As the summer cultivation season began in May 2024, Fatima Hassan, a 52-year-old farmer from New Halfa, Kassala State, in eastern Sudan, faced an uncertain future. Like thousands of other farmers in her region, Fatima lacked the financial means to purchase seeds, fertilizers, herbicides, or even hire a tractor. The ongoing armed conflict in Sudan had severely disrupted agricultural activities, leaving farmers without the necessary resources to cultivate their land.
‘When I learned about the Sudan Food Security Initiative (SFSI), I was extremely happy. The support from the initiative has given me and my family renewed hope,’ Fatima said while tending to her groundnut farm.”
Fatima Hassan weeds her groundnut field cultivated with support from the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)
Under the aegis of the SASAS program, the USAID-funded SFSIÂ was launched in May 2024 in response to Sudan’s food security challenges. Targeting over 50,000 farmers in the New Halfa scheme, the initiative aims to strengthen resilient food production systems by providing significantly subsidized agricultural inputs and technologies, ensuring that farmers can sustain and enhance their farming practices despite the ongoing conflict in the region.
Hamid Rahama expresses his gratitude to the tractor driver ploughing his land in New Halfa as part of the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)
Sowing seeds of optimism
‘Support from SASAS came at a critical time as the armed conflict spread into new areas across the country, de-risking the crucial summer planting season. Through the SFSI, we are enabling farmers to adopt improved technologies and inputs at more affordable rates, thereby enhancing Sudan’s domestic food production,’ said SASAS Program Chief of Party Abdelrahman Kheir.
The SFSI provides each farmer with a 70% subsidy on a comprehensive package that includes land preparation for 0.42 hectares (ha), improved seeds for groundnut and sorghum, crop protection supplies, fertilizers, and agricultural advisory services. This initiative has already resulted in the planting of 14,568 ha of sorghum and 5,882 ha of groundnut. The crops are showing promising signs, with germination progressing well across all cultivated areas.
‘We had lost all hope of benefiting during this cultivation season. The subsidized land preparation, seed purchase, and other inputs have given us a lifeline. In the past, I was not able to buy fertilizers and herbicides, so my sorghum production was poor. This time things have changed dramatically, and we are well-equipped for a good cultivation season,’ said Hamid Rahama, a farmer from northern Halfa. Hamid echoes the optimism shared by many farmers in the region.”
Focus on a sustainable and food secure ecosystem
One of the most significant aspects of the initiative is its focus on building a sustainable seed production system. In partnership with 120 farmers and a private seed company, 252 ha (189 ha of sorghum and 63 ha of groundnut) were established for seed production in New Halfa. The initiative is projected to yield 360 metric tons (t) of sorghum and 270 t of groundnut seeds, thereby enhancing the resilience of the local agricultural ecosystem.
The anticipated yields from these efforts instill a much-needed optimism in an otherwise challenging situation. For groundnuts, the expected yield is 4.5 t/ha, resulting in an output of 26,000 t, enough to meet the nutritional needs of over 1.2 million people. Likewise, the sorghum harvest is projected to reach 54,000 t, providing sustenance for approximately 720,000 people.
An agricultural expert from SASAS inspects the growth of groundnuts cultivated under the SFSI in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)A farmer inspects the growth of his sorghum field in New Halfa cultivated with support from the SFSI. (Photo credit: Suliman Fadlalla/CIMMYT)
The bold sections indicate the changes made for grammatical correctness, including unit consistency and phrasing adjustments.
In addition to providing inputs, the SASAS program also addresses broader food security challenges by ensuring that farmers receive the necessary technical support throughout various agricultural operations. This includes the introduction of drought-tolerant sorghum varieties, which are showcased to farmers through field days and demonstration plots.
Despite the numerous challenges posed by the ongoing conflict in Sudan, CIMMYT and its partners involved in implementing the SASAS initiative remain undeterred. Although the ongoing armed conflict has compelled many local agriculture advisory companies to scale back their operations due to security and logistical difficulties, the teams remain committed to supporting Sudanese farmers and improving agricultural productivity, thereby contributing to Sudanâs overall food security.
‘We lost a significant number of improved seed production fields due to the conflict. Nevertheless, we ensured the provision of all necessary certified seeds for the SFSI, along with top-quality herbicides,’ said the CEO of Harvest Agricultural Company Isam Ali. He added that despite considerable challenges in transporting agricultural machinery due to security issues, the company completed all land preparations in a timely manner for farmers.
The early impact of SFSI is evident in the renewed hope and optimism among farmers in New Halfa, who are now better equipped to face the challenges of the summer cropping season and contribute to the nationâs food security. With the harvest dates approachingâNovember for groundnuts and December for sorghumâthe initiative is on track to significantly enhance food production in the region, providing a lifeline to thousands of farmers such as Fatima and Hamid.
Packing improved sorghum seeds for delivery to farmers as part of the SFSI in New Halfa. (Photo credit: Suliman Fadlalla/CIMMYT)
Dr Sieg Snapp is Program Director, Sustainable Agrifood Systems, International Maize and Wheat Improvement Center (CIMMYT)
Climate change is upending weather patterns across Africa, presenting dire challenges for farming communities. In Zambia, the impact is particularly harsh. Agriculture is the lifeblood of the economy, with two-thirds of the countryâs workforce employed in agriculture, and 78% of these workers are women.
The country faced a severe El Niño during the 2023/2024 season, causing a severe drought that devastated over 1 million hectares of cropland. The president declared it a national disaster. El Niño events typically result in catastrophic drops in crop yields, often reducing maize harvests by 30-40%. These events not only impact food security but also hinder economic growth, with the agricultural sector’s contribution to Zambia’s GDP dropping from 9.4% to 3.39%.
The devastating El Niño-induced drought in Zambia is starkly illustrated by the story of Melody Limweta, a 31-year-old farmer. She and her husband, Collins Manenekela, have seen their already fragile livelihood pushed to the brink by severe water shortages. Typically, they rely on dry season gardening and small-scale farming, including raising chickens, during the rainy season. However, the drought has dried up local water sources, making gardening impossible and sharply reducing their income. The couple’s practice of planting maize in the same field each year with recycled seeds and traditional methods has worsened their situation, as the El Niño-induced rainfall deficits have led to poor yields. Their primary source of food and income has withered in the field due to insufficient rainfall.
A consortium of partners led by the International Maize and Wheat Improvement Center (CIMMYT) have joined together as a rapid delivery hub for these challenging times, providing vital support to rural communities and families such as Melody and Collins. Farmers have a strong voice in this unique delivery mode. With support from the people of the U.S. government, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) is promoting access to drought-tolerant crops, climate-busting and nutritious legume seeds, agricultural advice and early warning systems to combat climate change. AID-I provides critical support to ensure that millions of smallholder farmers in the Haut-Katanga region of DR Congo, Malawi, Tanzania, and Zambia have access to information and innovations needed for gains in food production that help buffer drought, flood and rising food, fuel, and fertilizer prices.
Speed and Scale: planting drought-tolerant maize
The idea of the ADI-I as a rapid delivery hub is to make available innovations and agronomic information at both speed and scale. Traditional farming methods and crops struggle with climate extremes like El Niño, which bring prolonged dry spells and heatwaves. Drought-tolerant maize varieties offer a promising solution by enhancing agricultural resilience. These adapted maize varieties yield 30-50% more than traditional ones under drought conditions, as demonstrated in recent trials during El Niño periods. However, these improved varieties are only useful when in farmersâ hands.
Working with local partners, AID-I is scaling drought-tolerant maize varieties to help Zambian farmers manage unpredictable weather patterns. In the 2023/2024 season, approximately 27% of Zambia’s smallholder farmers saw a significant boost in their maize harvests, benefiting over 900 thousand people in drought-affected regions, owing to drought-tolerant maize varieties. Over six hundred thousand households planted drought-tolerant maize varieties and produced 235 thousand metric tons of maize, accounting for 19% of Zambiaâs maize production in the 2023/2024 season. This is huge return, as only 10% of the maize-growing area being planted with these resilient varieties.
Crop diversification for family nutrition
In addition to drought-tolerant maize, studies indicate that diversifying with legume crops is crucial for managing weather extremes, especially droughts and for improving soil health. Planting legumes helps spread the risk with varied planting and harvest times, cushioning the impact of erratic rainfall on crop yields. Women can feed their families due to crops like peanuts that mature early and need less rainfall. The benefits are sustained over time, as combining legumes with cereals improves overall nutrition and soil health, even amid unpredictable weather.
To support this effort, AID-I linked over 2,000 farmers to high-quality seeds for groundnuts (peanuts) and soybeans. On average, each household harvested about 80 kg of groundnuts and 175 kg of soybeans, earning roughly $75 and $58, respectively. Collectively, this initiative produced about 205 metric tons of these crops, accounting for around 14.3% of Zambia’s total production in the drought-stricken season. Farmers had a voice in choosing which crop varieties to grow through a feedback system called âlet’s chatâ where with an ordinary flip phone farmers could call in and learn from their neighbour’s recorded commentary and testimonials. For the first time ever, farmers could provide comments on which crops they preferred, providing a lifeline of communication with agritraders, government and agricultural advisors.
A recent assessment found that Zambian women made up 60% of those benefiting from cowpeas, 65% from groundnuts, 62% from soybeans, and 36% from drought-tolerant maize.
Forewarned is forearmed – early-warning systems
Weather information services, especially early warnings about upcoming droughts, are vital for helping farmers adapt to climate change. Accurate and timely weather forecasts enable farmers to make informed decisions about planting, resource use, and crop management. This reduces losses and boosts productivity. Research shows that access to climate information can significantly increase crop yields and incomes, with some farmers experiencing up to a 66% boost in yields and a 24% rise in income.
The forecast of an El Niño for the 2023/2024 season prompted an early warning campaign to raise awareness about the hazards associated with El Niño and provide response mechanisms for smallholder farmers. AID-I used an Interactive Voice Response platform hosted by Viamo, a global social enterprise that uses mobile technology to connect people to valuable information and services. This rapid El Niño advisory campaign reached over 500 thousand farmers, with 60% male and 40% female listeners, and 93% of them under 35 years old. The campaign provided crucial advice on planting schedules, drought-resistant crops, and water-saving techniques.
Additionally, AID-I established demonstration sites that showcased effective winter crop production methods and introduced over 2,000 farmers to innovative agricultural practices. These interventions significantly improved farmers’ ability to respond to the drought.
Looking ahead
Scaling the adoption of drought-tolerant maize, improved legumes, and timely advisories is vital to protecting Zambia’s agriculture from climate extremes. The introduction of an AID-I-supported digital advisory campaign in September 2023 was a turning point for farmers like Melody and Collins. By engaging with the content, they learned about improved seeds, crop rotation, and better agronomic practices, which helped them cope with ongoing challenges and protect their resources. Initiatives like this can help families on the margins survive and rebuild agricultural production faster.
AID-I’s impact on families like Melody and Collins shows that investing in rapid delivery hubs is crucial for building resilience in farming communities. Expanding such initiatives will ensure more smallholder farmers have access to the innovations needed to maintain or increase food production amid climatic challenges.
Additionally, studies by organizations like Springer and the American Geophysical Union highlight the importance of integrating rapid delivery hubs into mainstream agricultural programs to enhance climate resilience and food security. Therefore, this necessitates an open call for international development alliesâincluding donors, governments, NGOs, and businessesâto incorporate initiatives like AID-I into broader agricultural agendas, essential for fostering resilience and ensuring the future stability of farming communities in Zambia and beyond.
*Dr. Sieg Snapp is a leading agricultural scientist, renowned for creating the “mother and baby” trial design, a global method that enhances farmer-researcher collaboration, improving genetics and soil management in 30 countries. As Program Director at CIMMYT in Mexico, she oversees sustainable agrifood systems research, leading a large team focused on supporting smallholder farmers in Latin America, Africa, and Asia. Her work emphasizes gender-aware, inclusive development and has fostered partnerships for sustainable agricultural practices. A Professor at Michigan State University with over 180 publications, Dr. Snapp has also significantly influenced agricultural policy and technology adoption in Africa. Her contributions have earned her numerous prestigious awards, and she holds a Ph.D. from the University of California Davis.
Melinda Smale’s groundbreaking work in agricultural economics, particularly her collaboration with CIMMYT, has played a pivotal role in advancing the understanding of crop diversity conservation. At CIMMYT, Smale worked with plant breeders and agronomists to analyze maize landraces and wheat genetic diversity, contributing to the development of strategies that support sustainable agriculture and food security. Her research has informed CIMMYTâs efforts to preserve biodiversity and enhance the resilience of farming systems, directly aligning with the organization’s mission to improve global food security through science and innovation.
Stakeholder collaboration to create a coherent digital agriculture framework, an ecosystem to promote digital agriculture, and local government participation emerged as top recommendations to bridge the gap between technology and agriculture during the International Digital Agriculture Forum, Nepal 2024, held in Kathmandu, Nepal. Â
The event themed âInnovate, Cultivate, Thrive: Advancing Agriculture with Digital Solutionsâ brought together global and local stakeholders to explore the transformative potential of digital solutions in Nepalâs agricultural sector. Â
The focus on addressing the digital divide in Nepalâs agricultural sector by sharing emerging technologies and innovations, generating research ideas to provide inputs to the upcoming digital agriculture strategy of Nepal National Digital Agriculture Strategy and Action Plan for Nepal, and promoting an inclusive and sustainable transformation in the agriculture and food systems of Nepal.Â
Over the course of two days, the event attracted 135 participants, including 11 international experts and 29 national experts and representatives. It was organized by the Nepal Seed and Fertilizer Project (NSAF) and implemented by CIMMYT, with support from the United States Agency for Agriculture Development (USAID) in partnership with Pathway Technologies & Services Pvt Ltd, Seed Innovation Pvt Ltd, and Kathmandu Living Labs Pvt Ltd.
Key highlights from the event Â
The forum included keynote presentations, success stories of ICT business practices, and panel discussions with global subject experts, industry leaders, government agencies and local agritech companies. The event also comprised breakout groups for in-depth discussions, and formal and informal networking opportunities.Â
In his welcome address, Country Representative for Nepal and Coordinator of NSAF Dyutiman Choudhary highlighted the impact of digital agriculture on Nepalese farmers through the NSAF project. He shared how, in partnership with GeoKrishi and PlantSat, farmers now stay more informed on various issues through mobile app, SMS, IVR, farmer advisory services, and crop insurance. Â
The opening session was chaired by Dr. Deepak Kumar Kharal, secretary, agriculture development, Ministry of Agriculture and Livestock Development (MoALD). Keynote speeches included a global perspective on digital agriculture by Prof. Athula Ginige from Western Sydney University, and national perspective by Ms. Shabnam Shivakoti, joint secretary MoALD. Â
Prof. Ginige presented on âCultivating Innovation: Transforming Challenges into a Sustainable Digital Agrifood Future.â He highlighted the plight of 719 million smallholder farmers living below the poverty line and stressed the need to use digital opportunities such as IoT, AI, and big data to address challenges of food waste and climate change. He shared his experience in developing mobile platforms to improve the lives of smallholder farmers. Â
In her keynote address Shivakoti set the context of Nepalâs digital agriculture and the initiatives undertaken by the government. She highlighted how digital innovations such as virtual agriculture commodity market E-hatbazar, programs such as digital land record maintenance, remote sensing data, and digital apps like GeoKrishi are driving growth in Nepalâs agricultural sector. She also shared details about the draft National Digital Agriculture Strategy. Â
Judith Almodovar, acting director of the Economic Growth Office at USAID-Nepal, emphasized the importance of digital tools in enhancing productivity, efficiency and sustainability. She highlighted USAID’s investment through NSAF in digital innovations, such as seed and soil fertility management using digital tools. Â
âBy leveraging advanced technologies such as the Internet of Things (IoT), big data analytics, and remote sensing, we can provide real-time insights, improve supply chain management, and increase farmers’ resilience to climate shocks,â she said. Â
The forum featured three technical sessions: innovations in digital agriculture; digital agriculture in actionâpolicies and practices and; rapid fire presentations by seven Nepalese digital ag companies. Additionally, six local digital start-up companies displayed their products. Â
The closing session was chaired by Dr. Narahari Prasad Ghimire, director general of the Department of Agriculture, while Dr. Rajendra Prasad Mishra, secretary of Livestock Development, was invited as chief guest.Â
Recommendations from the forum Â
The discussions and deliberations led to a series of recommendations primary among which were the importance of stakeholder collaboration to create a cohesive digital agriculture framework and developing partnerships and ecosystems to support digital agriculture, including data governance and personalized advisory services for farmers. Participants also emphasized that local governments must be encouraged to lead agricultural digitization initiatives, including staff training and adopting IoT-based intelligent irrigation systems, sensor-based drip irrigation, and drone technology for monitoring crops and livestock. Digital input certification and QR-based agri-input verification (seed, breed, saplings, and fertilizer) tracking systems to enhance trust and transparency emerged as a critical factor. Participants agreed that it was necessary to design technical information, including emergency agricultural alerts, in various formats (text, video, audio) to accommodate farmers with lower levels of literacy. Â
The World Food Prize Foundation names CIMMYT’s former Deputy Director General for Research, Marianne BĂ€nziger, and current post-harvest specialist in the Sustainable Agrifood Systems (SAS) program, Sylvanus Odjo, as two of its inaugural 2024 Top Agri-food Pioneers (TAP).Â
The TAP List, introduced by the Foundation in celebration of its 38th anniversary, highlights 38 innovators from 20 countries and six continents who are making groundbreaking contributions to food and agriculture. Working in a wide range of fields, including agriculture, agtech, nutrition, education and advocacy, these pioneers embody the spirit of innovation needed to address the challenges facing global food systems today.Â
Leading the way: Meet the Top Agri-Food Pioneers of 2024Â
Photo: CIMMYT
Sylvanus Odjo, one of the awardees, is a postharvest specialist focused on the development and implementation of postharvest practices to improve food security in rural communities. He leads a network of research platforms in Mexico, Central America, and Africa, working with collaborators to fill research gaps and provide key recommendations to farmers, the private sector, governments, and NGOs. Odjo holds an M.S. in Food Science and Nutrition and a Ph.D. in Agricultural and Biological Engineering, with his doctoral research focused on the effects of drying processes on maize grain quality.
Photo: CIMMYT
Marianne BĂ€nziger, also recognized on the TAP list, received her Ph.D. in plant physiology from the Swiss Federal Institute of Technology (ETH) in Zurich, Switzerland, in 1992. She is the former Deputy Director General for Research at CIMMYT, where she coordinated efforts to develop drought-tolerant maize varieties for smallholder farmers, promoting innovative approaches such as stress breeding methods and participatory trials.Â
Throughout her career, she has held positions in both science and management. BĂ€nziger has an impressive publication record, with more than 50 articles and book chapters in peer-reviewed international journals and books.Â
As the first cohort of the TAP List, this group of pioneers will grow annually to form a global network dedicated to fostering collaboration and shared learning across food systems. These pioneers will also be featured at the 2024 Borlaug Dialogue in Des Moines, Iowa, October 29 to 31.Â
CGIAR has launched a pilot program in Zimbabwe’s Mbire and Murehwa districts to promote agroecological solutions, with CIMMYT as a key partner. The initiative aims to develop sustainable farming practices by addressing challenges like pest outbreaks, drought, and access to quality seeds. CIMMYT’s involvement includes introducing innovative technologies such as demonstration plots and seed fairs, designed to enhance agricultural resilience and sustainability in the region. This collaborative effort seeks to empower local farmers and create a more sustainable agricultural system in Zimbabwe.
Umm Zeina, a 40-year-old farmer living in El Nahal, in Sudanâs Gadarif State, was not happy with her yield, blaming the poor seeds and traditional techniques she was using. This was until she participated in the extensive seeds production training program organized by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).
âWe learned a lot on how to produce seeds and how to control the parasite Striga mixed with crops. The training draws our attention to the fact that the availability of quality seed is the foundation for food production and productivity. As traditional farmers, we had very poor information about the availability, characteristics, and prices of seed of improved varieties,â Umm Zeina stressed.
ICRISATâs extensive training attracted more than 350 (68 female) seed producer farmers from El Fashaga and El Nahal localities aimed at helping seed producers provide seeds of appropriate varieties for use by different categories of farmers. Farmers were also trained in better selection, treatment, and storage of seed from their own farms. The training also focused on the production of disease-free seeds to support agricultural productivity and success. The training helped to enhance farmersâ demand for improved seeds and eventually aimed to deliver improved seeds to more than 6000 farmers in El Fashaga, El Nahal and other neighboring localities.
This training was held as part of CIMMYTâs Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which empowers farmers and herders to reduce the need for humanitarian assistance even in conflict-affected Sudan. In the context of the atrocious food crisis in Sudan, SASAS and partners work to ensure that farmers produce the quality seeds they need to enhance food production amid escalating conflict.
In El Fashaga and El Nahal localities, the seeds production training focused on sorghum, as this crop is widely adapted and drought tolerant as well as it is a staple crop to strengthen food security and contributes to agricultural diversity and economic growth in the regions where it is cultivated.
âDuring the training, we learnt a lot on how to choose the best seeds to produce improved seeds and how to choose the land, isolation area, and cleanliness to harvest. I was extremely interested to learn more about how to keep the seed to its purest form for replanting purposes and human or animal consumption,â said Tarig Hassan, a farmer living in El Nahal locality.
The seeds production training also aimed at maintaining seeds quality control through training and regulatory systems, and how to multiply and distribute seeds in a timely manner and at a price affordable for farmers. Farmers also learnt to use a revolving seed mechanism to make available seeds for many new seed producer farmers for the next season through farmer-to-farmer seeds distribution.
âThe seed production training is not only on how to produce quality seeds and protect loss of seeds, but also about the use of diversified seeds of sorghum, millet and ground nut that serve for both food and nutrition securityâ, said Gizaw Desta, Senior Scientist in ICRISAT.
SASASâs objective is to improve food security and access to income-generating opportunities through the adoption of sustainable agriculture practices and the promotion of agri-processing and post-harvest management. It focuses on supporting smallholder crop and livestock farmers to adapt their farming activities to climate change and abiotic pressures by diversifying their crops to further cushion themselves from climatic vagaries, reduce post-harvest loss, and improve market participation, and functionality. Women and youth are supported through training and agricultural and veterinary inputs to increase income generation activities and access to economic resources.
âAt SASAS, we strive to train farmers in basic farm seed production. This helps preserve and expand the diversity of the seed on which our food systems in Sudan rely. Considering the dire food security situation in the country, we fully encourage farmers to be engaged in seeds production to provide different and improved seed varieties,â said Abdelrahman Kheir, SASAS Chief of Party in Sudan.
SASAS works with ICRISAT to uplift smallholder farmers and ensure food security in semi-arid tropics. SASAS partners are committed to elevating crop productivity, resilience, and sustainability vital to dryland communities’ prosperity. This steadfast commitment profoundly affects millions in the world’s most challenging agricultural regions.
Food security in the prevailing uncertain climatic and economic conditions can only be guaranteed by deliberate actions toward maximizing production, especially in stress-prone environments. The main priority of the CGIAR and NARS breeding programs is to enhance genetic gain in crops through the assessment of seed varieties with drought-resilient, nutritional, and yield traits. This is achieved by leveraging data-driven approaches and embracing contemporary tools and methodologies.
Innovative approaches such as molecular tools, doubled haploid technology, and refined breeding schemes have greatly contributed to the strides made in CIMMYTâs endeavor to elevate genetic gain within breeding pipelines. These advancements not only drive improved productivity but also promise cost-effective strategies for navigating the challenges posed by climate variability.
Molecular Tools
In maize breeding, traditionally, at each stage of the pipeline, entries are grown in multi-location trials. Phenotyping in multiple environments helps to select the best entries not only based on their genetic values but also on environmental factors and their interaction with diverse environments. However, this is also a labor-intensive and time-consuming step in the breeding pipeline. Molecular breeding offers a transformative solution by expanding breeding programs while minimizing phenotyping requirements. It is a well-known fact that trait phenotype results from both genetic and non-genetic factors, with genetic factors being contributed by the expression of genes at the DNA level.
Identifying genomic regions close to causative genes for traits of interest, such as high yield, disease resistance, or quality, can help to incorporate desirable genes/alleles into selected elite genotypes. DNA-based markers aid in efficiently tracking the inheritance of genetic traits, thereby facilitating the selection of desired traits in breeding programs. Marker-assisted forward breeding accelerates the selection of plants with desired traits by identifying the genetic markers associated with those traits. With such harnessed genotypic information, breeders can pre-select genetic material before embarking on the resource-intensive phenotyping stages. This strategic utilization of molecular markers, particularly in identifying susceptibility to key diseases like maize streak virus (MSV) and maize lethal necrosis (MLN), enables the judicious allocation of resources for phenotyping.
Figure 1. Summary of marker-assisted forward breeding across six breeding pipelines for MLN- and MSV-resistance haplotypes over the past six years.
Since 2018, CIMMYT has been implementing marker-assisted forward breeding for MSV and MLN. Since then, more than 100,000 pure breeding lines have been tested by examining their favorable haplotypes with a small set of 10 genetic markers and discarding the lines carrying unfavorable haplotypes for MSV and MLN resistance. In the last six years, nearly 30,000 lines have been rejected before undergoing field testing. In southern Africa, for instance, a rapid response to seed movement using molecular and serological techniques prevented the spread of MLN and facilitated the incorporation of resistance traits into new plant varieties.
Most hybrids in the final stages of breeding pipelines are passed through forward breeding. While Fall Armyworm, Gray Leaf Spot, common rust, and Turcicum Leaf Blight also cause substantial yield reductions in sub-Saharan Africa, research carried out under the AGG project indicates that the genetic makeup of these traits is oligogenic, governed by both moderate and small effect quantitative trait loci (QTLs), but lacking a single major-effect QTL and not amenable to forward breeding. This means that their resistance is influenced by complex multiple genetic factors, rather than being primarily controlled by a few major genetic regions. Alternatively, these biotic stress traits can be improved effectively through genomic selection.
Genomic selection is used to improve complex traits that are controlled by many small-effect QTLs. This approach does not require prior genetic information about the trait of interest and uses genome-wide marker information to estimate all marker effects and select individuals with high genomic-estimated breeding values (GEBVs). This means it uses data from various genetic markers to predict which individuals are likely to have desirable alleles for MSV and MLN. Genomic selection is being applied for grain yield under drought stress, and efforts are underway to extend its application to address more complex challenges related to plant diseases and pests. Foliar diseases are moderately complex traits.
Proof of concept on applying genomic selection for foliar diseases like gray leaf spot and northern corn leaf blight showed high prediction accuracies, supporting the implementation of genomic selection together with forward breeding for other traits at the early stage of the breeding pipeline. Implementing genomic selection for GY under optimum and drought management proved that maize breeders could obtain the same gain as with conventional breeding, where all entries are phenotyped in the field, but at approximately 35-40% less cost. Many candidate hybrids now entering the advanced stages of the breeding pipeline were developed using genomic selection. Several of our earlier studies (Beyene et al., 2015, 2016, 2019, 2021; Chaikam et al., 2019; Crossa et al., 2017; Prasanna et al., 2022; Vivek et al., 2017) showed that breeding pipelines achieved high genetic gain by adopting new molecular tools, thus confirming the benefit of adopting molecular breeding tools.
Currently, in CIMMYTâs eastern and southern breeding pipelines, all product profiles are using genomic selection at stage I, where the training population is evaluated in multiple locations with a sparse design, estimating the GEBVs for the unphenotyped lines, and using GEBVs and phenotypic BLUPs of test crosses in the selection for stage II. This process allows the handling of a large number of lines at stage I with a fixed budget without losing selection accuracy. Since 2017, we have used the âtest half and predict halfâ strategy (Figure 2), where all the lines were genotyped with mid-density markers, and the selected ~50% of the total stage I lines were testcrossed and evaluated in multiple locations to be used as a training population to estimate the GEBVs for the other 50% of the unphenotyped lines for the traits of interest. High prediction correlations were observed in three selected product profiles for GY under optimum, managed drought, and low soil N conditions (Figure 3).
Genomic selection is also implemented to reduce the breeding cycle. However, our final products are three-way cross hybrids, where genomic selection is applied only to select the best line rather than selecting the best hybrid combinations. Historical data were used to test the possibility of reducing the breeding cycle. However, our results showed that the use of historical data to predict 100% of lines from the current year yielded low to moderate prediction correlations both under optimum and drought conditions for GY, anthesis date, and plant height (Figure 4). Incorporating 10 to 30% of the testing population into the training population leads to high prediction correlations. This concludes that by using historical data, the training population, which needs to be test-crossed and evaluated in multiple locations every year, can be reduced from 50% to 10-30%, which helps breeders allocate the saved resources to evaluate more lines without losing prediction accuracy.
Doubled Haploid Technology
Doubled haploid technology speeds up the creation of inbred lines by producing entirely uniform lines. Pedigree line development is a traditional method in plant breeding aimed at gradually improving and stabilizing the genetic makeup of the new variety over time. It involves multiple generations of controlled crosses between parent plants with known characteristics. Each subsequent generation is carefully selected based on specific traits of interest, such as yield, disease resistance, or quality. Pedigree line development is expensive, particularly when nurseries are in remote locations.
Unlike traditional methods where some genetic variation remains, doubled haploid lines are completely homogeneous. This means that there is increased heritability of desirable traits and improved accuracy of selection. Doubled haploid technology, which is more compatible with the use of molecular markers, simplifies breeding processes and shortens the time needed to develop inbred lines (Chaikam et al., 2019).
The first doubled haploid facility in Africa was established in 2013 and is extensively used by the CGIAR, NARES, and the private sector. Over the past five years, 1,349 populations have been induced and more than 223,144 doubled haploid lines delivered to breeding programs from CGIAR, NARES, and the private sector in sub-Saharan Africa. Shifting from traditional pedigree-based breeding to doubled haploid technology has shown a high impact on key breeding metrics (gain per cycle and gain per year) not only in CIMMYT but also in national partners’ breeding programs, thus increasing genetic gain within the available budget.
Figure 2. Number of lines evaluated with phenotypic selection (PS) and genomic selection (GS) at stage I in EAPP1 product profile from 2017 to 2023. (PS â phenotypic selection, GS â genomic selection)Figure 3. Prediction correlations for grain yield (GY) under optimum (OPT), drought (MDt) and low soil N (low N) management conditions in EAPP1, EAPP2 and SAPP1 at stage I in 2023
Figure 4. Prediction accuracies for grain yield (GY), anthesis date (AD) and plant height (PH) estimated from independent validation schemes using a training population (TRN) consisting of 2017- and 2018-years breeding data and 10%, 30%, 50%, 70% and 90% of 2019 data converted from the testing population (TST) to the training population under optimum and managed drought conditions
Beyene, Y., Gowda, M., Suresh, L. M., Mugo, S., Olsen, M., Oikeh, S. O., Juma, C., Tarekegne, A., and Prasanna, B. M. (2017). Genetic analysis of tropical maize inbred lines for resistance to maize lethal necrosis disease. Euphytica213.
Beyene, Y., Semagn, K., Crossa, J., Mugo, S., Atlin, G. N., Tarekegne, A., et al. (2016). Improving maize grain yield under drought stress and non-stress environments in sub-saharan africa using marker-assisted recurrent selection. Crop Science 56, 344â353. doi: 10.2135/cropsci2015.02.0135
Beyene, Y., Semagn, K., Mugo, S., Tarekegne, A., Babu, R., Meisel, B., Sehabiague, P., Makumbi, D., Magorokosho, C., and Oikeh, S. (2015). Genetic gains in grain yield through genomic selection in eight biâparental maize populations under drought stress. Crop Science55, 154-163.
Chaikam, V., Molenaar, W., Melchinger, A. E., and Prasanna, B. M. (2019). Doubled haploid technology for line development in maize: technical advances and prospects. Theor. Appl. Genet. 132, 3227â3243. doi: 10.1007/s00122-019-03433-x
Prasanna BM, Burgueño J, Beyene Y, Makumbi D, Asea G, Woyengo V, Tarekegne A, Magorokosho C, Wegary D, Ndhlela T, Zaman-Allah M, Matova PM, Mwansa K, Mashingaidze K, Fato P, Teklewold A, Vivek BS, Zaidi PH, Vinayan MT, Patne N, Rakshit S, Kumar R, Jat SL, Singh SB, Kuchanur PH, Lohithaswa HC, Singh NK, Koirala KB, Ahmed S, San Vicente F, Dhliwayo T, Cairns JE. 2022. Genetic trends in CIMMYTâs tropical maize breeding pipelines. Scientific Reports 12, 20110. https://doi.org/10.1038/s41598-022-24536-4
Vivek, B. S., Krishna, G. K., Vengadessan, V., Babu, R., Zaidi, P. H., Kha, L. Q., et al. (2017). Use of genomic estimated breeding values results in rapid genetic gains for drought tolerance in maize. Plant Genome 10, 1â8. doi: 10.3835/plantgenome2016.07.0070
Science without policy is just academia; policy without science is just guesswork. Through a blend of robust field research and policy advocacy, CIMMYT aims to bridge the gap between policy and practice in promoting sustainable agricultural practices through crop diversification in South Asia.
Taking Bangladesh as an example, CIMMYTâs work in the country highlights the critical need to link research with policy to achieve sustainable agricultural practices, enhance food security, and improve farmer livelihoods.
The power of research-informed policy
Bangladesh’s agriculture is highly rice-centric; although rational, this is risky and arguably unsustainable. This means there needs to be a focus on crop diversification, which is one of the approaches toward sustainable agriculture that can address socioeconomic and environmental challenges.
Recognizing these challenges, CIMMYT has been at the forefront of developing solutions by conducting extensive multi-location on-site and on-farm trials that consider the socioeconomic and pedoclimatic dimensions of farm households.
Additionally, CIMMYT analyzes historical policies and initiatives that have been implemented by the Bangladeshi government and international partners to promote crop diversification. Several opportunities for improvement were identified in past policies and project implementation; addressing these challenges requires bridging the gap between policies and research to scale up crop diversification efforts.
Through the RUPANTAR and CGIAR Transforming Agrifood Systems in South Asia (TAFSSA) projects, CIMMYT-Bangladesh has developed an analytical tool to understand the political economy of crop diversification policies and practices. When applied to agriculture policy research, this tool can be tailored to any country and policy context in South Asia.
For example, while the government recognizes crop diversification in its agriculture policies starting with the Fifth Five-Year Plan, substantial funding for crop diversification efforts was only recently allocated. Integration of crop diversification into the government’s annual funding systems is essential to mainstream crop diversification in agriculture.
Many crop diversification policies and projects primarily focus on production, neglecting market systems development for new crops. Similarly, research suggests insufficient attention is paid to cold storage and other infrastructure needed to support diversification.
Most initiatives appear to have been project-driven, resulting in short-lived action without long-lasting impact. Insufficient coordination and support from government agencies appears to have affected projects led by both governments and development partners.
Stakeholder engagement spreads awareness
Without translating research into policy, we leave innovation on the shelf. CIMMYT-Bangladesh disseminates research findings to policymakers through the country Priority Investment Plan for the crop sector at the Bangladesh Agricultural Research Council (BARC), and South Asian Association for Regional Cooperation (SAARC) member countries through regional consultation workshops on accelerating the transformation process for sustainable and nutrition-sensitive food systems.
Looking ahead, CIMMYTâs efforts in South Asia remain dedicated to bridging the gap between research and policy. Ongoing projects aim to generate robust evidence, advocate for informed policy decisions, and foster partnerships across sectors. By continuing to lead in this space, CIMMYT strives to contribute to a more resilient agrifood system for South Asia.
Written by mcallejas on . Posted in Uncategorized.
Fredrick Otiato is a highly analytical and process-oriented researcher with extensive expertise in research methodologies, data management, and statistical analysis. He holds an MSc in Applied Statistics from the University of Nairobi and a BSc in Statistics from Jomo Kenyatta University of Agriculture and Technology. With a career spanning more than a decade in roles such as Senior Research Analyst and Data and Insights Manager, Fredrick has led complex data operations and supported the design and analysis of both qualitative and quantitative research. He has also contributed to various research projects, resulting in multiple scientific publications. Passionate about using data to drive meaningful insights, Fredrick is dedicated to creating actionable outcomes that foster growth and development.
Wheat breeding strategies for increased climate resilience
With the challenges of climate change already affecting plant breeding, especially warmer days and warmer nights, the time to future proof the worldâs food supply is now. In order to make the best-informed changes, scientists at CIMMYT ran simulations mimicking five scenarios that might play out over the next 70+ years.
The researchers used 3,652 breeding line records from six global nurseries administered by the International Wheat Improvement Network, which is coordinated by CIMMYT, and involves hundreds of partners and testing sites worldwide. Researchers ran the data through five different climate change scenarios, ranging from stable to severe.
Along with colleagues from Henan Agricultural University, Zhengzhou, China, ICARDA, and the Chinese Academy of Agricultural Sciences, CIMMYT scientists published their research in Nature Climate Change.
The results showed that less than one-third of wheat varieties adapted well to the warming the planet has already seen in the last 10 years. As temperatures increased in the simulation, researchers found a clear connection between rising temperatures and lower stability for a variety. As the global wheat-growing area becomes warmer and experiences more frequent heatwaves, breeding programs have to look beyond just yield optimization.
âStability is key for breeding programs and farmers,â said co-lead author Matthew Reynolds, CIMMYT distinguished scientist and head of wheat physiology. âKnowing that a specific variety works well in a specific environment and produces an expected amount of yield allows farmers better plan their crop futures.â
âWe performed the analysis from different perspectives, so that climate effects and appropriate adjustment suggestions for current breeding models can be considered from climate change, gene selection and/or geneâenvironment interaction perspectives,â said co-lead author Wei Xiong, CIMMYT Senior Scientist and Agricultural System Modeler.
The paradox of breeding elite lines
Local and regional breeding programs, as well as targeted breeding by CIMMYT, contribute to gene pools that overlap for many key agronomic traits, which limit genetic diversity.
âIt is an unintended consequence,â said Reynolds. âAs conventional breeding focuses on crossing the best and elite material, such focus can actually reduce genetic diversity.â
This âparadoxâ shows the need to increase genetic variability and environmental diversification in breeding programs that are developing higher-yielding climate-resilient cultivars. Breeding programs also need to target traits associated with improved adaptation to increased temperatures and tolerance to heatwaves, which requires multidisciplinary integration.
Looking to the past for answers
Over the past 10,000 years, the climate has been unusually stable, meaning modern, domesticated bread wheat has not been exposed to wide swings in temperature that are forecast for the next 100 years. Wild wheat relatives, like Triticeae, have had millions of years of experience in weathering changing climates.
CIMMYT has a pre-breeding program that examines wild wheat races and more exotic sources for climate resilience traits. When such traits are identified genetically, new breeding techniques such as gene editing can be employed and breeding models refined.
To activate these new techniques, several barriers need to be overcome, including more sharing of germplasm between countries and breeding teams, the use of faster breeding cycles where appropriate and improved understanding of genes that improve heat tolerance without a yield penalty.
With reduced climate resilience and slow cultivar development, the need to increase genetic variability for climate adaptation is urgent, particularly in developing countries, where warming rate is unprecedented, and breeding cycles tend to be longer than in developed countries.
âFaced with more climate variability, breeders need to revisit their breeding strategies to integrate genetic diversity that confers climate resilience without penalties to productivity,â said Reynolds.
The Africa-China-CIMMYT Science Forum in Nairobi gathered experts from China and Africa to explore strategies for transforming agrifood systems through innovation and cooperation. Organized by CAAS and CIMMYT, the forum emphasized the importance of collaboration in addressing food security, rural poverty, and climate resilience in Africa. Key discussions focused on the benefits of technology transfer and research partnerships to support smallholder farmers and advance agricultural modernization across the continent.
The Novo Nordisk Foundation and CIMMYT have launched the 4-year CropSustaiN initiative to determine the global potential of wheat that is significantly better at using nitrogen, thanks to Biological Nitrification Inhibition (BNI)âand to accelerate breeding and farmer access to BNI wheat varieties.
With a budget of US$ 21 million, CropSustaiN addresses the pressing challenges of nitrogen pollution and inefficient fertilizer use, which contribute to greenhouse gas (GHG) emissions and ecological degradation. Currently, no other seed or agronomic practice-based solution matches BNI cropsâ mitigation impact potential. Growing BNI crops can complement other climate mitigation measures.
The challenge
Agriculture is at the heart of both food and nutrition security and environmental sustainability. The sector contributes ca. 10-12% of global GHG emissions, including 80% of the highly potent nitrous oxide (N2O) emissions. Fertilizer use contributes to such N losses, because plants take up about 50%, the remainder being lost. Wheat is the world’s largest âcropâ consumer of nitrogen-based fertilizerâa relatively nitrogen-inefficient cerealâat the same time providing affordable calories to billions of resource-poor people and ca. 20% of globally consumed protein. CropSustaiN targets this nexus of productivity and planetary boundary impact by verifying and thus de-risking the needed breeding, agronomic, and social innovations.
A solution: BNI-wheat
BNI is a natural ability of certain plant species to release metabolites from their roots into the soil. They influence the nitrogen-transforming activity of nitrifying bacteria, slowing down the conversion of ammonium to nitrate in the soil. This preserves soil ammonium levels for a longer time, providing plants with a more sustained source of available nitrogen and making them more nitrogen-use efficient (nitrogen plant use efficiency). As a result, BNI helps reduce the release of N2O gas emissions and nitrate leaching to the surrounding ecosystem.
A research breakthrough in 2021, led by the Japan International Research Center of Agricultural Sciences (JIRCAS) in collaboration with CIMMYT, demonstrated that the BNI trait can be transferred from a wheat wild relative to a modern wheat variety by conventional breeding. BNI wheat can be made available to farmers worldwide.
Growing BNI wheat could reduce nitrogen fertilizer usage by 15-20%, depending on regional farming conditions, without sacrificing yield or quality.
Incorporating BNI into additional crops would reduce usage further. Farmers can get the same yield with less external inputs.
Other BNI-crops
CropSustaiN will work on spring and winter wheats. Rice, maize, barley, and sorghum also have BNI potential. CropSustaiN will build the knowledge base and share with scientists working on other crops and agronomic approaches.
Objectives and outcomes
This high risk, high reward mission aims to:
Verify the global, on-farm potential of BNI-wheat through field trial research and breeding.
Build the partnerships and pathways to meet farmer demand for BNI-wheat seeds.
Work with stakeholders on policy change that enables BNI crops production and markets
Success will be measured by determining nitrogen pollution reduction levels under different soil nitrogen environments and management conditions on research stations, documenting crop performance and safety, breeding for BNI spring and winter wheats for a wide range of geographies, and gauging farmer needs, interest, and future demand.
Wheat spikes against the sky at CIMMYT’s El BatĂĄn, Mexico headquarters. (Photo: H. Hernandez Lira/CIMMYT)
A collaborative effort
CIMMYT is the lead implementer of Novo Nordisk Foundationâs mission funding. CropSustaiNâs interdisciplinary, intersectoral, systems approach relies on building partnerships and knowledge-sharing within and outside this research initiative. 45+ partners are engaged in CropSustaiN.
The potential GHG emissions reduction from deploying BNI-wheat is estimated to be 0.016-0.19 gigatonnes of CO2-equivalent emissions per year, reducing 0.4-6% of total global N2O emissions annually, plus a lowering of nitrate pollution.
Impact on climate change mitigation and Nationally Determined Contributions (NDCs)
The assumption is that BNI wheat is grown in all major wheat-growing areas and that farmers will practice a behavioral shift towards lower fertilizer use and higher fertilizer use efficiency. That could lead to ca. a reduction of 17 megatons per year globally. This can help nations achieve their NDCs under the Paris Agreement.
International public goods, governance, and management
CIMMYT and the Foundation are committed to open access and the dissemination of seeds, research data, and results as international public goods. The governance and management model reinforces a commitment to equitable global access to CropSustaiN outputs, emphasized in partnership agreements and management of intellectual property.
Invitation to join the mission
The CropSustaiN initiative is a bold step towards agricultural transformation. You are invited to become a partner. You can contribute to the mission with advice, by sharing methods, research data and results, or becoming a co-founder.
Please contact CropSustaiN Mission Director, Victor Kommerell, at v.kommerell@cgiar.org or Novo Nordisk Foundationâs Senior Scientific Manager, Jeremy A. Daniel, at jad@novo.dk.
Maize production in Kenya is a critical component of the country’s agriculture and food security. However, climate change poses a serious threat to its production. Changes in temperature and precipitation patterns can affect maize growth, reduce yields, and increase the incidence of pests and diseases.
Prolonged droughts and unpredictable rainfall can lead to crop failures, while extreme weather events can damage crops and infrastructure. As the climate continues to change, it is essential for Kenyan farmers to adopt resilient agricultural practices and more adapted seed products to safeguard maize production and ensure food security for the population.
For decades, seed companies as well as governments and donors have invested in maize hybrid breeding. Dozens of new hybrids have been made available to seed companies throughout East Africa for multiplication and distribution. These hybrids are designed and tested to outperform older hybrids in terms of yield under rainfed conditions, to include tolerance to drought and pests.
However, the potential impact of these investments has been hampered by the slow turnover of hybrids among farmers. Research has shown that, despite the availability of newer, higher-performing varieties, farmers tend to purchase older, less productive hybrids. The âturnover problemâ in Kenya has been described by CIMMYT researchers in a recent publication.[1]
One of the constraints responsible for the low turnover of varieties is a lack of information among farmers on the performance of the newer products. Despite advancements in the development of new seeds and the retail infrastructure to reach farmers, neither the public nor the private sector is generating and disseminating information on the performance of different maize seed products across various agroecologies. Farmers therefore have choice overload but lack objective information on relative seed performance required to make informed seed choices across seasons and growing conditions.
CIMMYT conducted a field experiment to shed light on the potential influence of seed-product performance information on farmersâ seed choices. The study involved aggregating and packaging farmer reported yield data for some seed products and presenting this to randomly selected farmers at the point of sale to assess whether the new information would influence their choice of products. The study was conducted in Kirinyaga and Embu counties where, like many parts of Kenya, farmers have access to a diverse range of maize seed products from seed companies which promise benefits like higher yields and improved resilience but lack objective information on their performance which could support their choices, including when to switch and to what.
The study was conducted in March 2024, at the onset of the long rain season. The research team collaborated with 36 local agro-dealers in five towns and surveyed over one thousand farmers.  Farmers were intercepted as they approached the agro-dealer outlets and briefed about the study. Upon consent, they were informed on the benefits of trying something new (experimenting with varieties) and were offered a voucher for one free bag of maize seed to encourage them to try a seed product new to them. They then were randomly assigned to two experimental groups: treatment and comparison. Participants in the treatment group were shown a chart containing product-specific yield data on maize hybrids grown in their counties (see the chart below). The chart contained farmer-reported yields from the previous yearâs long rain season aggregated at two levels: county average yield and the average yield of the top 25% of farmers who realized the highest yields. The latter demonstrated the actual potential of a seed product. They were asked that, if they wished, they could choose the voucher product for experimentation from the list but they were not required to. Participants in the comparison group were offered placebo information that would not affect their seed choice: they were given some fun facts about Kenya and agriculture in Kenya. We assess the effect of the information on the choice of the bag of seed they were buying with the voucher to experiment with.
Table 1: Product-specific performance information on maize seed products in Kirinyaga March-August 2023 *actual product names have been removed for this blog*
Before they made any purchases, the customers were asked about which maize seed they intended to buy. After purchase, they were interviewed again to find out which maize seeds they bought and how they had used the voucher.
What we found
Majority of the treatment farmers had a very positive evaluation of the information they received, indicating that they found it relevant and useful when making seed choice. Specifically, over 90% of them said that the information was trustworthy and easy to understand while about 80% said that the information was easy to recall. Over 80% of them disagreed that the list of varieties was too long to comprehend, the information on varieties was similar and hard to differentiate and that it was hard for them to choose a variety from the list.
This positive evaluation of the information is also reflected in their seed choices. Pre-purchases (before they entered the agrodealer store), farmers who were exposed to the performance information showed increased certainty in their choices and a higher inclination towards products listed in the product performance data, particularly the top-performing varieties. While 5% of the comparison farmers indicated that they did not know what to buy with their vouchers, only 2% of the treatment farmers suffered the same uncertainty. Such farmers relied mostly on agro-dealers to recommend a product they could experiment with.
As shown by the bar chat below, only 7% of comparison group farmers desired to use their vouchers on (or had an effective demand for) products which were the top two in the product performance lists. This increased to 27% among the information group farmers, representing an increase of 286% in the demand of top performing products.
However, although our intervention relaxed an essential constraint (product performance information) and increased the demand for some seed products, the actual purchases were subject to other constraints, stock-outs key among them. As a result, both groups showed shifts from initially desired products in their actual purchases. Even so, the treatment group maintained a stronger alignment with the listed products, exhibiting a higher likelihood of purchasing top-performing products. Only 5% of farmers in comparison group used their vouchers to purchase products which were top two in the product performance lists. This increased to 13% among farmers in the treatment group, representing a 160% increase in the likelihood of purchasing the best performing products in the lists.
Reflections
Slow varietal turnover among maize farmers in E. Africa is a pervasive problem and there is no one solution to it. This research shows that information on product performance can be an effective approach in bringing to the attention of farmers newer, more adapted and better yielding seed products. Dissemination of such information can be incorporated in extension programs, shared at the point of sale, shared through SMSs and WhatsApp messages, displayed in posters fixed in public places, etc.
The findings offer clear recommendations for future investments in seed systems development. These include the implementation of new product testing regimes to ensure quality and objectivity of performance data, testing what other information would be useful to farmers â beyond yield data, exploring new marketing options to reach farmers more effectively, and considering additional approaches to empower farmers with the knowledge they need to make informed decisions thus leading to improved agricultural productivity, resilience, and livelihoods.
In conflict-ridden Sudan, Gadarif State in Eastern Sudan is the most important region for sorghum production, with about 5-6 million feddan (5.18-6.22 acres) cultivated on an annual basis on large scale farms equipped with agricultural machinery. However, like the country, the state is covered with vertisols, clay-rich soils that shrink and swell with changes in moisture content, that become waterlogged and cannot be properly cultivated during rainy season.
To address the issue, technical experts from the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) are mapping areas affected by waterlogging in two localities, namely El Fashaga and El Nahal, to identify the most suitable lands to establish large drainage implementing sites integrated with improved crop varieties of sorghum. This work is part of CIMMYTâs Sustainable Agrifood Systems Approach for Sudan (SASAS) program, which works with farmers and herders to reduce their need for humanitarian assistance in conflict-affected Sudan.
âTo address the issue of vertisols affected by water logging in Al Gadarif, the prominent agricultural region in Sudan, we used the map developed by ICRISAT in 2023 and consulted with local farmers to identify 100 hectares El Fashaga and El Nahal localities to improve drainage and avoid waterlogging,â said Gizaw Desta, senior scientist at ICRISAT.
Waterlogging is common on poorly drained soil or when heavy soil is compacted, preventing water from being drained away. This leaves no air spaces in the saturated soil, and plant roots literally drown. Waterlogging can be a major constraint to plant growth and production and, under certain conditions, will cause plant death. In Gadarif state, 2.3 million hectares and 1.8 million hectares of vertisols are under high and moderate waterlogging conditions that impair crop production during the rainy season, leading to food insecurity if not reversed with appropriate agricultural practices.
Experts evaluate the compacted soil. (Photo: CIMMYT)
âFor years, my farm has been flooded by water during the rainy season, and I cannot cultivate sorghum as plants die of water suffocationâ, said Ali Ahmed, a farmer from Al-Saeeda area of ââAl-Nahal locality who is affected by waterlogging. âAlternatively, we as farmers affected by waterlogging were forced to cultivate watermelon instead of our main staple food sorghum. This shift in the crops we cultivate is hardly affecting our income. Â I am glad that ICRISAT is working to establish drainage systems and address waterlogging within our lands.â
âAt SASAS, we strive to ensure that farmers have access to fertile lands and other agricultural inputs. We work with our partners to address all problems facing farmers including waterlogging to help farmers continue producing their staple food and cash crops,â said Abdelrahman Kheir, SASAS chief of party in Sudan.