Skip to main content

research: Sustainable agrifood systems

Innovations for cross-continent collaborations

Offering a very warm welcome to the Australian High Commissioner and team by Arun Joshi. (Photo: Hardeep/CIMMYT)
Offering a very warm welcome to the Australian High Commissioner and team by Arun Joshi. (Photo: Hardeep/CIMMYT)

Australian High Commissioner to India, Harinder Sidhu, visited the Borlaug Institute for South Asia (BISA) in Ladhowal, Ludhiana, India on February 19.

Arun Joshi, Managing Director for BISA & CIMMYT in India, welcomed her with an introduction about the creation, mission and activities of BISA and the International Maize and Wheat Improvement Center (CIMMYT).

Sidhu also learned about the work CIMMYT and BISA do in conservation agriculture in collaboration with Punjab Agricultural University, machinery manufacturers and farmers. This work focuses on using and scaling the Happy Seeder, which enables direct seeding of wheat into heavy loads of rice residue without burning. This technology has been called “an agricultural solution to air pollution in South Asia,”  as the burning of crop residue is a huge contributor to poor air quality in South Asia. Sidhu learned about recent improvements to the technology, such as the addition of a straw management system to add extra functionality, which has led to the large-scale adoption of the Happy Seeder.

The high commissioner showed keen interest in the Happy Seeder machine, and was highly impressed by the test-wheat-crop planted on 400 acres with the Happy Seeder.

Salwinder Atwal showed Sidhu the experiments using Happy Seeder for commercial seed production, and ML Jat, Principal Researcher at CIMMYT, presented on the innovative research BISA and CIMMYT are doing on precision water, nutrient and genotype management.

Happy Australian High Commissioner riding a tractor at BISA Ludhiana. (Photo: Hardeep/CIMMYT)
Happy Australian High Commissioner riding a tractor at BISA Ludhiana. (Photo: Hardeep/CIMMYT)

Sidhu visited fields with trials of climate resilient wheat as Joshi explained the importance and role of germplasm banks and new approaches such as use of genomic selection in wheat breeding in the modern agriculture to address the current challenges of climate change. He also explained the work CIMMYT does on hybrid wheat for increasing yield potential and breeding higher resistance against wheat rusts and other diseases.

ML Jat, who leads the CIMMYT-CCAFS climate smart agriculture project, explained the concept of climate smart villages and led Sidhu on a visit to the climate smart village of Noorpur Bet, which has been adopted under the CGIAR Research Program on Climate Change, Agriculture and Food Security.

During Sidhu’s visit to Noorpur Bet, a stakeholder consultation was organized on scaling happy seeder technology for promoting no-burning farming. In the stakeholder consultation, stakeholders shared experiences with happy seeder as well as other conservation agriculture amd climate smart agriculture technologies. BS Sidhu, Commissioner of Agriculture for the Government of Punjab chaired the stakeholder consultation and shared his experiences as well as Government of Punjab’s plans and policies for the farmers to promote happy seeder and other climate smart technologies.

“I am very impressed to see all these developments and enthusiasm of the farmers and other stakeholders for scaling conservation agriculture practices for sustaining the food bowl,” said Sidhu. She noted that Punjab and Australia have many things in common and could learn from each other’s experiences. Later she also visited the Punjab Agricultural University and had a meeting with the Vice Chancellor.

This visit and interaction was attended by more than 200 key stakeholders including officers from Govt. of Punjab, ICAR, PAU-KVKs, PACS, BISA- CIMMYT-CCAFS, manufacturers, farmers and custom operators of Happy Seeder.

The Borlaug Institute for South Asia (BISA) is a non-profit international research institute dedicated to food, nutrition and livelihood security as well as environmental rehabilitation in South Asia, which is home to more than 300 million undernourished people. BISA is a collaborative effort involving the International Maize and Wheat Improvement Center (CIMMYT) and the Indian Council for Agricultural Research (ICAR).

Are you a wizard or a prophet?

"The Wizard and the Prophet" looks at the world’s most threatening challenges through the eyes of scientists Norman Borlaug (left) and William Vogt. (Photos: CIMMYT, AICBC)
“The Wizard and the Prophet” looks at the world’s most threatening challenges through the eyes of scientists Norman Borlaug (left) and William Vogt. (Photos: CIMMYT, AICBC)

Charles Mann’s The Wizard and the Prophet released today seeks to reconcile two worldviews spurred by agronomist Norman Borlaug and ecologist William Vogt, to help us better understand how we can feed 10 billion people by 2050; without destroying our planet in the process.

Borlaug, the “wizard” of the book, launched his vision from a small parcel of “badly damaged land” near Mexico City that would become the International Maize and Wheat Improvement Center (CIMMYT). He was a key figure in developing high-yielding wheat varieties that saved millions from starvation in the 1960s, launching a global Green Revolution and becoming an emblem for “techno-optimism,” or the view that science and technology will meet humanity’s growing demands.

Vogt’s 1948 book “The Road to Survival” became the blueprint for today’s modern environmental movement, prophesizing that unless humankind drastically reduces consumption, its growing numbers and appetite will overwhelm the planet’s resources. His novels and speeches inspired conservationists from Rachel Carson to Paul Ehrlich, and defined our concept of “environment” as an entity that deserves respect and protection.

Mann uses the views of Borlaug and Vogt as endpoints on a “wizard-prophet” spectrum to illustrate different approaches experts are taking to solve four great, complex challenges of our time: food, water, energy and climate change.

But who is right? We, humans, are the only species on Earth that have been able to bend nature to our will. For thousands of years we burned forests to kill insects and encourage the growth of useful species, then later turned the planet into our “personal petri dish,” as Mann puts it, with the rise of agriculture and creation of crops like maize, which allowed Mesoamerican civilizations to grow and flourish. Today, violence and poverty are at an all-time low due to the wizardly-successes of Borlaug and others

However, Mann cautions past successes are no guarantee of the future. Vogt’s Malthusian predictions didn’t come to pass, but Borlaug’s wizardry also had unintended social and environmental consequences. Fertilizer runoff, over-extraction of groundwater and the burning of fossil fuels are creating an increasingly inhospitable planet and arguably pushing us closer to Vogt’s envisioned planetary limits than ever before.

Norman Borlaug works with researchers in the field. (Photo: CIMMYT archives)
Norman Borlaug works with researchers in the field. (Photo: CIMMYT archives)

Both Borlaug and Vogt identified as environmentalists trying to solve the same monumental challenge of having too many people to feed but not enough resources. Their ideological heirs are also working to solve equally challenging problems but are bitterly opposed, in large part because the argument is less about facts and more about values.

Prophets see humans as living in a finite world with constrained limits imposed by the environment, while wizards believe human ingenuity gives us an endless array of tools to manage the environment for our needs.

Mann doesn’t take either side, but rather offers solutions proposed by both prophets and wizards. He cites efforts to change the way photosynthesis works in rice at the International Rice Research Institute, but also initiatives like the domestication of wild perennial plants at the Land Institute. Both prophets and wizards have multiple, on-going efforts to meet all four challenges that Mann covers in the book. He says that it’s possible individual efforts won’t work, but the odds of all efforts failing are equally small.

Most importantly, there are many individuals and organizations today that are attempting to embrace both ideologies. CIMMYT, an organization that was founded by the original wizard, now incorporates sustainable agriculture practices into its work globally, with an emphasis on social inclusion.

The Wizard and the Prophet’s in-depth mix of biographical, historical, philosophical and scientific detail allows us to confront our wizard/prophet bias, and leaves one with a greater sense of respect for those with differing views on how we should shape our world in the 21st century.

Buy “The Wizard and the Prophet: Two Remarkable Scientists and Their Dueling Visions to Shape Tomorrow’s World” here.

Government officials learn about agricultural mechanization in Bangladesh

Dr Thakur Prasad Tiwari, Country Representative, CIMMYT is seen welcoming the Planning Minister of Bangladesh to the CIMMYT exhibition. Photo: Barma, U./CIMMYT.
Dr Thakur Prasad Tiwari, Country Representative, CIMMYT is seen welcoming the Planning Minister of Bangladesh to the CIMMYT exhibition. Photo: Barma, U./CIMMYT.

DHAKA, Bangladesh – On December 10 2017, The International Maize and Wheat Improvement Center (CIMMYT) joined the South Asian Association for Regional Cooperation (SAARC) in celebrating the 33rd SAARC Charter Day – the annual festivities commemorating the formation of SAARC. The day was celebrated through a special agricultural exhibition and regional seminar on agricultural mechanization in the Bangladesh Agricultural Research Centre (BARC) campus, Dhaka.

With the theme “International Year of Agricultural Mechanization”, the event aimed to educate the attendees on improved farm machine and technologies, and promote agricultural mechanization for sustainable intensification of agriculture to achieve greater food and nutrition security in South Asia.

CIMMYT exhibited its conservation agricultural (CA) techniques and machines that have been developed in collaboration with public and private sector partners. The exhibition stall was visited by government officials (including two ministers in Bangladesh), NGOs and private sector organization, as well as people off the street.

The Minister for Planning A. H. M. Mustafa Kamal inaugurated the event and later visited CIMMYT’s exhibition stall.

CIMMYT country representative received the certificate for the participation from Motia Chowdhury, Agricultural Minister, GoB. Photo: Barma, U./CIMMYT.
CIMMYT country representative received the certificate for the participation from Motia Chowdhury, Agricultural Minister, GoB. Photo: Barma, U./CIMMYT.

CIMMYT Country Representative for Bangladesh, Thakur Prasad Tiwari, along with senior scientists and staffs were present during the visit and explained CIMMYT activities to the delegates.

A book titled “Mechanisation for Sustainable Agriculture Intensification in SAARC region,” with a chapter on the role of mechanization in CA written by McHugh, Ken Sayre and Jeff Esdaile, of CIMMYT’s CA team was launched during the event.

Chowdhury presented a certificate of appreciation and plaque to Tiwari on behalf of CIMMYT and its keynote speaker, McHugh.

CIMMYTNEWSlayer1

Innovation leads South Asia’s new Green Revolution

Agricultural leaders from across South Asia recently gathered in Dhaka, Bangladesh to create a roadmap on how to best help farmers cope with climate change while meeting future food demand. Photo: Photo credit: CIMMYT/ M. DeFreese
Agricultural leaders from across South Asia recently meet to discuss how to best tackle climate change while meeting future food demand. Photo: CIMMYT/ M. DeFreese

Fifty years ago, economists and population experts predicted millions were about to die from famine.

India and other Asian countries were expected by scholars like Paul Ehrlich in The Population Bomb to be especially hard hit in the 1970s and 1980s, given the region’s high population growth rates.

South Asia braced for mass starvation as hunger and malnutrition spread while multiple droughts plagued India and neighboring countries – but it never happened.

Instead, rice and wheat yields more than doubled in Asia from the 1960s to 1990s, grain prices fell, people consumed nearly a third more calories and the poverty rate was cut in half – despite the population growing 60 percent.

Improved rice and wheat varieties combined with the expanded use of fertilizers, irrigation and supportive public policies for agriculture led to this dramatic growth in food production and human development that would become known as the Green Revolution.

Today, South Asia faces new, but equally daunting challenges. By 2050, the United Nations predicts the world’s population will grow by more than two billion people, 30 percent of which will be in South and Southeast Asia. These regions are also where the effects of climate change, like variable rainfall and extreme flooding, are most dire.

Wheat, maize and rice yields in South Asia could decrease by as much as 30 percent over this century unless farmers adopt innovations to mitigate rising temperatures and changing rainfall patterns.

Agricultural leaders from across South Asia recently gathered in Dhaka, Bangladesh to create a roadmap on how to best help farmers cope with climate change while meeting future food demand.

“South Asian agriculture needs to be transformed as it was during the Green Revolution,”  according to ML Jat, principal scientist at the International Maize and Wheat Improvement Center (CIMMYT) and co-author of a recent policy brief detailing the policy dialogue in Bangladesh. “Holistic management and more efficient use of resources to protect soil, water and air quality is necessary to improve both agricultural and human health.”

Public policies across the region currently subsidize agrochemicals, irrigation and unsustainable tilling, making it an uphill battle for many who promote sustainable intensification – a set of practices that adapt farming systems to climate change and sustainably manage land, soil, nutrient and water resources – as an alternative to these environmentally destructive practices.

Sustainable intensification advocates in South Asia have found that conservation agriculture – a sustainable management paradigm based on the principles of minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment – could be greatly expanded to benefit farmers across the region.

Conservation agriculture was first adopted in South Asia in the mid-1990s for no-till wheat farming and has since spread to cover more than 5 million hectares of farmland, mostly in India. Precision land levelers, machines equipped with laser-guided drag buckets to level fields so water flows evenly into soil — rather than running off or collecting in uneven land — were also adopted during this time, which significantly boosted conservation agriculture’s impact.

“When these technologies are combined with improved seed, like HD-2967, Munal, HDCSW 18, the benefits for farmers are even greater,” said Jat.

Despite this growth, conservation agriculture is practiced on just two percent of South Asia’s arable land, and very limited farmers end up adopting the complete set of sustainable intensification practices necessary to fully boost production while conserving the environment.

“While some practices like zero-till wheat have become very popular, growing rice in submerged fields remains a common practice which is one of the major obstacle in the adoption of full conservation agriculture in irrigated intensive rice-wheat systems of South Asia,” said Jat.

Policies that support farmers with few resources to take chances to experiment with conservation agriculture, such as guaranteeing a cash payout if crops fail or free access to zero-till machinery, can give people the incentive and protection they need to permanently shift the way they farm.

In addition to on-the-ground policy commitments, delegates in Bangladesh declared conservation agriculture and sustainable intensification should be at the heart of South Asia’s development agenda not only to improve national food security but to meet international obligations.

“If we don’t make South Asia’s farming sustainable, we will fail to meet international commitments on climate change, poverty and the environment, including the Sustainable Development Goals,” said Raj Paroda, Chairman of the Trust for Advancement of Agricultural Science (TAAS).

Delegates at the meeting called for a significant boost in funding towards conservation agriculture for sustainable intensification efforts, as well as the need to incorporate sustainable intensification practices in existing publicly-funded agricultural development initiatives.

Finally, the delegates created a platform where regional leaders, national agricultural research centers, donors and international research organizations can share knowledge, success stories, new technologies and expertise.

 

Read the full policy brief of the Scaling Conservation Agriculture for Sustainable Intensification in South Asia meeting here.

CIMMYTNEWSlayer1

Success in mainstreaming CSISA-supported agricultural technologies

Since 2015, the Cereal Systems Initiative for South Asia (CSISA) has been working with Krishi Vigyan Kendras (KVKs) – agricultural extension centers created by the Indian Council for Agricultural Research – to generate evidence on best management practices for improving cropping system productivity in the Eastern Indo-Gangetic Plains.

Lead
Billboard Campaign on early sowing and zero tillage wheat. Photo: CSISA

Technologies and management practices essential to this research include early wheat sowing, zero tillage and the timely transplanting of rice. In response to clear evidence generated through the CSISA–KVK partnership, Bihar Agriculture University (BAU) announced in October 2017 that all KVKs in Bihar would promote early wheat sowing starting November 1. KVKs promoted this intervention by placing notices, which were designed by CSISA, on roadsides.

BAU also directed the KVKs to act as commercial paddy nurseries, supplying healthy rice seedlings in a timely manner to farmers.

Pairing these rice and wheat interventions is designed to optimize system productivity through the on-time rice transplanting of rice during Kharif (monsoon growing season), allowing for the timely seeding of zero-till wheat in Rabi (winter growing season).

Under the CSISA–KVK partnership, KVKs have supported early wheat sowing by introducing local farmers to the practice of sowing zero tillage wheat immediately after rice harvesting.

Evidence has shown that early sowing of wheat increases yields across Bihar and Eastern Uttar Pradesh. KVK scientists have begun to see the importance of breaking the tradition of sowing short duration varieties of wheat late in the season, which exposes the crops to higher temperatures and reduces yields.

Across the annual cropping cycle, monsoon variability threatens the rice phase and terminal heat threatens the wheat phase, with significant potential cumulative effects on system productivity. The combined interventions of early wheat sowing, zero tillage wheat and rice nurseries for timely planting help mitigate the effects of both variable monsoon and high temperatures during the grain-filling stage.

In 2016–17, data collected across seven KVKs (333 sites) indicated that yields declined systematically when wheat was planted after November 10. When planting was done on November 20 — yields declined by 4%, November 30 – 15%, December 10 – 30%, reaching a low when planting was done on December 20 of a 40% reduction in yield.

Rice yields are also reduced significantly if transplanting is delayed beyond July 20. The timing of rice cultivation, therefore, is important in facilitating early sowing in wheat without any yield penalty to rice.

KVKs are working to generate awareness of these important cropping system interventions, as well as others, deep in each district in which they work. CSISA supports their efforts and strives to mainstream sustainable intensification technologies and management practices within a variety of public- and private sector extension systems as capacity building are core to CSISA Phase III’s vision of success.

The Cereal Systems Initiative for South Asia project is led by the International Maize and Wheat Improvement Center with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

Australian High Commissioner to India visits project fields

Group photo during Australian High Commissioner to India, Harinder Sidhu's visit. Photo courtesy of SRFSI program.
Group photo during the visit of the Australian High Commissioner to India, Harinder Sidhu. Photo: SRFSI program.

DEHLI, India (CIMMYT) – This November, the work of the Sustainable and Resilient Farming Systems Intensification (SRFSI) project was marked with notable recognition by the Australian Government with a visit from the Australian High Commissioner to India, Harinder Sidhu. The project is co-led by the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR).

Field visit at SRFSI. Photo courtesy of SRFSI program.
Field visit at SRFSI. Photo: SRFSI program.

Sidhu’s visit to observe the SRFSI project’s activities from a grassroots level allowed her to have hands-on experience and interaction with university students, farmers, women’s self-help groups, local service providers and private agencies engaged as members of an SRFSI innovation platform.

Sidhu met with the members of a farmers’ club which is solely operated and monitored by women of the local community. She was highly impressed with the efforts of these women to make themselves independent and self-reliant through new innovations in mushroom, fish and duck farming.

Australian High Commissioner to India, Harinder Sidhu, sitting with a local women's group. Photo courtesy of SRFSI program.
Australian High Commissioner to India, Harinder Sidhu, sitting with a local women’s group. Photo: SRFSI program.

“It was heartening to observe the positive response of the farmers, especially women, to conservation and sustainable farming, and how the technology has improved incomes, reduced drudgery, had positive health impacts and facilitated the development of agri-entrepreneurs,” said Sidhu in her thank you letter.

On the last day of her visit to trial fields, Sidhu was impressed by the service provider business model developed by the SRFSI project to facilitate the creation of employment opportunities and motivation for youth to engage in farming activities.

Sidhu wrote, “I wish you and your team success in reaching out to farmers in north Bengal and working together with them to improve their lives and those of future generations.”

SRFSI is led by the International Maize and Wheat Improvement Center (CIMMYT) and the Australian Centre for International Agricultural Research (ACIAR) and jointly implemented by the Department of Agriculture, Government of West Bengal and Uttar Banga Krishi Viswavidyalaya Agricultural University.

New systems analysis tools help boost the sustainable intensification of agriculture in Bangladesh

Group photo at ESAP workshop in Bangladesh. Photo: CSISA.
Group photo at ESAP workshop in Bangladesh. Photo: CSISA.

DHAKA, Bangladesh (CIMMYT) – In South Asia, the population is growing and land area for agricultural expansion is extremely limited. Increasing the productivity of already farmed land is the best way to attain food security.

In the northwestern Indo-Gangetic Plains, farmers use groundwater to irrigate their fields. This allows them to grow two or three crops on the same piece of land each year, generating a reliable source of food and income for farming families. But in the food-insecure lower Eastern Indo-Gangetic Plains in Bangladesh, farmers have lower investment capacities and are highly risk averse. Combined with environmental difficulties including ground water scarcity and soil and water salinity, cropping is often much less productive.

Could the use of available surface water for irrigation provide part of the solution to these problems? The government of Bangladesh has recently promoted  the use of surface water irrigation for crop intensification. The concept is simple: by utilizing the country’s network of largely underutilized natural canals, farmers can theoretically establish at least two well-irrigated and higher-yielding crops per year. The potential for this approach to intensifying agriculture however has various limitations.  High soil and water salinity, poor drainage and waterlogging threaten crop productivity. In addition, weakly developed markets, rural to urban out-migration, low tenancy issues and overall production risk limit farmers’ productivity. The systematic nature of these problems calls for new approaches to study how development investments can best be leveraged to overcome these complex challenges to increase cropping intensity.

Policy makers, development practitioners and agricultural scientists recently gathered to respond to these challenges at a workshop in Dhaka. They reviewed research results and discussed potential solutions to common limitations. Representatives from more than ten national research, extension, development and policy institutes participated. The CSISA-supported workshop however differed from conventional approaches to research for development in agriculture, in that it explicitly focused on interdisciplinary and systems analysis approaches to addressing these complex problems.

Systems analysis is the process of studying the individual parts and their integration into complex systems to identify ways in which more effective and efficient outcomes can be attained. This workshop focused on these approaches and highlighted new advances in mathematical modeling, geospatial systems analysis, and the use of systems approaches to farmer behavioral science.

Timothy J. Krupnik, Systems Agronomist at CIMMYT and CSISA Bangladesh country coordinator, gave an overview of a geospatial assessment of landscape-scale irrigated production potential in coastal Bangladesh to start the talks.

For the first time in Bangladesh, research using cognitive mapping, a technique developed in cognitive and behavioral science that can be used to model farmers’ perceptions of their farming systems, and opportunities for development interventions to overcome constraints to intensified cropping, was described. This work was conducted by Jacqueline Halbrendt and presented by Lenora Ditzler, both with the Wageningen University.

“This research and policy dialogue workshop brought new ideas of farming systems and research, and has shown new and valuable tools to analyze complex problems and give insights into how to prioritize development options,” said Executive Director of the Krishi Gobeshona Foundation, Wais Kabir.

Workshop participants also discussed how to prioritize future development interventions, including how to apply a new online tool that can be used to target irrigation scheme planning, which arose from the work presented by Krupnik. Based on the results of these integrated agronomic and socioeconomic systems analyses, participants also learned how canal dredging, drainage, micro-finance, extension and market development must be integrated to achieve increases in cropping intensity in southern Bangladesh.

Mohammad Saidur Rahman, Assistant Professor, Seed Science and Technology department at Bangladesh Agriculture University, also said he appreciated the meeting’s focus on new methods. He indicated that systems analysis can be applied not only to questions on cropping intensification in Bangladesh, but to other crucial problems in agricultural development across South Asia.

The workshop was organized by the Enhancing the Effectiveness of Systems Analysis Tools to Support Learning and Innovation in Multi-stakeholder Platforms (ESAP) project, an initiative funded by the CGIAR Research Program on Maize (MAIZE) through the International Maize and Wheat Improvement Center (CIMMYT) and supported in Bangladesh through the Cereal Systems Initiative for South Asia (CSISA). ESAP is implemented by Wageningen University’s Farming Systems Ecology group and the Royal Tropical Institute (KIT).

CSISA is a CIMMYT-led initiative implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). CSISA works to increase the adoption of various resource-conserving and climate-resilient technologies by operating in rural “innovation hubs” in Bangladesh, India and Nepal, and seeks to improve farmers’ access to market information and enterprise development.

Breaking Ground: Leonard Rusinamhodzi on innovating farming systems for climate change

TwitterBGLernardFood security is at the heart of Africa’s development agenda. However, climate change is threatening the Malabo Commitment to end hunger in the region by 2025, said Leonard Rusinamhodzi, a systems agronomist at the International Maize and Wheat Improvement Center.

Erratic rainfall and increasing temperatures are already causing crops to fail, threatening African farmers’ ability to ensure household food security, he said. Africa is the region most vulnerable to climate variability and change, according to the UN Intergovernmental Panel on Climate Change.

Small-scale family farmers, who provide the majority of food production in Africa, are set to be among the worst affected. Rusinamhodzi’s work includes educating African farmers about the impacts of climate change and working with them to tailor sustainable agriculture solutions to increase their food production in the face of increasingly variable weather.

The world’s population is projected to reach 9.8 billion by 2050, with 2.1 billion people set to live in sub-Saharan Africa alone. The UN Food and Agriculture Organization estimates farmers will need to increase production by at least 70 percent to meet demand. However, climate change is bringing numerous risks to traditional farming systems challenging the ability to increase production, said Rusinamhodzi.

Graphic created by Gerardo Mejia. Data sourced form the UN Intergovernmental Panel on Climate Change.
Graphic created by Gerardo Mejia. Data sourced from the UN Intergovernmental Panel on Climate Change.

Rusinamhodzi believes increasing farmers’ awareness of climate risks and working with them to implement sustainable solutions is key to ensuring they can buffer climate shocks, such as drought and erratic rainfall.

“The onset of rainfall is starting late and the seasonal dry spells or outright droughts are becoming commonplace,” said Rusinamhodzi. “Farmers need more knowledge and resources on altering planting dates and densities, crop varieties and species, fertilizer regimes and crop rotations to sustainably intensify food production.”

Growing up in Zimbabwe – a country that is now experiencing the impacts of climate change first hand – Rusinamhodzi understands the importance of small-scale agriculture and the damage erratic weather can have on household food security.

He studied soil science and agronomy and began his career as a research associate at the International Center for Tropical Agriculture in Zimbabwe learning how to use conservation agriculture as a sustainable entry point to increase food production.

Conservation agriculture is based on the principles of minimal soil disturbance, permanent soil cover and the use of crop rotation to simultaneously maintain and boost yields, increase profits and protect the environment. It improves soil function and quality, which can improve resilience to climate variability.

It is a sustainable intensification practice, which is aimed at enhancing the productivity of labor, land and capital. Sustainable intensification practices offer the potential to simultaneously address a number of pressing development objectives, unlocking agriculture’s potential to adapt farming systems to climate change and sustainable manage land, soil, nutrient and water resources, while improving food and nutrition.

Tailoring sustainable agriculture to farmers

Smallholder farming systems in Africa are diverse in character and content, although maize is usually the major crop. Within each system, farmers are also diverse in terms of resources and production processes. Biophysically, conditions – such as soil and rainfall – change significantly within short distances.

Given the varying circumstances, conservation agriculture cannot be promoted as rigid or one-size fits all solution as defined by the three principles, said Rusinamhodzi.

The systems agronomist studied for his doctoral at Wageningen University with a special focus on targeting appropriate crop intensification options to selected farming systems in southern Africa. Now, with CIMMYT he works with African farming communities to adapt conservation agriculture to farmers’ specific circumstances to boost their food production.

Rusinamhodzi’s focus in the region is to design cropping systems around maize-legume intercropping and conservation agriculture. Intercropping has the added advantage of producing two crops from the same piece of land in a single season; different species such as maize and legumes can increase facilitation and help overcome the negative effects of prolonged dry spells and poor soil quality.

Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT
Farmer Elphas Chinyanga inspecting his conservation agriculture plots in Zimbabwe. Photo: Peter Lowe/ CIMMYT

“The key is to understand the farmers, their resources including the biophysical circumstances and their production systems, and assist in adapting conservation agriculture to local needs,” he said.

Working with CIMMYT’s Sustainable Intensification Program, Rusinamhodzi seeks to understand production constraints and opportunities for increased productivity starting with locally available resources.

Using crop simulation modeling and experimentation, he estimates how the farming system will perform under different conditions and works to formulate a set of options to help farmers. The options can include agroforestry, intercropping, improved varieties resistant to heat and drought, fertilizers and manures along with the principles of conservation agriculture to obtain the best results.

The models are an innovative way assess the success or trade-off farmers could have when adding new processes to their farming system. However, the application of these tools are still limited due to the large amounts of data needed for calibration and the complexity, he added.

Information gathered is shared with farmers in order to offer researched options on how to sustainably boost their food production under their conditions, Rusinamhodzi said.

“My ultimate goal is to increase farmers’ decision space so that they make choices from an informed position,” he said.

Rusinamhodzi also trains farmers, national governments, non-profit organizations, seed companies and graduate students on the concepts and application of sustainable intensification including advanced analysis to understand system productivity, soil quality, water and nutrient use efficiency and crop pest and disease dynamics.

 

Leonard Rusinamhodzi works with the SIMLESA project funded by the Australian Centre for International Agricultural Research and the CGIAR MAIZE program.

 

 

Helping farming families thrive while fighting climate change in Mexico

Farmers walk through a field that has been cleared by slash and burn agriculture in the Yucatan peninsula. Photo: Maria Alvarado/ CIMMYT
Farmers walk through a field that has been cleared by slash and burn agriculture in the Yucatan peninsula. Photo: Maria Boa/ CIMMYT

MEXICO CITY (CIMMYT) — The Yucatan Peninsula in Mexico has been hard hit by drought and extreme weather events related to climate change in recent years, exacerbating local poverty and food insecurity. In addition, slash-and-burn agriculture techniques have led to environmental degradation and contribute to climate change. The International Maize and Wheat Improvement Center (CIMMYT) is working to help indigenous Mayan farming families in the Yucatan peninsula adapt to and mitigate climate change, increasing maize yields and food security while minimizing negative environmental impact. This comes as world leaders mull a crucial decision on agriculture at the UN Climate talks in Bonn, a decision that could support farmers everywhere to take similar actions.

Maize is the backbone of diets in the Yucatan Peninsula, and has sustained indigenous Mayan families for millennia. It is grown as part of the “milpa,” a pre-hispanic intercropping system that revolves around the symbiotic relationship of maize, beans and squash.

Traditionally, the milpa system has involved clearing new land for farming using the slash and burn method. However, after two to three years, the soils begin to deteriorate and new land must be cleared. These practices have contributed to deforestation, increased CO2 emissions, and loss of invaluable local biodiversity.

In the Yucatan Peninsula, climate change has begun to threaten milpa agriculture. The rains have been later and shorter every year, reducing maize yields. As it has become more difficult to make a living from agriculture, young people have been forced to migrate to find work. Farmers have also lost seeds of their traditional maize varieties when they have been unable to harvest after severe drought.

A new CIMMYT project, Milpa Sustentable Yucatan Peninsula, is helping farming families increase their maize yields through sustainable, inclusive solutions. The Project, which means “sustainable milpa” in Spanish, is working to help farming families identify the best soils in their communal land and incorporate sustainable intensification and conservation agriculture (CA) practices to improve soils in order to prevent deforestation and mitigate climate change.

The project has a strong social inclusion component and works to make sure that women and youth are included and prioritized in capacity development opportunities and decision-making processes. “As milpa is a family system, women and youth must be included in order to attain impact,” said Carolina Camacho, principal researcher on social inclusion at CIMMYT. “Complex challenges such as climate change require social change and inclusion of traditionally marginalized groups such women and youth in order for mitigation to be successful.”

Farming families are taught CA techniques such as zero tillage that help prevent erosion and water runoff. This increases soil health and uses water more efficiently, which helps maize better survive drought and allows farmers to farm the same land for many years without resorting to deforestation or burning.

Native maize diversity in the Yucatan peninsula. Photo: Maria Alvarado/ CIMMYT
Native maize diversity in the Yucatan peninsula. Photo: Maria Boa/ CIMMYT

“Farmers used to harvest 500 kilograms of maize per hectare. Now, with techniques they have learned from CIMMYT, they are harvesting up to 2 tons per hectare,” said Vladimir May, technical leader of the Milpa Sustentable Yucatan Peninsula project. The project has also helped farmers increase yields by identifying natural inputs that can be integrated into an integrated pest and fertility management strategy This allows farming families to sustainably increase their maize yields despite limited inputs and resources.

The native maize grown by farmers in the Yucatan Peninsula adapted to its local environment over centuries of selection by farmers to perform well despite poor soils and other challenges. However, climate change has threatened the survival of this maize genetic diversity. Some farmers lost all of the seed of their traditional maize varieties when they were unable to harvest anything after extreme drought. Others have found that their traditional varieties do not perform as well as they had due to environmental stress related to climate change.

CIMMYT is working to help farmers replace stores of traditional maize seed they have lost due to drought and climate change. The CIMMYT maize seed bank safeguards over 28,000 maize varieties for the benefit of humanity, including seeds that are native to the Yucatan Peninsula. Milpa Sustentable Yucatan Peninsula has worked with the seed bank to find farmers original varieties, restoring a priceless component of many families’ food security, culture and biodiversity.

The project has also helped farmers increase their yields through participatory variety selection. By crossing farmers’ native varieties with other native maize varieties that are more resistant to drought or climate change, farmers can sustainably increase maize yields without losing the qualities they love about their traditional varieties. Women have played a key role in this participatory variety selection, because as they process and prepare all of the food grown by the family, they have intimate knowledge of the characteristics the maize must have to perform well and feed the family.

Farmers working with the CIMMYT project in Yucatan Peninsula. Photo: Maria Boa
Farmers working with the CIMMYT project in Yucatan Peninsula. Photo: Maria Boa/ CIMMYT

Poverty and food insecurity in the region have meant that migration has been a necessity for many. With new technologies and support from CIMMYT, women and youth are beginning to see that they may have a future in farming, despite the challenge of climate change. “Now that they see how much maize and other cash crops can be produced with sustainable technologies, young people are deciding to stay,” said Maria Boa, a consultant working with the project. “As youth are sometimes more accepting of new technologies, young farmers in the Yucatan play a crucial role in climate change mitigation and adaptation. Inclusion of women and youth is necessary to make a positive change in these communities.”

These and other farmers around the world will play an important role in fighting climate change, by reducing emissions from farming. While a majority of countries, including Mexico, have committed to reducing the climate footprint of agriculture, world leaders must now decide how to best support and finance these actions.

The Milpa Sustentable Yucatan Peninsula project is operated and supported by the International Maize and Wheat Improvement Center (CIMMYT), the government of Mexico through the SAGARPA program Sustainable Modernization of Traditional Agriculture (MasAgro) CitiBanamex, Fundación Haciendas del Mundo Maya and the  CGIAR Research Program on Maize (MAIZE). The project is operated with the support of local partners, non-governmental organizations and the different levels of the Mexican government. 

At this year’s UN Climate Talks, CIMMYT is highlighting innovations in wheat and maize that can help farmers overcome climate change. Click here to read more stories in this series and follow @CIMMYT on Facebook and Twitter for the latest updates.

Climate insurance for farmers: a shield that boosts innovation

Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT
Index insurance is one of the top 10 innovations for climate-proof farming. Photo: P. Lowe/ CIMMYT

What stands between a smallholder farmer and a bag of climate-adapted seeds? In many cases, it’s the hesitation to take a risk. Farmers may want to use improved varieties, invest in new tools, or diversify what they grow, but they need reassurance that their investments and hard work will not be squandered.

Climate change already threatens crops and livestock; one unfortunately-timed dry spell or flash flood can mean losing everything. Today, innovative insurance products are tipping the balance in farmers’ favor. That’s why insurance is featured as one of 10 innovations for climate action in agriculture, in a new report released ahead of next week’s UN Climate Talks. These innovations are drawn from decades of agricultural research for development by CGIAR and its partners and showcase an array of integrated solutions that can transform the food system.

Index insurance is making a difference to farmers at the frontlines of climate change. It is an essential building block for adapting our global food system and helping farmers thrive in a changing climate. Taken together with other innovations like stress-tolerant crop varieties, climate-informed advisories for farmers, and creative business and financial models, index insurance shows tremendous promise.

The concept is simple. To start with, farmers who are covered can recoup their losses if (for example) rainfall or average yield falls above or below a pre-specified threshold or ‘index’. This is a leap forward compared to the costly and slow process of manually verifying the damage and loss in each farmer’s field. In India, scientists from the International Water Management Institute (IWMI) and the Indian Council of Agricultural Research (ICAR), have worked out the water level thresholds that could spell disaster for rice farmers if exceeded. Combining 35 years of observed rainfall and other data, with high-resolution satellite images of actual flooding, scientists and insurers can accurately gauge the extent of flooding and crop loss to quickly determine who gets payouts.

The core feature of index insurance is to offer a lifeline to farmers, so they can shield themselves from the very worst effects of climate change. But that’s not all. Together with my team, we’re investigating how insurance can help farmers adopt new and improved varieties. Scientists are very good at developing technologies but farmers are not always willing to make the leap. This is one of the most important challenges that we grapple with. What we’ve found has amazed us: buying insurance can help farmers overcome uncertainty and give them the confidence to invest in new innovations and approaches. This is critical for climate change adaptation. We’re also finding that creditors are more willing to lend to insured farmers and that insurance can stimulate entrepreneurship and innovation. Ultimately, insurance can help break poverty traps, by encouraging a transformation in farming.

Insurers at the cutting edge are making it easy for farmers to get coverage. In Kenya, insurance is being bundled into bags of maize seeds, in a scheme led by ACRE Africa. Farmers pay a small premium when buying the seeds and each bag contains a scratch card with a code, which farmers text to ACRE at the time of planting. This initiates coverage against drought for the next 21 days; participating farms are monitored using satellite imagery. If there are enough days without rain, a farmer gets paid instantly via their mobile phone.

ACRE makes it easy for Kenyan farmers to get insurance. Source
ACRE makes it easy for Kenyan farmers to get insurance. Source

Farmers everywhere are businesspeople who seek to increase yields and profits while minimizing risk and losses. As such, insurance has widespread appeal. We’ve seen successful initiatives grow rapidly in India, China, Zambia, Kenya and Mexico, which points to significant potential in other countries and contexts. The farmers most likely to benefit from index insurance are emergent and commercial farmers, as they are more likely than subsistence smallholder farmers to purchase insurance on a continual basis.

It’s time for more investment in index insurance and other innovations that can help farmers adapt to climate change. Countries have overwhelmingly prioritized climate actions in the agriculture sector, and sustained support is now needed to help them meet the goals set out in the Paris Climate Agreement.

Jon Hellin leads the project on weather index-based agricultural insurance as part of the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). This work is done in collaboration with the International Research Institute for Climate and Society (IRI) at Columbia University, and the CGIAR Research Programs on MAIZE and WHEAT.

Find out more 

Report: 10 innovations for climate action in agriculture

Video: Jon Hellin on crop-index insurance for smallholder farmers

Info note: Prospects for scaling up the contribution of index insurance to smallholder adaptation to climate risk

Report: Scaling up index insurance for smallholder farmers: Recent evidence and insights.

Website: Weather-related agricultural insurance products and programs – CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS)

Breaking Ground: Clare Stirling sees no silver bullets to control agriculture’s emissions

ClareStirling_Postcard

There are no easy fixes nor can business as usual continue, if humankind is to reduce the climate footprint of global agriculture while intensifying farming to meet rising food demands, according to an international scientist who has studied agriculture and climate interactions for nearly three decades.

“Climate change is a threat multiplier, intensifying the challenges of population growth, food insecurity, poverty, and malnutrition,” said Clare Stirling, a scientist in the sustainable intensification program of the International Maize and Wheat Improvement Center (CIMMYT). “With almost 60% of global food production coming from rainfed agriculture and more than 650 million people dependent on rainfed farming in Africa alone, our food system is already highly vulnerable to changing climates.”

Stirling, who is CIMMYT’s liaison with the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), believes that agriculture—including smallholder agriculture—can play a key role in meeting greenhouse gas emission targets, but only with combined and coordinated efforts that cross institutional and disciplinary boundaries.

CIMMYT contributes through a systems approach to developing and promoting climate smart technologies—including drought tolerant maize and wheat varieties, conservation agriculture, and precision nutrient and water management—as well as research on climate services, index-based insurance for farmers whose crops are damaged by bad weather, and data and models for greenhouse gas emissions in India and Mexico.

“Take the case of India, the world’s second-largest food producer,” Stirling explained. “Mitigation options for crops, of which rice-wheat systems are a major component, include improved water management in rice, more precise use of nitrogen fertilizer, preventing the burning of crop residues and promoting zero or reduced tillage, depending on local conditions and practices. With the right policies and training for farmers, these options could spread quickly to reduce emissions by as much as 130 Megatons of CO2e per year from the crop sector alone. The big challenge is achieving large-scale adoption for significant mitigation to occur.”

Science needed for local mitigation targets

Born in Malawi and having spent her early childhood in Zimbabwe, young Stirling also lived a year with her parents and siblings in a house trailer on a farm in Devon, United Kingdom. “Most of my childhood and teen years were spent living in villages, riding horses, and working on farms during school holidays. Out of this came a desire to work in agriculture and overseas.”

Stirling obtained a bachelor’s degree in plant science and a doctor’s degree in environmental crop physiology at Sutton Bonnington, University of Nottingham, U.K., performing fieldwork for the latter at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) in Hyderbad, India.

As a Ph.D. student at Nottingham, she also joined a research group under the late Professor John Monteith that was quantifying relationships among crop growth, radiation, and water use. The resulting equations underpin many of today’s crop simulation models. “My research since has focused on environmental interactions and crop growth, so climate change became an important part of this, starting with an M.Sc. course on the topic that I set up in Essex University in the 1990s.”

Among the intractable challenges Stirling sees is soil degradation. “Unless this is addressed, it will be impossible to sustainably intensify or build climate resilience into food systems,” she explained. “We must manage limited organic matter and fertilisers better and more efficiently, to achieve healthier soils.”

She is also concerned that the climate science to support national and local climate change adaptation planning is much less certain than that which informs long-term global scale targets. “CIMMYT has an invaluable role with its global and strategic research mandate to develop technologies that will raise productivity and resource use efficiency in future, warmer climates,” Stirling asserted.

“Local climate predictions are likely to remain uncertain and adapting to current climate variability may not be enough for long-term adaptation in many places, with the surprises that may be in store,” Stirling added.

“International organizations such as CIMMYT need to offer stress-tolerant, high-yielding germplasm and sustainable management systems, as well as harnessing big data and digitization, to transform adaptation to deal with future, more extreme climates. Finally, future farmers will need to get the most out of good conditions and good years because, the way things are headed, there may be little hope for coping in bad years.”

Read about research by Stirling and colleagues:

Click here to read “Tek B. Sapkota, Jeetendra P. Aryal, Arun Khatri-Chhetri, Paresh B. Shirsath, Ponraj Arumugam, and Clare M. Stirling. 2017. Identifying high-yield low-emission pathways for the cereal production in South Asia. Mitig Adapt Strateg Glob Change DOI 10.1007/s11027-017-9752-1.

New book highlights sustainable agriculture success story in Mexico

Photo: Columbia University Press
Photo: Columbia University Press

MEXICO CITY (CIMMYT) – A new book from Columbia University Press offers social sector organizations a how-to guide on applying new and creative methods to solve complex problems.

Design Thinking for the Greater Good tells 10 stories of the struggles and successes of organizations from across the world working in industries from healthcare to agriculture that have applied design thinking, a human-centered approach to problem solving, in order to truly understand the problems they wanted to solve, generate testable ideas and develop solutions for vulnerable groups who actually adopted them.

“Our path into the world of design thinking came originally through the for-profit world,” says Jeanne Liedtka, a professor at the University of Virginia Darden School of Business and co-author of the book, during her online course offered through Coursera. “For almost a decade now, we’ve been studying design thinking as a methodology for improving business innovation and growth and examining its successful use in global corporations like IBM, Toyota and 3M.”

According to Liedtka, design methods are even more powerful in the social sector, since these organizations have to frequently navigate complex bureaucracies, work with limited resources and juggle a large range of stakeholder expectations, among other challenges.

DesignThinking_24OctOne of the 10 stories in the book shows how the Sustainable Modernization of Traditional Agriculture program (MasAgro), a joint project from the International Maize and Wheat Improvement Center (CIMMYT) and Mexico’s Agriculture Department (SAGARPA), was able to launch a solution into practice through prototyping and testing that helped smallholder farmers in Mexico adopt new sustainable agriculture methods.

MasAgro is also cited as a textbook example of how to develop new practices and technologies by building on traditional knowledge through innovation networks, or “hubs,” which are able to “cut through communication barriers, allowing MasAgro and the farmers to combine the old and the new into best practices that serve local farmers and communities,” according to the authors.

The authors conclude that MasAgro made innovation safe by relying on respected community leaders and innovation networks that develop, test and adapt agricultural methods and innovations that visibly outperform alternative agricultural practices.

“MasAgro has been acknowledged as an innovation in the social sector by design thinking experts because risk averse smallholder farmers in Mexico, whose annual income depends on one agricultural cycle determined by nature, have embraced new sustainable farming practices to improve their livelihoods,” said Bram Govaerts, CIMMYT’s regional representative for the Americas.

Purchase Design Thinking for the Greater Good at Columbia University Press here and check out Jeanne Liedtka’s online course here.

MasAgro is a research for rural development project that promotes the sustainable intensification of maize and wheat production in Mexico, supported by SAGARPA and CIMMYT. Learn more about the project here.

How a seed bank in Mexico produces data to help alleviate poverty

Maize seed samples in CIMMYT's seed bank. CIMMYT/file
Maize (also known as corn) seed samples in CIMMYT’s seed bank. CIMMYT/file

DES MOINES, Iowa (CIMMYT) – Scientist Kevin Pixley holds a large, clear plastic bottle up to the light to illuminate the yellow corn kernels inside. He is leading a project to catalogue 178,000 corn and wheat seeds at the International Maize and Wheat Improvement Center’s (CIMMYT) seed bank near Mexico City.

“The difficulty farmers and researchers face is that no matter how hard they look they can’t see inside a seed to predict its hardiness – they never know whether it will withstand the growing conditions it will experience,” said Pixley, who will speak at the 2017 Borlaug Dialogue symposium in Des Moines, Iowa, on October 18.

CIMMYT’s mission is to apply maize and wheat science for improved livelihoods around the world.

“Our seed bank provides a sub-zero temperature refuge for the largest collection of maize and wheat seeds in the world,” explained Pixley, who leads CIMMYT’s Seeds of Discovery (SeeD) project. “Recent technological advances are accelerating our understanding of the inner workings of these seeds, making them ever more useful to researchers and farmers.

“Through conservation, characterization and use of natural biodiversity, we’re not just helping to improve livelihoods for smallholder farmers in the present, but we’re building our capacity to thwart future threats to food security,” Pixley said. “Every year we ship some 300,000 maize and wheat seed samples to farmers and researchers.”

Through the SeeD partnership between CIMMYT, Mexico’s ministry of agriculture (SAGARPA) and the MasAgro (Sustainable Modernization of Traditional Agriculture) project, scientists are developing the capacity for farmers to prepare for specific or as yet unanticipated needs.

“Seeds of Discovery offers the next generation of Mexican scientists the training and technologies they need to support food security,” said Jorge Armando Narvaez Narvaez, Mexico’s sub-secretary of agriculture.

“In some ways our work has only just begun, but we’re leaps and bounds ahead of where we would be thanks to applying new technologies to secure the food and nutrition needs of our growing population,” Pixley said.

For further information:

Seeds of Discovery video: http://staging.cimmyt.org/seed/

Seeds of Discovery website: http://seedsofdiscovery.org/

Farming First TV: https://www.youtube.com/watch?v=uDwBtWRiHxs

Al Jazeera: Crop Biodiversity the Key to Ending Hunger

For interviews: Julie Mollins, CIMMYT communications j.mollins [at] cgiar [dot] org

Borlaug Dialogue delegates to discuss strategy for tackling Fall Armyworm menace in Africa

BODDUPALLI-Maruthi-PrasannaDES MOINES, Iowa (CIMMYT) – Without proper control methods, the Fall Armyworm (FAW) menace could lead to maize yield losses estimated at $2.5 to $6.2 billion a year in just 12 of the 28 African countries where the pest has been confirmed, scientists from the Centre for Agriculture and Biosciences International, (CABI) reported recently.

The devastating insect-pest, which originated in the Americas, is capable of causing damage to more than 80 different plant species, although the pest prefers maize, a major food staple in sub-Saharan Africa on which millions of people depend.

Scientists estimate that Africa will need an investment of at least $150 to $200 million annually over at least the next five years to mitigate potential Fall Armyworm damage through the use of effective management options, and to undertake research on strategic areas for devising and deploying an integrated pest management strategy.

“Fall Armyworm is one of the world’s most deadly crop pests, effectively managing this insect-pest requires an urgent multi-disciplinary and multi-stakeholder response,” said B.M Prasanna, director of the Global Maize Program at the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize.

ArmywormImagePrasanna will be participating in the 2017 Borlaug Dialogue in Des Moines, Iowa, and will part of a panel discussion, on October 19, titled “Fall Armyworm: A clear and present danger to African Food Security” to discuss the strategic approach for managing the pest in Africa. This will follow a short presentation on October 18, by Pedro Sanchez, the  2002 World Food Prize laureate, on the status and impact of Fall Armyworm in Africa.

As part of an internationally coordinated strategic integrated pest management approach to tackle the FAW in Africa, CIMMYT and the U.S. Agency for International Development (USAID), together with experts from several national and international research organizations, are currently developing a comprehensive field manual. The manual will provide protocols and best management practices related to Fall Armyworm scouting, monitoring and surveillance; biological control; pesticides and pesticide risk management; host plant resistance; and sustainable agro-ecological management of Fall Armyworm, especially in the African context.

Regional training-of-trainers and awareness generation workshops are also being planned for November 2017 in southern and eastern Africa, and in West Africa in the first quarter of 2018. The training workshops are aimed at supporting pest control and extension actors to effectively scout, determine the need for intervention, and appropriately apply specific practices to control the pest in maize and other important crops in Africa.

For further information or to arrange interviews on-site or remotely, please contact Julie Mollins, CIMMYT communications: j.mollins (at) cgiar (dot) org

EVENT DETAILS

WHAT: B.M. Prasanna will be part of a panel discussion titled “Fall Armyworm: A clear and present danger to African Food Security” at the Borlaug Dialogue symposium to discuss the strategic approach for managing the pest in Africa.

WHEN: October 19, 2017, 7 a.m. to 8:30 a.m.

WHEREDowntown Des Moines Marriott Hotel, 700 Grand Ave., Des Moines, Iowa.

WHO: B.M. Prasanna has been director of CIMMYT’s Global Maize Program since 2010 and the CGIAR Research Program on MAIZE since June 2015. Based in Nairobi, Kenya, Prasanna leads a multi-disciplinary CIMMYT-Global Maize Program team of 45 scientists located in sub-Saharan Africa, Latin America and Asia. Prior to joining CIMMYT, Prasanna served as a faculty member and maize geneticist at the Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi, under the Indian Council of Agricultural Research (ICAR), for nearly two decades. Since 2012, Prasanna has led intensive multi-institutional efforts to effectively tackle Maize Lethal Necrosis (MLN) in eastern Africa. He oversaw the establishment of a state-of-the-art Maize Doubled Haploid (DH) Facility in Kiboko, Kenya in 2013. He has also led the development of several successful public-private partnership projects and recognized with several awards and honors in India for his contributions to maize research, post-graduate teaching and human resource development.

ABOUT BORLAUG DIALOGUE: An annual three-day conference that attracts more than 1,200 delegates from around the world to discuss global food security and nutrition. The Borlaug Dialogue, which features scientists, policymakers, business executives and farmers, coincides with World Food Day and the awarding of the World Food Prize.

ABOUT CIMMYTThe International Maize and Wheat Improvement Center – is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The center receives support from national governments, foundations, development banks and other public and private agencies. CIMMYT website: http://staging.cimmyt.org

New Publications: Using networks to disseminate agricultural innovations

Harvester operator Sergio Araujo and truck driver Antonio Mejia harvest wheat for farmer Pedro Mejia near Popocatépetl volcano in Juchitepec, Estado de México. Photo: CIMMYT/P. Lowe
Harvester operator Sergio Araujo and truck driver Antonio Mejia harvest wheat for farmer Pedro Mejia near Popocatépetl volcano in Juchitepec, Estado de México. Photo: CIMMYT/P. Lowe

EL BATAN, Mexico (CIMMYT) – A new study examines how networks help spread new technologies and innovations in agriculture.

The study’s authors focused on the dissemination of innovations relating to conservation agriculture (CA) – practices based on the principles of minimal soil disturbance, permanent soil cover and crop rotation – and studied farmers working with Mexico’s Sustainable Modernization of Traditional Agriculture Initiative (MasAgro).

Current population trends and current climate change projections suggest that food insecurity is likely to rise. Farmer responsiveness to new practices and technologies will play a crucial role in determining if there will be adequate food production.

The study found that farmers mainly learn about new practices from each other through internal networks, but that depending on the type of information, may look beyond their close groups for input from research institutions and other external resources. In CA, producers mainly learn about machinery, crop rotation, minimum tillage and weeding from each other, but rely on research institutions for information about biofertilizers and pests. When information is obtained from external networks, producers tend to adopt new practices on a step by step basis, rather than as a collective uptake.

The majority of farmers in the study area adopted two to four CA practices, with only 21.5 percent of producers adopting an array of five or more CA practices, and less than ten percent adopting one or no practices. The most commonly adopted CA practices are those which reduce labor costs, increase yields and improve soil fertility such as weed management, use of quality seed and minimum tillage practices. The authors noted that many more farmers were willing to adopt a comprehensive CA package, but were hindered by a lack of resources and access to specialized machinery.

The results show that innovation diffusion must happen along several dimensions, through the first stage of innovation to adoption and adapting innovations to meet needs. These dimensions dynamically interact, and determine the dissemination of new ideas.

Producers rely on key actors within their internal networks to identify useful innovations, and on their entire internal network to spread the message. The study’s authors stated that there is an urgent need to establish networks that focus on creating pathways for sharing knowledge, information and practices among actors at different levels.

MasAgro is an initiative led by the International Maize and Wheat Improvement Center (CIMMYT) and Mexico’s Secretary of Agriculture, Livestock, Rural Development, Fisheries and Food (SAGARPA).

Read the full study “Innovation diffusion in Conservation Agriculture:  a network approach” and check out other recent publications from CIMMYT staff below.

  •         Impact of conservation agriculture on growth and development of rice-wheat and maize-wheat cropping system in western Indo-Gangetic plains. 2016. Choudhary, K.M., Nandal, D.P., Jat, M.L., Hooda, J.S., Verma, K.C. In: Annals of biology, vol.32, no.2 p.174-177.
  •         Impact of informal groundwater markets on efficiency of irrigated farms in India: a bootstrap data envelopment analysis approach. 2016. Manjunatha, A.V., Speelman, S. Aravindakshan, S., Amjath-Babu, T.S., Puran Mal In: Irrigation Science, vol.34, p.41-52.
  •         Implications of high temperature and elevated CO2 on flowering time in plants. 2016. Jagadish, K.S.V., Bahuguna, R.N. Djanaguiraman, M. Gamuyao, R. Prasad, V.P.V. Craufurd, P. In: Frontiers in Plant Science, vol.7, no. 913.
  •         Irrigation water saving through adoption of direct rice sowing technology in the Indo-Gangetic Plains: empirical evidence from Pakistan. 2016. Ali, A., Dil Bahadur Rahut, Erenstein, O. In: Water Practice and Technology, vol. 11, no. 3, p. 610-620.
  •         Identification and validation of single nucleotide polymorphic markers linked to Ug99 stem rust resistance in spring wheat. 2017. Long-Xi Yu, Shiaoman Chao Singh, R.P. Sorrells, M.E. In: PLoS One, v.12, no.2: e0171963.
  •         Identification of heat tolerant wheat lines showing genetic variation in leaf respiration and other physiological traits. 2017. Suzuky Pinto, R., Molero, G., Reynolds, M.P. In: Euphytica, v. 213, no. 76, p.1-15.
  •         Impacts of changing weather patterns on smallholder well-being: evidence from the Himalayan region of northern Pakistan. 2017. Ali, A., Dil Bahadur Rahut, Erenstein, O. In: International Journal of Climate Change Strategies and Management, v. 9, no. 2, p. 225-240.
  •         Implications of less tail end water on livelihoods of small farmers in Pakistan. 2017. Ali, A., Dil Bahadur Rahut, Imtiaz, M. In: Outlook on Agriculture, vol. 46, no. 1, p. 36-43.
  •        Improving agricultural knowledge management: The AgTrials experience. 2017. Hyman, G., Espinosa, H., Camargo, P., Abreu, D., Devare, M., Arnaud, E., Porter, C., Mwanzia, L., Sonder, K., Traore, S. In: F1000 Research, vol. 6, no. 317.receive newsletter