Skip to main content

research: Sustainable agrifood systems

Project helps African farmers identify regional best practices

MEXICO CITY (CIMMYT) – Traditional farming systems in Africa must be updated for today’s climate and market challenges, according to a new report by the University of Queensland.  

Hoeing the field. Photo: CIMMYT.
Hoeing the field. Photo: CIMMYT.

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) is an international research-for-development project working directly with farmers to solve some of the challenges they face.

For example, the project has greatly improved food production in Mozambique since 2010. It is also promoting rotational cropping systems with legumes in Tanzania to improve soil fertility as well as dietary diversity, and in Malawi, rainfall erosion has been reduced by 80 percent as farmers leave plant residues on fields to improve stability.

The exact details of best practice change everywhere you go in Africa,” said Caspar Roxburgh, a research officer at the University of Queensland who works with SIMLESA. “A lot of this research just hasn’t been done yet in Africa.”

SIMLESA seeks to have an open dialogue between farmers and scientists to identify what works best in individual areas and define best practices for the region.

“We find out who’s doing the best, learn from them, and then we do the science to back it all up,” explained Roxburgh.

Over the past seven years, SIMLESA has helped more than 200,000 farmers adopt sustainable technologies and practices, improving yields and income.

SIMLESA is funded by the Australian Centre for International Agricultural Research (ACIAR) and implemented by the International Maize and Wheat Improvement Center (CIMMYT), the University of Queensland along with the governments of Ethiopia, Kenya, Tanzania, Malawi and Mozambique.

Read more about how SIMLESA is changing how food is grown in Africa here.

receive newsletter

Scaling sustainable agriculture in South Asia

DAHKA, Bangladesh (CIMMYT) – A two-day regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia was held in Dhaka, Bangladesh from September 8-9, 2017.

Delegates and participants of the regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia in Dhaka, Bangladesh. Photo: Das, S./CIMMYT Bangladesh.
Delegates and participants of the regional policy dialogue on scaling conservation agriculture for sustainable intensification in South Asia in Dhaka, Bangladesh. Photo: Das, S./CIMMYT Bangladesh.

The event was a supported by the Australian Center for International Agricultural Research (ACIAR), and was organized jointly by the Trust for Advancement of Agricultural Sciences (TAAS) and the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with national agricultural research systems from across South Asia, CGIAR institutes and Australian Organizations. Government officials, researchers, and policymakers actively participated and deliberated challenges and ways forward to scale up sustainable agriculture in South Asia.

High input costs, depleted and degraded natural resources, indiscriminate and imbalanced use of chemical fertilizers and adverse effects from climate change make South Asia – home to about 1.766 billion people (one fourth of the world’s population) – one of the most food insecure regions in the world.

A region-wide shift from conventional agriculture to more sustainable technologies and practices, such as no-till farming or precision land leveling, is critical towards combating these challenges.

Raj Paroda, TAAS chairman, highlighted this need during the dialogue by calling for increased agricultural development assistance from international donors that focuses on mainstreaming sustainable agriculture, a key element in achieving the Sustainable Development Goals (SDGs), a set of 17 global goals spearheaded by the United Nations to end poverty, protect the planet, and ensure prosperity for all.

“The adaptation of conservation agriculture in South Asia, specifically in the Eastern Gangetic Plains, has shown impressive results in terms of saving costs and resources, and boosting income,” said John Dixon, Principal Advisor of ACIAR. “However, the widespread adaptation of conservation agriculture is held back by policy barriers. Institutions and policies have yet to be optimized in a way that facilitates and encourage [its] spread.”

According to Dixon, the regional policy dialogue allowed delegates to share experiences from their own countries and identify which policy changes, institutions and regulations can be adapted in a way that accelerates the widespread adoption of sustainable practices like conservation agriculture.

Paroda closed the dialogue by suggesting that delegates work towards enabling policies to increase funding, coordination and convergence of international private and public funder interest. He suggested the development of an active regional platform that would suggest a roadmap based on the current status, would help share knowledge, initiatives and advocate for policies relating to opportunities for capacity building and regional partnerships. He also identified that the promotion of new innovations through a network of young entrepreneurs and service providers and strong public-private partnerships as key elements to mainstreaming the adoption of sustainable agriculture across the region.

View the regional policy dialogue on scaling conservation agriculture for sustainable intensification here.

receive newsletter

Study reveals new opportunities to cut greenhouse gas emissions in India

India is one of the world’s largest contributors to global warming, but simple changes in farm management can drastically cut emissions while meeting food demand.
India is one of the world’s largest contributors to global warming, but simple changes in farm management can drastically cut emissions while meeting food demand.

More than 122 million people could be thrown into extreme poverty by 2030 from climate change induced by global warming, mostly in Africa and Asia.

Agriculture is one of the largest contributors to global warming, with greenhouse gas emissions predicted to rise 30 percent over the next three decades due to rising populations and changing consumer preferences to high-emission foods like dairy and meat in these two regions.

India alone is the third largest emitter of greenhouse gasses in the world, with agriculture contributing the most greenhouse gas emissions in the country after electricity. With a population of more than 1.3 billion and increasing, ensuring sustainable agricultural development is critical to achieve the country’s 2015 climate plan to reduce emissions intensity 35 percent by 2030 and food security for the region.

In a recent study, we analyzed how cereal farmers in India’s Indo-Gangetic Plain – an area that feeds 40 percent of the country’s population – manage their crops and the impact different practices have on yield and emissions.

Reducing nitrogen fertilizer can cut emissions without compromising yield

Nitrogen fertilizer is a huge greenhouse gas emitter. Creating it involves burning a lot of fossil fuel, and is produced primarily using natural gas. When farmers apply it to their fields, rain washes much of it into surrounding bodies of water, while bacteria in the soil feed on what’s left, releasing a powerful greenhouse gas called nitrous oxide.

16 million tons of nitrogen fertilizer are currently being applied by Indian farmers to their fields. Our research shows that farmers in India can reduce emissions and increase yields through better nitrogen management. 

Culture and economics have a huge impact on emissions and yields

We also found various cultural, economic, household and other social factors significantly determined whether farmers adopted low-emission technologies.

For example, households with high levels of education, large land holdings and access to agricultural advisory, as well as farmers who received training on climate change, were likely to adopt zero tillage, a practice that retains soil moisture, builds up nutrients and decreases greenhouse gas emissions.

Other farmers who received training on climate change along with crop, soil, water and seed management, and those having access to agricultural credit tend to adopt low-emission technologies such as split application of nitrogen and use of farm yard manure.

Overall, capacity building that increases farmers’ awareness and skills in agriculture and climate change contributes to increased production and reduced emission intensity for all households. Farmers’ societies, farm cooperatives and local non-governmental organizations can therefore play a vital role in encouraging farmers to adopt appropriate low-emissions practices and technologies.

Government action needed for low-emission agriculture in India

Knowing the impact of various social drivers and low-emission strategies, particularly the decrease of nitrogen fertilizer use, on agricultural development can help increase production and reduce emissions nationwide.

State and local governments must integrate policies and technology that enhance farmer access to new innovations like zero tillage and irrigation, and provide more information on efficient residue, farm manure and nitrogen fertilizer management. The government must also adopt multiple approaches that include targeted subsidies for sustainable technologies like zero tillage machinery and precision land levelers, mobilize local civil society organizations to increase knowledge about low-emission practices and use information communication technology to increase awareness and access to information about sustainable agricultural practices.

Most importantly, all mitigation-related interventions require investment decisions at the household level. Family and farm size, the gender of household head and many other factors rare critical to take into account in each intervention to successfully scale out low-emission practices and technologies.

Read the full study “Identifying high-yield low-emission pathways for the cereal production in South Asia” here.

Read the CCAFS blog “Report identifies high-yield, low-emission options for cereal systems in South Asia”

Read the 2016 CIMMYT Annual Report story “India farmers put aside the plow, save straw and fight pollution”

Wheat forum builds partnerships for sustainable intensification in Nepal

KATHMANDU, Nepal (CIMMYT) — The Government of Nepal recently endorsed a new twenty-year agriculture development strategy that charts a progressive course of action to revitalize agriculture as an engine for economic growth and domestic food security.

At the center of this strategy is the recently launched the Prime Minister Agriculture Modernization Project (PMAMP). The project will be implemented over the next decade and has research and development mandates for productivity enhancement and commercialization of major cereals, fisheries, fruits and vegetables.

PMAMP emphasizes wheat production as a priority, especially in the Terai – a very productive agricultural area – in order to achieve national self-sufficiency in wheat production within the next three years. Meeting this extremely ambitious goal will require an unprecedented increase in average yields of 10 percent per year, and a high level of strategic coordination among organizations contributing to agricultural development in Nepal.

The PMAMP leadership has requested that the International Maize and Wheat Improvement Center (CIMMYT) through its Cereal Systems Initiative for South Asia (CSISA) act as a technical advisor and strategic partner to design and implement programs for staple crop production, including mechanization and seed systems.

On July 26-27 in Kathmandu, PMAMP and CSISA organized the first working group forum for wheat to begin to unite and coordinate efforts of 21 core public and private stakeholders working on extension, research and sector development.

Discussion at the forum emphasized the identification of proven best practices for sustainable intensification, consideration of scaling pathways for knowledge and technological innovations, knowledge gaps and areas for future research and joint work plan development for the 2017-2018 wheat season.

A four-member committee representing PMAMP, the Nepal Agricultural Research Council (NARC), CSISA and the private sector has been created to guide implementation of the collaborative work plan for wheat intensification across Nepal.

Rajan Dhakal, senior agriculture officer at PMAMP, remarked that the forum was instrumental in identifying technical priorities and clarifying how the efforts of diverse partners can contribute to the food security goals of the Government of Nepal.

Y.P. Giri, chair and director of crops and horticulture at NARC, said he appreciated CSISA’s efforts to facilitate discussion and coordination across a diverse set of stakeholders through a common and action-oriented platform.

Drawing on the success of the wheat forum, PMAMP will convene meetings for maize and rice with support from NARC, CSISA and private sector partners this fall.

CIMMYT launched the Cereal Systems Initiative for South Asia (CSISA) in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems. CIMMYT operates rural “innovation hubs” in Bangladesh, India and Nepal to increase the adoption of various resource-conserving and climate-resilient technologies, and to improve farmer access to market information and enterprise development. Learn more about CSISA’s impact here.

CIMMYT’s wheat working group will serve as a strategic partner and provide technical advice for Nepal’s Prime Minister Agriculture Modernization Project. Photo: CSISA Nepal
CIMMYT’s wheat working group will serve as a strategic partner and provide technical advice for Nepal’s Prime Minister Agriculture Modernization Project. Photo: CSISA Nepal

New Publications: New environmental analysis method improves crop adaptation to climate change

EL BATAN, Mexico (CIMMYT) – A new paper proposes researchers analyze environmental impacts through “envirotyping,” a new typing method which allows scientists to dissect complex environmental interactions to pinpoint climate change effects on crops. When used with genotyping and phenotyping – typing methods that assess the genetic and in-field performance of crops – researchers can more effectively adapt crops to future climates.

Climate change has significantly shifted weather patterns, which affects a number of farming conditions such as less reliable weather, extreme temperatures and declining soil and water quality. These extreme conditions bring a number of unexpected stresses to plants such as drought and new pests.

How a crop performs is largely dependent on the environment where it grows, making it crucial for breeders to analyze crops in growing areas. However, many breeding tools such as genetic mapping are based on the environment where phenotyping is performed, and phenotyping is often conducted under managed environmental conditions.

Envirotyping allows researchers to apply real-world conditions when assessing the performance of crops. It has a wide range of applications including the development of a four-dimensional profile for crop science, which would include a genotype, phenotype, envirotype and time.

Currently, envirotyping requires environmental factors to be collected over the course of multiple trials for use in contributing to crop modeling and phenotypic predictions. Widespread acceptance of this new typing method could help establish high-precision envirotyping, as well as create highly efficient precision breeding and sustainable crop production systems based on deciphered environmental impacts.

Read the full study “Envirotyping for deciphering environmental impacts on crop plants.” and check out other recent publications from CIMMYT staff below.

 

  • Effects of nitrogen fertilizer and manure application on storage of carbon and nitrogen under continuous maize cropping in Arenosols and Luvisols of Zimbabwe. Mujuru, L., Rusinamhodzi, L., Nyamangara, J., Hoosbeek, M.R. In: Journal of Agricultural Science, v. 154, p. 242-257.

 

  • Empirical evaluation of sustainability of divergent farms in the dryland farming systems of India. Amare Haileslassie, Craufurd, P., Thiagarajah, R., Shalander Kumar, Whitbread, A., Rathor, A., Blummel, M., Ericsson, P., Krishna Reddy Kakumanu In: Ecological indicators, v. 60, p. 710-723.

 

  • Evaluation of tillage and crop establishment methods integrated with relay seeding of wheat and mungbean for sustainable intensification of cotton-wheat system in South Asia. Choudhary, R., Singh, P., Sidhu, H.S., Nandal, D.P., Jat, H.S., Singh, Y., Jat, M.L. In: Field Crops Research, v. 199, p. 31-41.

 

  • Fertilizers, hybrids, and the sustainable intensification of maize systems in the rainfed mid-hills of Nepal. Devkota, K.P., McDonald, A., Khadka, L., Khadka, A., Paudel, G., Devkota, M. In: European Journal of Agronomy, v. 80, p. 154-167.

 

  • Detection and validation of genomic regions associated with resistance to rust diseases in a worldwide hexaploid wheat landrace collection using BayesR and mixed linear model approaches. Pasam, R.K., Bansal, U., Daetwyler, H.D., Forrest, K.L., Wong, D., Petkowski, J., Willey, N., Randhawa, M.S., Chhetri, M., Miah, H., Tibbits, J., Bariana, H.S., Hayden, M. In: Theoretical and Applied Genetics, v. 130, no. 4, p. 777-793.

 

  • Diallel analysis of acid soil tolerant and susceptible maize inbred lines for grain yield under acid and non-acid soil conditions. Mutimaamba, C., MacRobert, J.F., Cairns, J.E., Magorokosho, C., Thokozile Ndhlela, Mukungurutse, C., Minnaar-Ontong, A., Labuschagne, M. In: Euphytica, v. 213, no. 88, p.1-10.

 

  • Direct Nitrous Oxide emissions from Tropical And Sub-Tropical Agricultural Systems: a review and modelling of emission factors. Albanito, F., Lebender, U., Cornulier, T., Sapkota, T.B., Brentrup, F., Stirling, C., Hillier, J. In: Nature Scientific reports, v. 7, no. 44235.

 

  • Dissection of a major QTL qhir1 conferring maternal haploidinduction ability in maize. Nair, S.K., Molenaar, W., Melchinger, A.E., Prasanna, B.M., Martinez, L., Lopez, L.A., Chaikam, V. In: Theoretical and Applied Genetics, v. 130, p. 1113-1122.

 

  • Effect of the few-branched-1 (Fbr1) tassel mutation on performance of maize inbred lines and hybrids evaluated under stress and optimum environments. Shorai Dari, MacRobert, J.F., Minnaar-Ontong, A., Labuschagne, M. In: Maydica, vol. 62, p. 1-10.

 

Zero till climate-smart wheat-rice-bean crop rotations in India curb emissions

A farmer walks through his rice field in Taraori village in Karnal, Haryana, India. CIMMYT/M.L. Jat
A farmer walks through his rice field in Taraori village in Karnal, Haryana, India. Photo: M.L. Jat/ CIMMYT

EL BATAN, Mexico (CIMMYT) — Conservation agriculture techniques can help boost yields and profits for smallholder farmers in an intensively cultivated region of India while helping reduce the impact of agriculture on global warming, according to a new research report.

Hardy, high-yielding crop varieties can be resilient to erratic weather patterns caused by climate change, but agricultural intensification must be balanced with sustainable techniques to offset the effects of emissions caused by greenhouse gases.

As part of efforts to achieve agriculture-climate equilibrium, researchers at the International Maize and Wheat Improvement Center (CIMMYT) studied basmati (scented) rice-wheat crop rotation systems in India’s Northwestern Indo-Gangetic Plains, seeking an optimal planting strategy to lower impact on global warming while increasing farm profits.

Overall, they evaluated six different combinations of tillage, residue management and green gram (mung bean) integration into rice-wheat rotations, comparing conventional tillage techniques with conservation agriculture techniques in a village in the northern state of Haryana, known as the basmati rice heartland of India.

Green gram (mung beans) growing in Taraori village in Karnal, Haryana in India. CIMMYT/M.L. Jat
Green gram (mung beans) growing in Taraori village in Karnal, Haryana in India. Photo: M.L. Jat/ CIMMYT

“Through research we aimed to identify cropping systems in which greater yields could be achieved at lower production costs leading to higher profitability while minimizing soil and environmental trade-offs,” said M.L. Jat, a systems agronomist based in New Delhi with CIMMYT who worked on the project for more than five years.

“Our study concludes that two ways of managing crop rotation systems: zero tillage rice and zero tillage wheat planted in residue; and zero tillage rice, zero tillage wheat and green gram planted in residue in the rice-wheat systems of this region of India are agronomically productive, economically viable and beneficial for the environment in terms of soil health and greenhouse emissions,” Jat added, referring to the research paper in “Sustainability Journal” titled “Reducing Global Warming Potential through Sustainable Intensification of Basmati Rice-Wheat Systems in India.”

Specifically, scientists examined the best way to sustainably intensify crop production rotation systems to limit greenhouse gas emissions from soil, which include methane, nitrous oxide and carbon dioxide, while adding a third crop to the rotation.

Scientists wanted to help increase production by making use of a normally fallow season from May to July, which marks a pause between growing rice (July to November) and wheat (November to April). Rather than extending the rice and wheat growing seasons, to keep the soil healthy in such a continuous cereal-cereal rotation, they added green gram (mung beans).

By planting basmati rice using a direct seeding method instead of the conventional tillage (puddling) and transplanted method, methane emissions can be reduced by as much as 50 percent, scientists learned. However, reducing methane emissions in a conservation agriculture rice-wheat system is counterbalanced by increased nitrous oxide emissions. Their research concluded that by combining zero tillage and residue retention in the crop growing system, carbon is sequestered in the soil, helping to prevent greenhouse gas emissions.

“Given the dynamics and interdependence of the three greenhouse gases under different management systems, it’s important that all three are measured to determine overall global warming potential of the production system to quantify the mitigation co-benefits of conservation agriculture-based sustainable intensification in basmati rice-wheat systems,” Jat said.

Sowing seeds without tilling or removing residue from the fields contrasted with general practice in the region where farmers typically use conventional agriculture techniques by tilling the soil and removing crop residue from field surfaces before planting.

Scientists determined that using zero tillage with residue retention techniques resulted in the lowest global warming potential. The percentage of Greenhouse gases (CO2-equivalent) released into the atmosphere (on a life cycle analysis basis that includes global warming potential from inputs, operations, emissions and soil organic carbon) was lower by approximately 8 tonnes per hectare per year.

Additional environmental benefits included improved soil health, eliminating residue burning and more efficient water use in fields planted with rice-wheat rotations where conservation agriculture techniques were used. The water use footprint was reduced by almost 30 percent in comparison with farms using conventional tillage systems.

Agriculture and climate change pose complex challenges for scientists trying to improve crop yields on smallholder farms in developing countries. Sustainable intensification based on conservation agriculture principles, including minimal soil disturbance, permanent soil cover, economical and diversified crop rotations, is an important strategy to combat the negative impact of agriculture on the climate and other natural resources while improving the income of smallholder farmers.

Agriculture is the second biggest emitter of greenhouse gases after the energy sector. About 65 percent of farm-related emissions come from methane caused by cattle belching and soil treated with natural or synthetic nitrogen fertilizers, according to the World Resources Institute.

International development targets established by the U.N. climate change agreement aim to curb warming by keeping global temperature increases well below 2 degrees Celsius above pre-industrial levels.

“If sustainable intensification practices are deployed on 26 million hectares of rice-wheat rotations in Asia, we have the opportunity to make a significant contribution to reducing global warming potential and mitigating the impact on the environment,” Jat said.

The study was co-funded by the CGIAR Research Program on Climate Change (CCAFS) and Bayer CropScience.

Increased investment needed to adapt Africa’s agriculture to climate change

CIMMYT Director General, Martin Kropff delivers keynote address on “Climate smart resilient systems for Africa.” Photo: J. Siamachira/CIMMYT.
CIMMYT Director General, Martin Kropff delivers keynote address on “Climate smart resilient systems for Africa.” Photo: J. Siamachira/CIMMYT.

HARARE, Zimbabwe (CIMMYT) – Delegates at a conference in June called for a new focus and increase in investment to ensure eastern and southern Africa’s farming systems can withstand the impacts of climate change.

Africa is likely to be the continent most vulnerable to climate change, according to the UN Framework Convention on Climate Change. Smallholders produce around 80 percent of all food in sub-Saharan Africa, and rely primarily on rainfall for irrigation – a source that is becoming scarcer and unpredictable under climate change. Farming is also often practiced in marginal areas like flood plains or hillsides, where increasing and more intense weather shocks cause severe damage to soil and crops.

Tanzania’s Minister for Agriculture, Food Security and Cooperatives Charles Tizeba said during a conference on the future of the Sustainable Intensification of Maize-Legume Based Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project, an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Centre for International Agricultural Research (ACIAR), that a paradigm shift in agricultural development is needed to enable smallholder farmers, especially those in rural areas, to produce enough to feed themselves and to sell.

Sustainable agricultural practices, improved seed varieties, use of fertilizers and better infrastructure are all technologies and practices that have been successfully tested by SIMLESA and have the potential to be expanded across the region, said Tizeba. He also called on governments in eastern and southern Africa to develop agricultural agendas based on farmer needs and opportunities SIMLESA identified through the project’s research efforts.

Over 100 people representing different governments, research institutions, development agencies and the private sector gathered in Tanzania to participate in the taking stock on sustainable intensification research for impact in eastern and southern Africa conference. Since 2010, SIMLESA has successfully tested locally-adapted sustainable farming systems throughout eastern and southern Africa. The project began its second phase in July 2014 and will focus on expanding climate-resilient technologies and practices throughout the region.

Delegates of the SIMLESA Sustainable Intensification Conference in Arusha, Tanzania. Photo: J. Siamachira/CIMMYT
Delegates of the SIMLESA Sustainable Intensification Conference in Arusha, Tanzania. Photo: J. Siamachira/CIMMYT

To date, a total of 268 and 378 maize and legume on-farm participatory variety selections were conducted by SIMLESA, where best performing maize and legume varieties that met farmer preferences were selected and scaled up by partner seed companies. The project has influenced over 235,000 farmers who adopted at least one sustainable intensification technology or practice.

CIMMYT Director General Martin Kropff called for the adoption of “climate-smart agriculture” that will make crops more resilient to continuing extreme weather events.

“For our farmers to be productive and ensure food security, we need to build resilience to climate change…we need to invest in new agricultural innovation now,” said Kropff.

Andrew Campbell, ACIAR chief executive officer, said climate change has already had a powerful negative effect on agriculture and food security for the world’s most vulnerable, and that these effects will become even worse in the future.

“It’s critical to integrate research into development initiatives,” said Campbell. “In this regard, SIMLESA’s work, in partnership with national agricultural research systems, becomes even more critical.”

At the project level, SIMLESA will aim to scale its sustainable intensification technologies to 650,000 farm households by 2023 in eight target countries through different partnership arrangements.

Many of the speakers at last week’s event said smallholder farmers must be part of discussions on climate change and food security as they are often among those most touched by the impacts of climate change, and they play an integral role in global agriculture systems.

To achieve the best results, SIMLESA will channel its experiences and lessons learned since its inception in 2010 and scale out its work through shared analysis, common research questions and learning through the monitoring, evaluation and learning portfolio, communications and knowledge sharing and a lean project management structure.

SIMLESA’s positive assessment of conservation agriculture-based sustainable intensification in the region suggests that policies that strengthen national and local institutions, build infrastructure for sustainable farming, improve financial investment in agriculture and increase access for innovative private investors, play a key role in alleviating poverty and food insecurity in the region.

The Sustainable Intensification of Maize-Legume Based Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project was launched in 2010. Funded by the Australian Centre for International Agricultural Research (ACIAR), SIMLESA aims to improve the livelihoods of smallholder farming communities in Africa through productive and sustainable maize–legume systems and risk management strategies that conserve natural resources. It is managed by CIMMYT and implemented by partners in Ethiopia, Kenya, Malawi, Mozambique and Tanzania. 

Farmer in Malawi defines true project success

Esnath Shaibu (left) on his farm in Malawi discussing resource allocation on his plots. Photo: C. Thierfelder/CIMMYT
Esnath Shaibu (left) on his farm in Malawi discussing resource allocation on his plots. Photo: C. Thierfelder/CIMMYT

LIWONDE, Malawi (CIMMYT) — Esnath Shaibu, a smallholder farmer from Matandika, southern Malawi was a host farmer with the International Maize and Wheat Improvement Center (CIMMYT) for seven years who helped the organization conduct research trials on sustainable agriculture intensification with support from the International Fund for Agricultural Development (IFAD).

Shaibu’s farm in Matandika, like most other farms in this area, is small and restricted to less than one hectare (ha) per household. Matandika is highly affected by the effects of climate change and a growing population is putting more pressure on dwindling land resources. Farmers have experienced more droughts in recent years which has affected food and nutritional security. Investment into soil conservation and maintaining soil fertility has therefore become critical.

A good proportion of Shaibu’s livelihood is generated from the land of his .3 ha research plot, which evaluates conservation agriculture (CA) systems in the environments and circumstances of Matandika.

The fields in Matandika are on hillsides and need to be seeded with as little disturbance as possible to avoid soil erosion and run-off. Farmers have also understood the value of crop residues and integrate legumes as intercrops in their fields to intensify their farming systems and increase diversification. Optimal plant spacing, early planting and precision application of fertilizers have been other good agriculture practices that farmers perfected in this area.

During the trials, Shaibu practiced a direct seeded CA method, intercropping maize and pigeonpea, and compared the results with conventional tillage practices just planting maize. Yields from Shaibu’s plots were increasingly stable under the CA system, as they proved to be more resilient against in-season dry-spells, drought and unevenly disturbed rainfalls which often fell at great intensity.

Shaibu graduated from the CA program in 2014, but continued to implement the same principles and practices on his own without CIMMYT’s interference or support.

When questioned about his rationale during a field visit in 2017, Shaibu said “we saw something good in it,” and his healthy looking crop spoke for itself.

Shibu’s case demonstrates that technology adoption is only successful if we as development practitioners work ourselves out of a job. He is a true adopter who has continued investing his own resources to produce a good maize crop on a significant proportion of his land by applying CA principles at highest standards. Shaibu has also converted other fields he owns to CA and continues to be an influential advocate in the community for the benefits of CA.

Sustainable agriculture for healthy forests

Farmers are beginning to transform agriculture in Mexico’s Yucatán peninsula through techniques that allow them to grow more on less land, reducing deforestation and greenhouse gas emissions. Photo: J. Van Loon/CIMMYT
Farmers are beginning to transform agriculture in Mexico’s Yucatán peninsula through techniques that allow them to grow more on less land, reducing deforestation and greenhouse gas emissions. Above, slash and burn agriculture (right) compared to a non-burn strategy in a milpa system. Photo: J. Van Loon/CIMMYT

TEXCOCO, Mexico (CIMMYT) –  Farmers in Mexico’s ecologically-fragile Yucatán Peninsula are beginning to adopt innovative practices to manage traditional mixed-cropping systems called “milpas” that can slow or even stop deforestation and soil degradation.

Agriculture is the second largest emitter of global greenhouse gas emissions and largest driver of deforestation, making the sector one of the top contributors to climate change and biodiversity loss.

Fifteen percent of global emissions is due mostly to agricultural expansion into tropical forests. Rising populations and changes in dietary preferences for more energy intense foods, like beef and soy bean, are expected to boost agricultural emissions a further 15 percent by 2030.

Agricultural expansion and resulting deforestation of tropical areas also threatens more than half of all the world’s plant and animal species, contributing significantly to what many scientists say is Earth’s sixth mass extinction.

“Sustainable agriculture can bring large benefits to tropical areas by optimizing land use while improving farm management and techniques for farmers,” said Jelle Van Loon, a mechanization expert at the International Maize and Wheat Improvement Center (CIMMYT) who is working with farming communities in Mexico’s Yucatán Peninsula – an area compromising much of the largest remaining tropical rainforest in the Americas after the Amazon.

Nearly 80 percent of vegetation has been deforested or degraded in the peninsula, with more than 80,000 hectares being cut down annually.

“Agriculture in the Yucatán Peninsula is extremely diverse – there’s everything from industrial farms that operate around forest areas to small community farmers practicing the traditional milpa system in the interior,” said Van Loon.

Milpa farming – a traditional mixed-cropping system in which maize, beans and squash are grown – contributes to about 16 percent of deforestation in the region, and is typically practiced by subsistence farmers through slash and burn agriculture.

Milpa systems vary across communities in the region,” said Van Loon. “Sometimes plots are burned, farmed and left within two to three years for a new plot, and others are more permanent.”

A technician learns how to operate a two-wheeled tractor. Technicians working with CIMMYT will perform field trials evaluating the efficiency of equipment like this in their work areas. Photo: J. Van Loon/CIMMYT
A technician learns how to operate a two-wheeled tractor. Technicians working with CIMMYT will perform field trials evaluating the efficiency of equipment like this in their work areas. Photo: J. Van Loon/CIMMYT

Van Loon is working with a team of CIMMYT scientists and other partners in the region to see how farmers can apply sustainable technologies and practices across the peninsula’s milpa systems, as well as larger-scale mechanized farms that operate in the area.

“It’s extremely important that the unique circumstances of each community are taken into account when new technologies are being promoted,” said Van Loon, citing that many programs exist to support local communities, but is often challenging to organize support in an integrated fashion that’s adjusted to local conditions.

Milpa provides more than crops for food – the slash and burn system also provides game and timber for these communities, so there are many factors that need to be taken into account when we try and promote sustainable practices.”

Two years ago CIMMYT successfully trialed a sustainable agriculture initiative with farmers in Hopelchén, a small community in Campeche where indigenous and Mennonite farmers grow maize following traditional farming practices.

Decades of soil degradation had forced farmers to convert rainforest areas into growing fields to continue farming, but when the farmers adopted sustainable intensification methods such as minimal soil movement, surface cover of crop residues and crop rotations, they were able to achieve higher yields even after two months of drought.

The Hopelchén farmers prove the dual benefits of sustainable agriculture in forest areas – forests that would otherwise have been cut down for farmland are preserved, acting as a ‘carbon sink’ by absorbing carbon dioxide that would have been free in the atmosphere, further contributing to climate change. These practices also help farmers adapt to the effects of climate change, like drought and erratic rainfall.

“In order to get adoption right, we are really taking a system-wide approach,” said Van Loon. “We want to integrate mechanization, soil quality, planting density and other approaches like inter-planting with trees to improve biodiversity to get the most efficient system possible.” Van Loon will specifically work with communities to explore mechanization opportunities, from improved hand tools to light weight motorized equipment like two-wheel tractors.

“The goal is to optimize the benefits from the land that farmers are working, find ways to reduce pressure on opening new land and as such slow the rate of deforestation, preserve biodiversity and provide farmers with techniques for improved and more sustainable practices,” said Van Loon. “Ultimately, we’d like to see these practices adopted across the peninsula.”

CIMMYT is leading sustainable intensification efforts in the Yucatan through the Sustainable Modernization of Traditional Agriculture (MasAgro) program, along with CitiBanamex, Fundación Haciendas del Mundo Maya, local partners, non-governmental organizations and the Mexican government.  

Scaling up research for impact

By scaling up, development practitioners take successful interventions and expand, adapt and sustain them in different ways over time for greater development impact. Photo: CIMMYT/P. Lowe
Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve. Photo: CIMMYT/P. Lowe

EL BATAN, Mexico (CIMMYT) – Agricultural innovations, like climate-resilient crops, sustainable land use practices and farm mechanization options, can go a long way toward achieving several U.N. Sustainable Development Goals.

But ensuring research reaches a significant amount of farmers to have widespread impact is challenging.

Projects, programs and policies can often be like small pebbles thrown into a big pond. They are limited in scope, time bound and therefore might fail to have long lasting impact. Through well thought scaling up strategies, development practitioners expect to implement successful interventions and expand, adapt and sustain them in different ways over time for greater developmental impact.

“To have our knowledge and technologies positively impact the livelihoods of large numbers of farmers in maize and wheat based systems is what matters most,” said Bruno Gérard, director of the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT).

Understanding the needs and demands of our stakeholders is crucial in the design and implementation of a research portfolio, he added.

As part of a German Development Cooperation (GIZ) effort to aid the scaling up of agricultural innovations, Lennart Woltering recently joined CIMMYT’s Sustainable Intensification Program. With previous experience working in development in Africa and South Asia, Woltering will play a key role in linking CIMMYT’s research to specific development needs, increasing its relevance and impact.

There is no blue-print for scaling, it depends on the institutional and socio-economic environments, which are very diverse in the various regions where CIMMYT works, said Gérard. He hopes Woltering’s experience with both development and research organizations will further contribute to link the right technical innovations with the people who need them.

Bringing a scaling perspective to research projects as early as possible helps keep a focus on what the project actually can and aims to achieve, Woltering said. Understanding what the drivers are that make widespread adoption happen is critical.

“We do this by making sure scaling processes are an integral part of innovation systems. It is important to understand how conducive environments for scaling can be facilitated and how far we can realistically go,” he added.

Woltering will work to provide a coherent approach to scaling that can be used across the program’s projects, said Gérard.

To see real impact from research, initiatives must move beyond the boundaries of a single organization, Woltering said. New forms of collaboration across different sectors and the opening of new communication channels to share lessons of success when scaling should emerge.

Woltering will develop scaling strategies to facilitate the adoption of sustainable intensification options such as conservation agriculture and water/nutrient efficient practices, and contribute to enhance CIMMYT’s partnerships with public and private sectors.

Previously, Woltering worked as a civil engineer focusing on water management with the International Crops Research Institute for the Semi-Arid Tropics in Africa (ICRISAT), then later moved on to work for a consulting development firm in Germany.  His experience will allow him to better articulate development needs with CIMMYT’s research, increasing the relevance and impact of the organization’s work.

Woltering is one of five experts working at CIMMYT as part of the GIZ sponsored CIM Integrated Experts program. The CIM program aims to strategically place managers and technical experts in public and private organizations in the developing world to pass on their professional knowledge and contribute to capacity building.

 

 

Q+A: Agricultural mechanization fuels opportunity for youth in rural Africa

Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT's
Farmers test out agricultural mechanization tools in Zimbabwe as part of CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification project. Photo: CIMMYT/ Frédéric Baudron

EL BATAN, Mexico (CIMMYT) – Small-scale agricultural mechanization is showing signs it has the potential to fuel rural employment for youth in sub-Saharan Africa, according to researchers at the International Maize and Wheat Improvement Center (CIMMYT).

Across Africa, youth are struggling with high unemployment and working poverty, the International Labor Organization records. However, increased adoption of agricultural mechanization –  especially machines that are small, affordable and easy to maintain such as two-wheel tractors – is stimulating jobs and entrepreneurial opportunities for African youth, said Frédéric Baudron, senior systems agronomist at CIMMYT.

“Small-scale mechanization is more equitable than other forms of mechanization as even the poorest and most vulnerable have access to it,” he said.

Youth, along with women, are typically subject to labor intensive farm activities causing them to shun agriculture. But with mechanization improving productivity while reducing drudgery, youth are seeing economic opportunity in agribusiness, on rural farms and as service providers, said Rabe Yahaya, a CIM/GIZ integrated expert specialized in mechanization for sustainable agriculture intensification.

As a result, new jobs along the value chain from mechanics to spare parts providers have been created, he added.

Relatively cheap and easy to operate two-wheel tractors can be used for many different applications. On-farm, the tractors are used to speed up crop establishment while conserving soils through reduced tillage and precision fertilizer application. They allow farmers to tap into surface water for irrigation as well as aid shelling grain to reduce the time taken to get to market. The machinery has also been used to start rural commercial hire and transport services.

Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/
Beyene Abebe from Ethiopia, is one youth gaining economic opportunity as a mechanization service provider. Photo: CIMMYT/ Frédéric Baudron

24-year-old Beyene Abebe from Ethiopia is one youth benefiting from mechanization. Through CIMMYT managed training, Abebe has developed the skills needed to become a mechanization service provider. He now provides transportation services for an average of 200 households annually and ploughing services for 40 farmers in his village using two-wheel tractors. With the income from his service, Abebe can cover his family’s expenses and he bought farmland with his savings.

National government support for training and innovation is key to bolster agricultural mechanization throughout Africa, said Baudron. By creating a conductive business environment to attract private sector actors, governments can grease the wheels to scale out success.

Both Yahaya and Baudron shared some insights on the opportunities agricultural mechanization can provide rural communities in the following interview.

Q: Why is it important that agricultural research for development targets youth in rural areas?

RY: A growing population and diet change is increasing food demand in Africa, however, the amount of arable land is decreasing. This affects rural areas, where agriculture remains the main source of income and livelihood. Agriculture in the way it is currently practiced in rural areas is no longer attractive to the new generation of youth as it is labor intensive, rudimentary, risky, unproductive and does not support a good livelihood.

In addition, only 2 percent of Africa’s youth are undertaking agricultural curriculum at the university level. Despite young Africans being more literate than their parents, they suffer from increased unemployment. Agriculture could be the solution in tackling youth unemployment in rural areas, therefore providing peace, stability and food security.

FB: Youth unemployment is growing. Agriculture is perceived as a sector that can absorb much of this unemployment, particularly when combined with entrepreneurship.

In my view, an important issue when tackling issues of sustainable development as opposed to simply ‘development,’ is the issue of equity. We must ensure that the largest amount of people benefit from our interventions. Rural youth represent a large proportion of the vulnerable households in the areas where we work, because they lack capital and other resources, similar to women-headed households.

Q: How is mechanization creating new rural opportunities for youth and women?

RY: In many societies, youth and women are unequally disadvantaged and perform the most labor intensive agricultural activities such as plowing, sowing, weeding, harvesting, shelling, water pumping, threshing and transportation with very rudimentary implements using human and animal power. Therefore, increasing the use of engine power in agriculture will free youth and women from production drudgery discrepancies and most importantly increase farm productivity and consequently improve income generation if an organized value chain exists with a strong private sector involvement.

FB: Mechanization creates rural employment. It creates work for service provider jobs and it also stimulates other businesses along the mechanization value chains. Once demand for mechanization is established, employment opportunities grow for mechanics, fuel providers, savings and loans associations, spare part dealers, etc.

Q: What lessons are there to aid youth to be successful mechanization service providers?

RY: Training in mechanical, agronomic and business skills. Again training and constant follow up is key in order not only to produce successful youth mechanization service provider, but to ensure their continued success. In addition, infrastructure, aftersales — service and spare parts dealerships and financial schemes, promote the adoption of mechanization and support the development of value chain markets are crucial to success.

And remember whatever the technology may be, the farmer has to be able to earn money from it, otherwise they will not use it!

FB: Youth also tend to be better at managing modern technologies. We found consistently, in all countries where we work, that being a successful service provider is highly correlated to be a member of the youth. However, other factors are also important such as being entrepreneurial, educated, able to contribute to the cost of the machinery, and preferably having an experience in similar businesses and particularly in mechanics

Working with CIMMYT’s Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project, researchers have sought to promote the delivery and adoption of small-scale machines to make farming practices – including planting, harvesting, water pumping, shelling and transporting – more productive and sustainable in eastern and southern Africa. Funded by the Australian Center for International Agricultural Research, FACASI offers support throughout the supply chain, from importers to manufacturers, service providers and extension workers to ensure mechanization reaches farmers.

CIMMYT’s mechanization team has ongoing collaboration with GIZ/BMZ green innovation center in Ethiopia and works in Namibia with GIZ to provide knowledge, expertise and capacity building on conservation agriculture.

Further information:

Rural21 features CIMMYT mechanization experts

Mechanization for smallholder farmers fact sheet

Breaking Ground: Hands on experience gives Carolina Camacho insight into farming best practices

TwitterCamachoEL BATAN, Mexico (CIMMYT) – Tending her own crops gives Carolina Camacho insights into the challenges farmers face that she could never have learned in a classroom.

Growing up in the metropolis of Mexico City, the historical and political importance of agriculture was never lost on Camacho, who works as a principal researcher at the International Maize and Wheat Improvement Center (CIMMYT).

“As a teenager, I would debate my sister over the most pressing issue that faced our country, Mexico. For me it was always in agriculture,” Camacho said. “I strongly believe if we are to improve our country, we must improve the lives of our campesinos (smallholder farmers).”

With no knowledge of farming, but with a passion to bring about change, she took to the field, studying crop science at Chapingo University, on the outskirts of the city in the State of Mexico. Having to brave early morning starts, she learned the basics of agriculture, and a love for the genetic diversity of maize.

Mexico, considered the birthplace of maize, is home to a rich diversity of varieties that has evolved over years of domestication by farmers. Camacho was introduced to this diversity firsthand, interning at CIMMYT’s maize germplasm bank as an undergraduate.

Interested in discovering how conserving maize diversity played out in farmers’ fields she gravitated towards an on-farm conservation project in rural Mexico. Working with indigenous farmers, Camacho learned how traditional knowledge and practices relate to environmental management, agricultural production and the diversity of native maize varieties.

After earning a master’s degree in the conservation and utilization of genetic resources, Camacho felt that crop science was isolated from the daily life of farmers. Thus, in a move to study the relationship between humans and plants, she embarked on a multidisciplinary doctoral in the sociology of rural development at Wageningen University in the Netherlands.

While conducting her research, Camacho lived with indigenous farmers in Mexico’s Lacandon rainforest in the state of Chiapas. Alongside local Mayan farmers she cultivated her own milpa – a farming system used by indigenous farmers in Latin America, which typically involves intercropping maize, beans and squash. Her hands-on fieldwork allowed her to study cultivation practices outside the scope of purely agronomic activities, but also as political, social and cultural actions.

“Farming alongside the Tzeltal people, I saw how my own cultivation practices were interwoven with everyday life,” said Camacho. “Farming was influenced by religious ceremonies, health and family affairs as well as political struggles for land. It had to cope, adapt and overcome these challenges.”

Today, these lessons learned guide Camacho as she investigates how agricultural innovations, including drought-tolerant crops, fertilizer and land management approaches can be farmer inclusive and tailored to local contexts as part of CIMMYT’s sustainable intensification strategy for Latin America.

Sustainable intensification aims to enhance the productivity of labor, land and capital. They offer the potential to simultaneously address a number of pressing development objectives, including unlocking the agricultural potential to adapt production systems to climate change, sustainably manage land, soil, nutrient and water resources, improved food and nutrition security, and ultimately reduce rural poverty.

CIMMYT principal researcher Carolina Camacho studies how innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages.
CIMMYT principal researcher Carolina Camacho studies how agricultural innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages. Photo: CIMMYT/ Courtesy of Carolina Camacho

Smallholder farmers, who manage small plots of land and handle limited amounts of productive resources, produce 80 percent of the world’s food. The United Nations calls on these farmers to adopt agricultural innovations in order to sustainably increase food production and help achieve the “Zero Hunger” U.N. Sustainable Development Goal. However, these farmers seldom benefit from new techniques to shore up efforts to meet the goal.

“An agricultural scientist can tell a farmer when and how to plant for optimal results, but they do not farm in a bubble, their practice is affected by the ups and downs of daily life – not only by climate and agronomy but also by social and cultural complexities,” Camacho said.

“One of the biggest challenge is to recognize the heterogeneity of farmers and leave behind the idea of one size solution to their diverse problems and needs,” said Camacho. By understanding a farmer’s lifestyle, including access to resources and information, levels of decision making in the community and the role of agriculture in their livelihood strategy, researchers can best identify complementary farming practices and techniques that not only boost productivity but also improve livelihoods.

“It’s important to think about agricultural innovations as social processes for change in which technologies, like improved seeds or agronomic practices, are only one element,” said Camacho. “It is key that we recognize that changes will not only occur in the farmer’s field but also in the behavior of other actors in the value chain, such as input suppliers, traders, government officials and even researchers.”

Camacho studies how innovations are promoted and adopted in different regions to aid their smooth delivery to farmers and community members from different genders, ethnicities and ages.

When working with indigenous communities, she ensures cultural values of the milpa system are taken into account, thus promoting the agricultural tools and techniques that do not detract from the importance of the traditions associated with the milpa practice.

“The milpa system is a clear example of how agriculture in general and maize in particular contribute to the construction of the cultural identities of indigenous people. We should be aware of the consequences that innovations will have not only for environmental sustainability but also for the sustainability of the Mayan Culture,” she said.

“Let’s not forget, we can’t separate culture from agriculture,” Camacho finished.

 

Camacho studies the process in which researchers promote agricultural innovations and how farmers adopt them through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, supported by Mexico’s Ministry of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA). Together with other researchers, Camacho has documented how MasAgro is promoting innovations in different regions of Mexico by responding to specific regional challenges and opportunities. Currently she is supporting scaling efforts for these innovations by ensuring that they will be sustainable and inclusive.

In the same line of inclusiveness, Camacho is working with two projects in the milpa system. The first one is the Buena Milpa project funded by U.S. Agency for International Development’s Feed the Future program and in collaboration with the Guatemala Agricultural Science and Technology Institute. The second one is the Milpa de Yucatan project sponsored by a private Mexican foundation in Yucatan Peninsula. Both projects promote sustainable intensification innovations in the milpa systems.

 

 

CIMMYT doctoral student wins award for outstanding thesis

CIMMYT post-doctoral student and ETH Zürich graduate Stephanie Cheesman has won the 2017 Hans Vontobel-Preis. Photo: S. Cheesman
CIMMYT doctoral student and ETH Zürich graduate Stephanie Cheesman has won the 2017 Hans Vontobel-Preis. Photo: S. Cheesman

MEXICO CITY (CIMMYT) – CIMMYT doctoral student and ETH Zürich graduate Stephanie Cheesman has won the 2017 Hans Vontobel-Preis.

This ETH prize awards 5,000 Swiss Francs ($4,988) annually to the student with the most outstanding thesis in Agricultural Science. The prize is financed by a private fund set up in 1994 by the late banking doyen Hans Vontobel.

Cheesman conducted her thesis project “Finding the truth in wishful thinking: an on-farm study on maize-based conservation agriculture systems in Southern Africa” while working with CIMMYT in Zimbabwe on a post financed by the Swiss Development Cooperation (SDC).

The thesis investigated the effects of conservation agriculture (CA) on maize yields and soil carbon stocks, as well as other plant nutrient stocks in the soil. It is based on data collected on 125 on-farm research sites CIMMYT had established between 2004 and 2009 in Malawi, Mozambique, Zambia and Zimbabwe.

The results showed that yields could quickly increase with CA, whereas soil carbon stocks showed – after up to only seven years of CA practice – limited response under the prevailing conditions of Zimbabwe. Farmers also generally adapt CA systems to their conditions rather than adopt the system, due to the fact that there are many more factors besides improved yields – such as preferences in crops grown, availability of inputs and access to other sources of income – that influence why a farmer adopts a technique.

Cheesman discusses with farmer what data he should be recording from his demonstration field. Photo: Pietro Bomio
Cheesman discusses with farmer what data he should be recording from his demonstration field. Photo: Pietro Bomio

The award panel consisted of Maja Baumann, granddaughter of Vontobel, Bruno Studer, professor and chair of the molecular plant breeding group at ETH Zürich and Sarah Springman, professor and rector of ETH Zürich.

Baumann cited Cheesman’s valuable hard data about conservation agriculture – a topic that has been strongly debated in recent years – and contribution to sustainable agriculture as main reasons for her selection. Further the jury appreciated that the thesis investigated both biophysical and socio-economic aspects, allowing for a better understanding of conservation agriculture’s impact.

Cheesman completed her thesis under the supervision of Emmanuel Frossard, professor at ETH Zürich, CIMMYT Senior Cropping Systems Agronomist Christian Thierfelder and Neal Eash, professor at the University of Tennessee. Professor Johan Six from ETH Zürich evaluated the work as external examiner.

“Stephanie Cheesman’s collaborative project between CIMMYT and the Swiss institutions funded by SDC highlights the strong interest of all organizations to extend sustainable agriculture intensification, with the aim of increasing food and nutrition security and eradicate poverty amongst smallholder farmers in southern Africa,” said Thierfelder.

Cheesman’s thesis is available online through ETH-Zürich’s library here.  

Obstacles to gender-smart fertilizer use hurt livelihoods, scientists say

Farmers head for home after harvesting maize in Chipata district, Zambia. CIMMYT/Peter Lowe
Farmers head home after harvesting maize in Chipata district, Zambia. CIMMYT/Peter Lowe

EL BATAN, Mexico (CIMMYT) – Compiling gender-inclusive data could help scientists understand how to help smallholder farmers improve nitrogen fertilizer application practices, according to a new research paper.

Smallholder maize and wheat farmers need to make use of inorganic nitrogen fertilizer alongside other good agronomic practices to produce healthy and productive crops, but nitrogen can be misapplied.

Fertilizer overuse can be harmful to plants and soil, contaminate drinking water and kill off fish species. Additionally, nitrogen fertilizer produces nitrous oxide, a potent greenhouse gas, which contributes to climate change.

“Gender and environmentally-blind fertilizer policies have been the norm in many regions, leading to negative effects in both high and low nitrogen fertilizer use scenarios that impact most strongly on women and children”, said Clare Stirling, a senior scientist with the Sustainable Intensification Program at the International Maize and Wheat Improvement Center (CIMMYT).

“Our study shows that moving towards a more balanced and efficient use of nitrogen fertilizer will significantly improve gender and social equity outcomes,” Stirling said, adding that such outcomes can only be brought about by significant socio-economic and cultural changes influencing gender and social norms.

“Agriculture needs to function within a ‘safe operating space’ for nitrogen,” she said. “We need to make sure that nitrogen use efficiency is neither too high nor too low. If it’s too high, soils are at risk of being mined and become degraded, if it’s too low, large amounts of reactive nitrogen are released to the environment.”

In developing countries, women make up about 43 percent of the agricultural labor force, but in comparison to men, they have access to only a fraction of the land, credit, inputs – such as improved seeds and fertilizers, agricultural training and information, according to the Farming First coalition

The lack of resource access puts women heads of household at a disadvantage. Even if they are primary decision makers, in general they are hampered by weaker socio-economic status, lower availability of male labor, lower access to markets, agricultural technologies, machinery, credit, collateral and advice, including on how to mitigate and adapt to climate change. As a result of unequal access, women use less fertilizer. They may also forgo food to ensure that children and other family members eat nutritious food, putting their own health at risk.

“Even with training, women may find it more difficult to apply practical knowledge than men due to socio-economic constraints,” said Simon Attwood, an agroecology scientist with Bioversity International, who collaborated on the new study, titled “Gender and inorganic nitrogen: what are the implications of moving towards a more balanced use of nitrogen fertilizer in the tropics?

“There’s a growing consensus that gender gaps in access to inputs are in part behind differences in productivity and on-farm practices,” he said.

Women farmers who use too little nitrogen fertilizer are trapped in a negative cycle of lower crop yields and income, leading to a greater risk of household food and nutrition insecurity, the scientists said. On the other hand, where too much nitrogen fertilizer is used woman and children are likely to be the most vulnerable to suffering ill-health consequences.

Despite their significant role in agricultural production, particularly in the developing world, women are neglected in most development initiatives, suggesting that the returns on targeting women farmers in relation to promoting best practice fertilizer use, may be very high with respect to increasing production and incomes, according to the authors.

Due to their central role regarding child health, nutrition and education, women should be key beneficiaries of development efforts, the scientists argue.

“These factors make the case that the social returns on agricultural investments are higher when targeted to women,” Attwood said.

The scientists took several case studies from India and sub-Saharan Africa, confirming their theory that imbalanced nitrogen fertilizer use has a greater impact on women and children.

The first case study revealed clear connections between negative health outcomes for poor rural women and their infants and the timing of nitrogen fertilizer applications in India. The study showed that morbidity of the babies of poor rural women appears to be negatively affected through their mother’s work in rice paddy fields, where they absorb fertilizer-derived toxins.

The second case study suggests that applying nitrogen fertilizer to cash crops rather than staple food crops such as maize may contribute towards less food availability and poorer nutrition outcomes for families in some sub-Saharan African countries.

The third case study in Lake Victoria connects the dots between insufficient fertilizer use, soil degradation leading to soil erosion and runoff into the lake and health problems for both men and women. The presence of high levels of nitrogen in the lake due to poor land management is changing its ecology, affecting the lives of artisanal fisher communities and leading to higher rates of HIV/AIDS.

“As long as the majority of policy-makers and planners remain frozen into a conceptual lock-in oblivious to the gendered implications of technically balanced and socially balanced fertilizer use, women smallholder farmers will not reach their potential,” said Cathy Farnworth, a gender specialist working with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) and lead author on the research paper.

“We need gender awareness in research studies and rural advisory services to develop appropriate strategies to reach and empower women in different households to help them act independently.”

The project was funded by CCAFS, Bioversity, CIMMYT, and the CGIAR Research Programs on wheat and maize.

Bangladesh urges $500 million in funds to intensify surface water irrigation

TwitterWWD3
Designed by Bose Zhou/CIMMYT

EL BATAN, Mexico (CIMMYT) – Most current food security projections show that staple crop production must double by 2050 to keep up with global need, which will continue to expand due to population growth and changing dietary demands.

In South Asia, where population pressures pose a significant food security challenge, yields of major cereal crops have not changed dramatically since the Green Revolution of the 1970s and 1980s. This has prompted regional governments and development practitioners to focus instead on efforts to expand double cropping – the practice of growing at least two crops per year on the same piece of land – in order to boost productivity on an annual basis.

This approach is in line with sustainable intensification techniques, which aim to boost production, rather than encroach on natural ecosystems and harm the environment by expanding farmland into limited natural areas.

Scientists with the International Maize and Wheat Improvement Center (CIMMYT) are researching how best to increase double cropping in Bangladesh, which, as South Asia’s most densely populated country, poses unique food security challenges.

In the northwest of the country, farmers already rotate at least two crops in the same field each year using groundwater irrigation to overcome drought risks during the dry winter season.

“Most development initiatives favor the use of groundwater resources for irrigation, although in Bangladesh, ground water extraction can result in high energy costs and in some areas can present a health risk due to natural arsenic contamination of groundwater,” said Timothy Krupnik, systems agronomist at CIMMYT.

“In support of government programs recommending the conjunctive use of surface water as an irrigation alternative, we investigated the available land in Bangladesh that could be reliably cropped to wheat, maize, or rice in double cropping patterns,” Krupnik said, adding that the effort resulted in a new online geospatial tool that can be used by water resource planners and policymakers to target the use of surface water in support of sustainable intensification. It helps identify surface water irrigation resources and land area most suited for double cropping and sustainable intensification.

“Using satellite data for irrigation technology targeting in Bangladesh enabled us to identify areas that are under low input and output crop production in a region with abundant surface water,” said Urs Schulthess, CIMMYT’s remote sensing scientist involved in developing the geospatial tool. “This is an example of sustainable intensification that does not deplete water resources.”

Instead of extracting water from underground aquifers, surface water irrigation involves deploying water through low-lift irrigation pumps and canal distribution networks managed by water sellers who direct water to farmers’ fields. Although Bangladesh is likely to remain largely reliant on groundwater irrigation, use of available surface water presents a low-energy and low-carbon emissions alternative in select areas of the country, Krupnik said.

The research conducted by scientists funded by the CIMMYT-led Cereal Systems Initiative for South Asia (CSISA) project, provides initial evidence to support a government of Bangladesh policy aimed at stimulating a $500 million investment in development aid from donors to help farmers transition from rice-fallow or rainfed systems to surface water irrigation and double cropping. The funds form part of an overall request for investment of over $7 billion to support agricultural development in southern Bangladesh.

After mapping rivers and freshwater canals in southern Bangladesh with the new tool, the scientists conservatively estimate that at least 20,800 of fallow and 103,000 hectares of rainfed cropland could be intensified through surface water irrigation to substantially increase cereal crop production through double cropping. These figures account for land set into non-crop reserves to limit risks of nitrate or phosphorous contamination of rivers and canals.

Groundwater irrigation techniques have been difficult to implement in the south of the country due to high energy pumping costs for groundwater, and additional challenges posed by saline shallow water tables. Currently, about 1.7 million farming households in Bangladesh simply leave cropland fallow and unproductive after the monsoon season, according to the World Bank.

By integrating the use of groundwater with lower-cost surface water irrigation, farmers could benefit from increased cropping intensity.

To evaluate potential land productivity resulting from conversion from fallow or rainfed crops to surface water irrigated maize, wheat, and rice, CIMMYT scientists measured yields produced by farmers on their own farms and in farmer-managed demonstrations implemented by the CSISA project.

The three crops are among the most important cereals grown in Bangladesh for food security and income.

Based on analysis, CIMMYT’s scientists estimate that if 25 to 75 percent of fallow or low-intensity land is converted to irrigated maize, production could increase from 10 to 14 percent or from 29 to 42 percent, respectively. Conversion to wheat could increase production from 9 percent to 10 percent or from 26 percent to 31 percent. On the other hand, rice is projected to increase only about 3 percent under such conditions.

Overall, increasing maize and wheat production through double cropping could generate revenues from $36 to $108 million each year for farmers, Krupnik said.