, speaks at the Oxford Farming Conference. Photo: CIMMYT
Bram Govaerts, Leader of CIMMYT’s program on Sustainable Intensification in Latin America, speaks at the Oxford Farming Conference. Photo: CIMMYT

“Imagine a sports car designed to travel at high speed on paved highways, running on a gravel road. It’s going to break down, isn’t it? The same thing happens when agricultural technologies are applied without using smart agronomy to increase input use efficiency, protect the environment and ensure sustainability,” said Bram Govaerts, Leader of CIMMYT’s program on Sustainable Intensification in Latin America.

Govaerts presented at a keynote speech titled “Ending hunger: Can we achieve humanity’s elusive goal by 2050?” at the Oxford Farming Conference (OFC) of the University of Oxford, Oxford, United Kingdom, on 5-7 January. The conference has been held in Oxford for more than 70 years with the aim of contributing to the improvement and welfare of British agriculture. Farmers, researchers, politicians and economists from across the world attend the event. This year, the main theme was “Daring Agriculture,” including such subjects as global agriculture, innovation, sustainable intensification, technology and agribusiness.

As evidenced during the event, there are many challenges in agriculture. We need to produce more food with fewer resources and less environmental impact while reducing world hunger and poverty. In his speech, Govaerts highlighted the main challenges to achieving food security for a world population that is projected to reach nearly ten billion by 2050. These challenges include the growing demand for food, demographic changes and the impacts on agriculture of weather events such as El Niño. Govaerts also mentioned CIMMYT’s efforts aimed at fighting world hunger and how initiatives such as MasAgro are taking science to the farm.

“It was very exciting to talk about the sustainable strategies we’re working on with farmers, technicians, scientists, institutions and partners to be able to produce more with fewer resources and, especially, to produce intelligently by adapting technologies to the needs of farmers, by developing machine prototypes and by using appropriate varieties and post-harvest practices,” said Govaerts.

To see the presentation, click here.

How to work with agricultural innovation systems

Participants of the “Designing projects focusing on agricultural innovation systems” workshop. Photo: CIMMYT

Agricultural innovation systems (AIS) are networks that contribute to creating, disseminating and using scientific and technological knowledge, as well as coordinating and supporting technological processes. However, the way in which farm projects are designed and research processes are organized has hindered the implementation of these systems. In order to establish guidelines for designing these type of initiatives, the CGIAR Research Program on MAIZE and the Royal Tropical Institute (KIT) of the Netherlands organized a workshop called “Designing projects focusing on agricultural innovation systems” in Wageningen, the Netherlands, on 11-13 December 2015.

Representatives of the CGIAR, Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA), Cereal Systems Initiative for South Asia (CSISA), Intensification of Maize-Legume Systems in the Eastern Province of Zambia (SIMLEZA) and CIMMYT’s MasAgro and Buena Milpa projects attended the workshop in order to exchange knowledge on lessons learned from their own experiences implementing AIS.

One of the main activities of the workshop included defining AIS as having a holistic and integrated focus that includes technology, innovation and methodology. Workshop participants indicated that based on the lessons they had learned, each farmer has unique needs and it’s essential to integrate technologies at the farm level.

Another subject discussed at the workshop was the scaling out of knowledge to other locations and at different system levels. Scaling out depends on establishing strong and complementary partnerships, on the interaction of the actors in the system and on organizational and institutional change. In agricultural research, it is important to get out of the lab and into the field to understand the social drivers behind technology uptake, recognize diversities of needs and understand the reasons behind the adoption – or failure to adopt – certain technologies. Participants completed the workshop with an understanding of the complex, multidimensional aspects of AIS.

Conservation agriculture expert at Oxford Farming Conference

BramGovaertsMEDIA ADVISORY

WHAT: Bram Govaerts, strategic leader for Sustainable Intensification in Latin America and Latin America representative at the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), will make keynote speech entitled “Ending hunger: Can we achieve humanity’s elusive goal by 2050?” at the Oxford Farming Conference (OFC) at the University of Oxford, in Oxford, UK.

WHEN: Wednesday, January 6, 2016 at 10:30 a.m.

WHERE: South School, Examination Schools, University of Oxford, 75-81 High Street, Oxford, UK, OX1 4AS

ABOUT OFC: The Oxford Farming Conference has been held in Oxford for more than 70 years, attracting strong debate and exceptional speakers.

OTHER DETAILS: Bram Govaerts, who will be available for media interviews, will deliver the keynote Frank Parkinson Lecture sponsored by the Frank Parkinson Agricultural Trust, which aims to contribute to the improvement and welfare of British agriculture. The lecture will examine key challenges for achieving food security for a global population of 9.7 billion, which the U.N. projects will have grown 33 percent from a current 7.3 billion people by 2050. Demand for food, driven by population, demographic changes and increasing global wealth will rise more than 60 percent, according to a recent report from the Taskforce on Extreme Weather and Global Food System Resilience. Govaerts will discuss such risks to agricultural production as:

  • The need for funding and political will to support technological innovations to improve farming techniques for small landholders in the global south
  • How mobile technology could benefit agricultural research, development and relaying innovations to farmers
  • Machinery prototypes, which can help transform agricultural practices
  • How minimal soil disturbance, permanent soil cover and crop rotation can boost yields, increase profit and protect the environment
  • Climate change: carbon sequestration debate; soil does not sequester the carbon needed to mitigate the impact of climate change as some policy makers suggest
  • Climate change: How CIMMYT is working to produce drought and heat tolerant varieties of maize and wheat
  • Why women are less likely than men to uptake conservation agricultural practices in developing countries
  • How CIMMYT connects smallholder maize farmers in Mexico with top restaurants and chefs in New York City
  • The U.N. Sustainable Development Goals: A recipe for success in achieving food security
  • MasAgro: Mexico’s Sustainable Modernization of Traditional Agriculture project involving more than 100 organizations, offering training, technical support, seeds
  • Dangerous diseases: How CIMMYT is producing varieties resistant to Maize Lethal Necrosis and Tar Spot Complex

MORE INFORMATION:

Julie Mollins, CIMMYT communications, by email at j.mollins@cgiar.org or by mobile at +52 1 595 106 9307 or by Twitter @jmollins or by Skype at juliemollins

Genevieve Renard, head of CIMMYT communications, at g.renard@cgiar.org or  +52 1 595 114 9880 or @genevrenard

ABOUT CIMMYT:

CIMMYT, headquartered in El Batan, Mexico, is the global leader in research for development in wheat and maize and wheat- and maize-based farming systems. CIMMYT works throughout the developing world with hundreds of partners to sustainably increase the productivity of maize and wheat systems to improve food security and livelihoods. CIMMYT is a member of the 15-member CGIAR Consortium and leads the Consortium Research Programs on Wheat and Maize. CIMMYT receives support from national governments, foundations, development banks and other public and private agencies.

CIMMYT website: http://staging.cimmyt.org

CGIAR website: http://www.cgiar.org

BACKGROUND:

Oxford Farming Conference

Frank Parkinson Agricultural Trust

United Nations population projections 

Taskforce on Extreme Weather and Global Food System Resilience

 Q+A: Young scientist wins award for “taking it to the farmer”

Gender bias may limit uptake of climate-smart farm practices, study shows

Race for food security can be won, Mexico agriculture secretary says

Global conference underscores complex socio-economic role of wheat

Click here to follow Bram Govaerts on Twitter

Cereal systems initiative speeds growth of mechanized technologies in India, report shows

CSISA contributes to increased adoption of climate-resilient practices. Photo: CIMMYT

NEW DELHI, India (CIMMYT) — Major impacts of CIMMYT’s Cereal Systems Initiative for South Asia (CSISA) include success in increasing access to and affordability of modern farming technologies and practices for smallholder farmers across India, according to a new report.

The initiative, which began in 2012, resulted in positive impacts and has built a robust service economy to improve access to new technologies for smallholder farmers, said Andrew McDonald, CSISA project leader.

“India has a large number of smallholders, especially in eastern states where the average landholding size is decreasing and machine ownership by farmers is often not economically viable,” McDonald said. “Unless we build a robust service economy to facilitate uptake of new technologies, they would be beyond the reach of most smallholders.”

CSISA has developed a network of nearly 2,000 service providers in eastern India over the past three years to accelerate the expansion of sustainable intensification technologies, resulting in improved yields of up to 20 percent and increased farmer incomes through cost savings of $100 per hectare, the publication reports.

The report also details CSISA’s contribution to increased adoption of climate-resilient practices such as early planting of wheat and the use of zero-tillage seed drills, which help farmers overcome labor shortages during rice cultivation through mechanical rice planting.

“CSISA has built a compelling body of evidence for the importance of early planting to combat the negative effects of rising temperatures,” McDonald said.

“As a result, public perception and official recommendations have changed, and more than 600,000 farmers are now planting wheat earlier in the Indian states of Bihar and Uttar Pradesh.”

Additionally, CSISA helped popularize hybrid maize, which has increased yields and improved food security.

“Enhancing the productivity of the rice-wheat cropping systems in South Asia’s Indo-Gangetic Plains is essential for ensuring food security for more than 20 percent of the world’s population,” said McDonald. “CSISA, in close collaboration with national wheat programs, has released new wheat varieties with higher yield potential, which perform well even in stress-prone areas.”

These results were achieved during CSISA’s second phase, from 2012 to 2015, through collaborative work with national research and extension systems, research institutes, state governments, non-governmental organizations, private companies and farmers,.

Read the report:

interactive web page , magazine format, pdf

About CSISA

Led by CIMMYT, the Cereal Systems Initiative for South Asia (CSISA) aims to sustainably improve cereal productivity, food security and increase farmers’ income in South Asia’s Indo-Gangetic Plains, home to the region’s most important grain baskets. www.csisa.org

For more information, contact:

Anuradha Dhar

Communications Specialist

International Maize and Wheat Improvement Center (CIMMYT)

a.dhar@cgiar.org

CIMMYT team wins CCAFS recognition

On 29 April, CIMMYT had a double reason to celebrate, picking up the award for “Best gender paper” and “Best science paper” (along with Bioversity), at the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Science Conference in Copenhagen. The conference was part of a series of CCAFS meetings held from 29 April – 02 May, and was attended by various CIMMYT staff.

The best gender paper, titled ‘Adoption of Agricultural Technologies in Kenya: How Does Gender Matter?’ and co-authored by Simon Wagura Ndiritu, Menale Kassie and Bekele Shiferaw, highlighted the differences between technologies adopted on female- and male-managed farm plots in Kenya. They found that whilst there were gender differences in the adoption of technologies such as the use of animal manure, soil and water conservation, other differences in the use of chemical fertilizers and improved seed may stem from the varying levels of access to resources for men and women, rather than gender itself. “This recognition inspires me to put more effort to produce more quality research that will bring excellent distinction to CIMMYT and myself,” said Kassie, while Ndiritu said “it is an encouragement to a young scientist,” adding that he is looking forward to having the paper published.

The winning science paper, ‘Assessing the vulnerability of traditional maize seed systems in Mexico to climate change’, was authored by David Hodson (FAO), and Mauricio Bellon (Bioversity) and Jonathan Hellin from CIMMYT. With climate change models predicting significant impacts in Mexico and Central America, particularly during the maize growing season (May – October), the paper assessed the capacity of traditional maize seed systems to provide farmers with appropriate genetic material, under the anticipated agro-ecological conditions. Their results indicated that whilst most farmers will have easy access to appropriate seed in the future, those in the highlands will be more vulnerable to climate change and are likely to have to source seed from outside their traditional supplies, entailing significant additional costs and changes to the traditional supply chain.

To share the good news, the Socioeconomics program hosted a get-together with the team in Nairobi, Kenya. During the cake cutting ceremony, the best gender paper award was dedicated to women farmers from Embu and Kakamega in Kenya’s Eastern and Western Provinces, where the data was collected. The Nairobi team also took the opportunity to initiate monthly seminars in order to share research findings hosted by the Global Maize Program and the Socioeconomics program and promote regular interaction among the team. The program directors, Bekele Shiferaw and B. M. Prasanna nominated Dan Makumbi, Hugo De Groote, Sika Gbegbelegbe, Fred Kanampiu, and Sarah Kibera, to form the organizing committee for the seminars.

CIAT Director General visits CIMMYT

Ruben Echeverría, Director General of the International Center for Tropical Agriculture (CIAT) headquartered near Cali, Colombia, gave a brown bag seminar on “An evolving LAC strategy 
 from international donors to country partnerships,” where he presented an overview of CIAT’s work and strategic initiatives.

An alumnus of CIMMYT, EcheverrĂ­a conducted part of his Ph.D. thesis research in the mid-1980s, in the field in Mexico and Guatemala. At the seminar, he emphasized the need for research centers such as CIMMYT and CIAT to embrace the private sector and partner with agribusiness to collaborate on new potential lines of research.

EcheverrĂ­a also discussed the donor environment in Latin America, and the need to build stronger connections with national governments for future support. In addition to the seminar, EcheverrĂ­a met with CIMMYT staff and key stakeholders to discuss continued collaboration between the centers and future partnership in Colombian maize projects.

CIAT1
From L-R: Director of CIMMYT’s Global Maize Program and CRP Director for MAIZE B.M. Prasanna; CIMMYT Director General Martin Kropff; CIAT Director General Ruben EcheverrĂ­a; CIMMYT Deputy Director General for Research and Partnerships Marianne BĂ€nziger; Associate Director of CIMMYT’s Sustainable Intensification Program (SIP) and Leader of the Sustainable Modernization of Traditional Agriculture (MasAgro) program Bram Govaerts, and Director of CIMMYT-SIP Bruno GĂ©rard. Photo: CIMMYT

ciat 2

EcheverrĂ­a presenting a CIAT study on changing global diets, which gained media attraction, including from National Geographic (in its infographic); the study shows how national diets since 1961 have become ever more similar. Photo: CIMMYT

Cross-regional efforts produce a toolbar for direct seeding of maize

Cheap, light, versatile
 and locally manufactured

Direct seeding of maize using a two-wheel tractor has been made possible over the past decade or so by manufacturing companies in China, India, and Brazil (among others) that produce commercially available seeders. Several of these seeders have been tested for the past two or three years in Ethiopia, Kenya, Tanzania, and Ethiopia under the Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project supported by the Australian International Food Security Research Center (AIFSRC).

One of the best performing commercially available seeders (in terms of field capacity, precision in seed rate and planting depth, crop emergence, etc.) is manufactured by the Brazilian company Fitarelli. However, this seeder is expensive (above US$ 4,000), difficult to maneuver (especially in small fields), and lacks versatility (minimum row spacing is 80 cm).

In response, several initiatives have aimed at producing toolbar-based seeders to be manufactured locally and cheaply, that could be used in different configurations (to seed one, two, or more rows) and could perform other operations (such as forming planting beds). One such toolbar is the Gongli seeder, which is well suited to sow small grain crops such as wheat and rice in Asian fields, but not maize under typical field conditions in Africa. Two years ago, Jeff Esdaile, inventor of the original Gongli, and Joseph Mutua, from the Kenya Network for Dissemination of Agricultural Technologies, produced a modified version of the Gongli – the Gongli Africa + ­ thanks to funding from CRP MAIZE (as reported in Informa No. 1862). In parallel, another toolbar using a different design was produced by Jelle Van Loon and his Smart Mechanization/Machinery and Equipment Innovation team at CIMMYT-Mexico.

Both the Gongli Africa + and the Mexican toolbar have their strengths and their weaknesses. Both have also been judged as too heavy by local service providers. Thus, CRP MAIZE and the Syngenta Foundation for Sustainable Agriculture co-funded a two-week session (8-27 October) in Zimbabwe to develop a “hybrid toolbar” having the strengths of both the Gongli Africa + and the Mexican toolbar but weighing under 100 kg. Jeff Esdaile, Joseph Mutua, and Jelle Van Loon spent the entire two weeks manufacturing three prototypes of the hybrid at the University of Zimbabwe. The two-week session also served as hands-on training for staff of three of Zimbabwe’s major manufacturing companies of agricultural equipment (Zimplow LTD, Bain LTD, and Grownet LTD) as well as representatives of the informal sector.

The hybrid toolbar is expected to sell for a quarter of the price of a Fitarelli seeder, although its performance (in terms in term of field capacity, fuel consumption, precision, and crop emergence) is expected to be equivalent. Its weight suits the needs of local service providers better and it is infinitely more versatile (several configurations are possible depending on the desired row spacing, soil conditions, the amount of mulch, etc.). The hybrid toolbar will be thoroughly tested in Zimbabwe during the coming months. A prototype will be shipped to Bangladesh and another to Mexico for further testing and to share the design.

 

A Fitarelli seeder is good at establishing a maize crop under no-till conditions, but expensive, difficult to operate in small fields, and heavy. Photo: Frédéric Baudron

The first hybrid toolbar being tested at CIMMYT-Harare. It is cheap, easy to maneuver, light, and versatile. Three local companies and informal sector representatives have been trained to manufacture it locally. Photo: Frédéric Baudron

 

Direct seeding with two-wheel tractors increases wheat yield and saves time in the Ethiopian highlands

A service provider in Lemo, Ethiopia. Photo: Frédéric Baudron
A service provider in Lemo, Ethiopia. Photo: Frédéric Baudron

Agronomic practices that can close the wheat yield gap in the Ethiopian highlands are well known: row planting, precise fertilizer application, timely planting, etc. But their implementation generally increases the demand for human labor and animal draft power. And the availability of farm power in the Ethiopian highlands is stagnating, or even declining. The cost of maintaining a pair of oxen is becoming prohibitive for most farmers. Also, the rural population is aging as a result of young people migrating to the fast-growing cities of Ethiopia in search of more rewarding livelihood opportunities than farming.

Continue reading

Gender bias may limit uptake of climate-smart farm practices, study shows

A smallholder farmer in Embu, Kenya prepares a maize plot for planting. CIMMYT/file
A smallholder farmer in Embu, Kenya prepares a maize plot for planting. CIMMYT/file

EL BATAN, Mexico (CIMMYT) — Farmer education programs that fail to address traditional gender roles may sideline women, limiting their use of conservation agriculture techniques, which can boost their ability to adapt to climate change, a new research paper states.

Conservation agriculture involves minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It contributes to improved soil function and quality, which can improve resilience to climate variability.

Although some scientists believe that such techniques have the potential to reduce greenhouse gas emissions and increase carbon sequestration, which can help mitigate the impact of global warming, it is important to note that the potential benefits of certain aspects of conservation agriculture — particularly not tilling the soil — have been overstated, write the authors of the study from the International Center for Maize and Wheat Improvement (CIMMYT) and the Research Program on Climate Change Agriculture and Food Security (CCAFS).

Titled “Gender and conservation agriculture in east and southern Africa: towards a research agenda,” the paper discusses the lack of research conducted into interactions between conservation agriculture use and gender. It proposes a research agenda that will better understand how African farming systems remain strongly stratified by gender.

Despite an increase of women smallholder farmers throughout sub-Saharan Africa – one of the most vulnerable regions to climate change worldwide – agricultural service suppliers and policymakers remain “locked into the conceptual norm of the primary farmer as male,” said co-author Clare Stirling, a senior scientist in the Sustainable Intensification Program at CIMMYT.

“The ability of women-led households, or male-headed households with women as primary farmers, to adopt conservation agriculture may be compromised if government policies, extension systems and other actors continue to design interventions and target information and training around the conceptual norm of the male-headed household,” Stirling said, adding that a gender-sensitive approach should become part of mainstream research.

“Overall, normative conceptualizations of ‘farmers’ can result in inappropriate targeting and ineffective messaging,” she said.

There is almost no understanding of how gender relations in smallholder agriculture – particularly with regard to decision-making over technology adoption, roles and responsibilities for specific farm tasks – may influence the likelihood of adopting conservation agriculture techniques, the paper states.

The costs and benefits of conservation agriculture adoption to women themselves — in terms of income, labor deployment, contributions to food and nutrition security and relative decision making power at household and community level, remain largely unknown.

In sub-Saharan Africa, about 30 percent of the population is undernourished, and the area has the highest projections for population growth by 2050, the paper states, adding that a projected 2 degree temperature increase related to global warming is likely to be accompanied by reduced rainfall and increased variability of weather patterns.

These factors will put pressure on agricultural systems that are largely small scale, low input, rain fed and already struggling to feed the population, according to the report. Cereal yields in the region are low and stagnant, averaging 1.3 tons per hectare, compared with 3 tons per hectare in the developing world overall.

Women and men typically take on distinctive, sex-segregated roles, responsibilities and tasks in agricultural production systems. While men and women may have different rights and responsibilities for different crops and livestock products, women are typically responsible for household tasks and caring roles.

“Women more than men are involved in a zero sum game, a closed system in which time or energy devoted to any new effort must be diverted from another activity,” the report states. Access to land, which in many sub-Saharan African countries is managed under customary law, or a patchwork of statutory and customary laws – is also complex and under-researched in terms of understanding the associations between gender, decisions about land management and the willingness of farmers to engage in conservation agriculture or indeed any new intervention that involves a delay in returns, according to the paper.

Towards inclusive and sustainable grain marketing

To build an adequate strategy for marketing basic grains that includes incorporating small- and medium-scale farmers into the market, it is important to consider aspects such as sustainable production and farm organization and the information farmers may have on these subjects. But how can we help farmers organize themselves, plan their work, determine their group requirements, and access timely information for strategic decision making? How much additional value does a supplier or group of suppliers that are efficient, sustainable, and reliable bring to agro-industries or other grain buyers? To answer these and other questions, the MasAgro program organized its first forum on grain marketing titled “Towards Inclusive and Sustainable Grain Marketing” at CIMMYT headquarters on 9 November.

Víctor López Saavedra, leader of MasAgro Productor, welcomed the participants and highlighted the impacts that the MasAgro initiative has had up to now in Mexican farmers’ fields. He also said that the concept of inclusive and sustainable commercial relations is at the core of MasAgro’s interventions in the area of marketing. The event included three panels that provided a space for representatives of the different sectors involved in maize production systems and grain marketing to exchange knowledge and experiences.

The first panel titled “Strategies for improving farmers’ market linkages” was led by María del Pilar Alcacio, SDAyR Guanajuato; Mayte Reyes, Consultative Group on Agricultural Marketing -GCMA; and Marco Antonio Cabello, FIRA. This panel discussed adequate strategies for fostering and strengthening the associations among farmers, factors that help them use contract agriculture schemes, as well as the best mechanisms for doing so.

The second panel, “Market opportunities for grain production systems based on sustainable production intensification,” highlighted the advantages of sustainable production and smart information access and use as ways of linking farmers to markets. Adolfo Ruiz, agricultural operations manager at PepsiCo, and Greta Villaseñor, executive director of the Business Council of the Maize Industry and Derivatives, talked about the concrete opportunities that their businesses provide for including small- and medium-scale farmers in their supply chains. Other panel participants were Vinicio Montiel, producer from the Farmer Association of RĂ­o Fuerte Sur-AARFS AC, and Roberto RendĂłn, academic from the University of Chapingo-CIESTAAM.

The third panel presented cases of farmers who had successfully linked up with markets. Invited farmers shared their experiences and marketing organization strategies, as well as the challenges they faced when seeking new marketing channels. Farmers who took part in this panel were Enrique AbadĂ­a, from the Innovative Farmers Group of Espinal, state of Morelos; Marcelino VĂĄzquez RamĂ­rez, lead farmer of Agro-productores Dobladenses SPR, and Urbano Godoy, barley producer from the state of Hidalgo. The panel discussion was closed by Amado RamĂ­rez Leyva from ItanonĂ­, who described how native maize landraces can become market niches.

To wrap up the event, Bram Govaerts, leader of Sustainable Intensification for Latin America, summarized the conclusions reached, which were regarded as recommendations to follow. It was agreed that since adoption of sustainable technologies directly affects the quality and competitiveness of farm production, it is absolutely essential to promote it. The need to strengthen the association among farmers and stimulate their market linkages, and to focus more public and private resources on improving the impact on key actors was mentioned. It was also noted that although large-scale marketing is necessary, it is not the only possible solution: local marketing can also be a desirable and successful strategy.

It is expected that concrete tools that foster environments that favor incorporating farmers into the market and establishing more inclusive and sustainable linkages will continue to be disseminated through this type of fora. This first forum was a definite step towards achieving this goal.

Buena Milpa participates in the lamb and agrobiodiversity fairs in Guatemala

Social inclusion activities were conducted with Mayan children. Photo: Rachael Cox and Nadia Rivera/Buena Milpa.
Social inclusion activities were conducted with Mayan children. Photo: Rachael Cox and Nadia Rivera/Buena Milpa.

Buena Milpa is the Sustainable Intensification Strategy for Latin America promoted by CIMMYT in Guatemala. It aims to foster innovation to reduce poverty and malnutrition, and enhance the sustainability of maize systems in the Guatemalan highlands.

Recently the Buena Milpa Project took an active role in the XX Lamb and VII Agrobiodiversity Fairs held in the Cuchumatanes Sierra, Chiantla, Huehuetenango, Guatemala, which brought together different social organizations and inhabitants from several departments (states) in the country’s western region.

Each year, the Association of Cuchumatan Organizations (ASOCUCH), Buena Milpa’s social institution, holds agrobiodiversity fairs where farmers exhibit and exchange varieties of maize, potato, bean, yam, and other crops that they grow on their farms. The objective is to promote the protection and conservation of agricultural and livestock diversity (especially of native maize). During the event, there were tables with displays on themes such as agrobiodiversity to support food security, climate change, and the environment.

During the fair, Buena Milpa made presentations on the work being done in the western region, where the general objective is to foster innovation to reduce poverty and malnutrition, while enhancing the sustainability of maize systems. Maize fields there are diversified by sowing amaranth, which is an important component of the region’s human diet. Amaranth tastings were held to emphasize that it’s also important to consume it. Informative materials were distributed and the participants were made aware of the importance of conserving and protecting native maize, in the Mayas’ native tongues (mam and popti’).

Participants are happy that the diversity of their native maize is being conserved. Photo: Rachael Cox and Nadia Rivera/Buena Milpa.
Participants are happy that the diversity of their native maize is being conserved.
Photo: Rachael Cox and Nadia Rivera/Buena Milpa.

The Buena Milpa team also provided a space where girls and boys of different ages could take part in learning exercises with seeds of maize and other crops in order to teach them to protect and conserve nature and the native maize varieties. The reason for holding these activities for girls and boys was to allow the women to participate actively in the events. The social and economic reality of rural native women is complex, and they have no one to look after their children. For this reason, they are forced to take them along to these events, where they cannot pay full attention to the presentations because they are keeping an eye on their children.

These CIMMYT-led activities raised awareness among the region’s inhabitants of the importance of conserving and protecting native maize, adopting crop diversification, and conserving soil and water as a vital part of sustainable native farming in Guatemala’s highlands. The participants were also made aware of the value of women as agents of change, as well as the importance of fostering love for nature and protection of native seeds in young children.