Skip to main content

research: Sustainable agrifood systems

Innovative irrigation promises “more crop per drop” for India’s water-stressed cereals

A pioneering study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. (Photo: Naveen Gupta/CIMMYT)
A pioneering study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. (Photo: Naveen Gupta/CIMMYT)

On World Water day, researchers show how India’s farmers can beat water shortages and grow rice and wheat with 40 percent less water

India’s northwest region is the most important production area for two staple cereals: rice and wheat. But a growing population and demand for food, inefficient flood-based irrigation, and climate change are putting enormous stress on the region’s groundwater supplies. Science has now confronted this challenge: a “breakthrough” study demonstrates how rice and wheat can be grown using 40 percent less water, through an innovative combination of existing irrigation and cropping techniques. The study’s authors, from the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Punjab Agricultural University and Thapar University, claim farmers can grow similar or better yields than conventional growing methods, and still make a profit.

The researchers tested a range of existing solutions to determine the optimal mix of approaches that will help farmers save water and money. They found that rice and wheat grown using a “sub-surface drip fertigation system” combined with conservation agriculture approaches used at least 40 percent less water and needed 20 percent less Nitrogen-based fertilizer, for the same amount of yields under flood irrigation, and still be cost-effective for farmers. Sub-surface drip fertigation systems involve belowground pipes that deliver precise doses of water and fertilizer directly to the plant’s root zone, avoiding evaporation from the soil. The proposed system can work for both rice and wheat crops without the need to adjust pipes between rotations, saving money and labor. But a transition to more efficient approaches will require new policies and incentives, say the authors.

During the study, researchers used a sub-surface drip fertigation system, combined with conservation agriculture approaches, on wheat fields. (Photo: Naveen Gupta/CIMMYT)
During the study, researchers used a sub-surface drip fertigation system, combined with conservation agriculture approaches, on wheat fields. (Photo: Naveen Gupta/CIMMYT)

Read the full story:

Innovative irrigation system could future-proof India’s major cereals. Thomsom Reuters Foundation News, 20 March 2019.

Read the study:

Sidhu HS, Jat ML, Singh Y, Sidhu RK, Gupta N, Singh P, Singh P, Jat HS, Gerard B. 2019. Sub-surface drip fertigation with conservation agriculture in a rice-wheat system: A breakthrough for addressing water and nitrogen use efficiency. Agricultural Water Management. 216:1 (273-283). https://doi.org/10.1016/j.agwat.2019.02.019

The study received funding from the CGIAR Research Program on Wheat (WHEAT), the Indian Council of Agricultural Research (ICAR) and the Government of Punjab. The authors acknowledge the contributions of the field staff at BISA and CIMMYT based at Ludhiana, Punjab state.

Pieter Rutsaert

Pieter Rutsaert is a markets and value chain specialist with CIMMYT, based in Kenya. His work focuses on the demand side of formal seed systems development in Eastern Africa with special focus on the role of agro-dealers, farmer drivers for varietal turnover and collecting market intelligence data for breeding priorities.

He obtained his MSc in Tropical Natural Resources Management from KULeuven and a PhD from Ghent University in Belgium. Before joining CIMMYT, he worked as a Postdoctoral Fellow at IRRI in the Philippines and as research director for Haystack International, a market research consultancy firm in Belgium.

Exploring young Africans’ role and engagement in the rural economy

Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Tabitha Kamau checks the maize at her family’s farm in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

How do young rural Africans engage in the rural economy? How important is farming relative to non-farm activities for the income of young rural Africans? What social, spatial and policy factors explain different patterns of engagement? These questions are at the heart of an interdisciplinary research project, funded by the International Fund for Agricultural Development (IFAD), that seeks to provide stronger evidence for policy and for the growing number of programs in Africa that want to “invest in youth.”

One component of the Challenges and Opportunities for Rural Youth Employment in Sub-Saharan Africa project, led by the Institute of Development Studies (IDS), draws on data from the World Bank’s Living Standard Measurement Study – Integrated Surveys on Agriculture (LSMS-ISA) to develop a more detailed picture of young people’s economic activities. These surveys, covering eight countries in sub-Saharan Africa, were conducted at regular intervals and in most cases followed the same households and individuals through time. While the LSMS-ISA are not specialized youth surveys and therefore may not cover all facets of youth livelihoods and wellbeing in detail, they provide valuable knowledge about the evolving patterns of social and economic characteristics of rural African youth and their households.

LSMS-ISA data are open access, aiming to help national governments and academics analyze the linkages between poverty and agricultural productivity in developing countries,” said Sydney Gourlay, Survey Specialist in the Development Data Group of the World Bank. She explained that LSMS-ISA datasets cover rural and urban livelihoods — including asset ownership, education, farm and non-farm incomes — and contain detailed information on farming practices and productivity. “LSMS-ISA data have untapped potential for valuable youth analyses that could lead to evidence-based youth policy reform,” Gourlay said.

To stimulate greater use of LSMS-ISA data for research on these issues, the International Maize and Wheat Improvement Center (CIMMYT), IDS, and the LSMS team of the World Bank organized a workshop for young African social scientists, hosted by CIMMYT in Nairobi from February 4 to February 8, 2019.

Early-career social scientists from Ethiopia, Ghana, Kenya, Nigeria, Uganda, and Zimbabwe explored the potential of LSMS-ISA data, identified research issues, and developed strategies to create new analyses. The workshop was also a chance to uncover potential areas for increased data collection on youth, as part of the LSMS team’s IFAD-funded initiative “Improving Data on Women and Youth.”

What does that data point represent?

The workshop stressed the importance of getting to know the data before analyzing them. As explained by World Bank senior economist Talip Kilic in The Crowd and the Cloud, “Every data point has a human story.” It is important to decipher what the data points represent and the limits within which they can be interpreted. For instance, the definition of youth differs by country, so comparative studies across countries must harmonize data from different sources.

“Because LSMS-ISA survey locations are georeferenced, it is possible to integrate spatial information from multiple sources and gain new insights about patterns of interest, as well as the drivers associated with such patterns,” said Jordan Chamberlin, spatial economics expert at CIMMYT. “For example, in all countries we’ve examined, the degree of non-farm economic engagement is strongly associated with distance from urban centers.”

Chamberlin noted that georeferencing also has limitations. For instance, to ensure privacy, LSMS-ISA coordinates for households are randomly offset by as much as 5 km. Nonetheless, diverse geospatial data from the datasets — distance to the nearest tarmac road or population density, among other information — may be integrated via the location coordinates.

A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)
A young farmer holding a baby participates in a varietal assessment exercise on a maize trial plot in Machakos County, Kenya. (Photo: Joshua Masinde/CIMMYT)

One key variable to assess farm productivity is harvested area. The LSMS team’s research has revealed high, systematic discrepancies between farmers’ self-assessments of area, GPS measurements, and compass and rope, which is considered the most accurate method. Methodological validation data from Ethiopia, Nigeria, and Tanzania show that on average farmers overestimate the area of plots smaller than 200 m2 by more than 370 percent and underestimate the size of plots larger than 2 hectares by 13 percent, relative to compass and rope measurements. Such errors can skew yield analyses and the accuracy of assessments of national agricultural research programs’ impact.

Several workshop participants expressed interest in using the LSMS dataset for studies on migration, given that it contains information about this variable. In the case of internal migrants — that is, persons who have moved to another area in the same country — LSMS enumerators will find and interview them and these migrants will continue to be included in future rounds of the panel survey. In Malawi, for example, about 93 percent of individuals were tracked between the 2010/11 and the 2013 Integrated Household Surveys. Plot characteristics — such as type of soil, input use, and crop production — include information on the person who manages the plot, allowing for identification and analysis of male and female managed plots.

Following the training, the participants have better articulated their research ideas on youth. Prospective youth studies from the group include how land productivity affects youth opportunities and whether migration induces greater involvement of women in agriculture or raises the cost of rural labor. Better studies will generate more accurate knowledge to help design more effective youth policies.

 

Sustainable intensification practices build resilience in Bangladesh’s charlands

Anzuma Begam (left) and her husband, Hossain Ali, working together in their maize field.
Anzuma Begam (left) and her husband, Hossain Ali, working together in their maize field.

The charlands, island-like tracts of land arising from riverbeds as a result of erosion and accretion, are home to millions of Bangladesh’s most vulnerable people. The lives of these people, much like the land itself, are exposed to nature’s forces such as erosion and floods.

In Eachlirchar, an area of charland in Lakkhitari Union, Gangachara, Rangpur district, where the soil struggles to yield even rice, the fate of the marginalized char community is arbitrarily determined by the course of nature. However, mother of three Anzuma Begam is living proof of the resilience and socioeconomic development catalyzed by adopting conservation agriculture-based sustainable intensification technologies.

Promoted by the International Maize and Wheat Improvement Center (CIMMYT) through its Sustainable and Resilient Farming Systems Intensification (SRFSI) project, sustainable intensification technologies have been heralded as a major breakthrough in the fight against charland aridity since 2014. By reducing drudgery, irrigation and costs, conservation agriculture enables the soil of the charlands to produce rice and maize yields consecutively.

Given its eventual success, it is surprising that the first phase of CIMMYT’s work in Eachlirchar did not run according to plan, as the tobacco-producing community did not welcome new technologies. Begam’s husband, Hossain Ali, even rejected her initial proposal to participate in the SRFSI project’s introductory training on zero tillage, weed management and new seeds. However, in spite of her husband’s disapproval and defying patriarchal constraints, Begam stepped forward to accept the new agricultural technology.

Anzuma Begam’s husband takes pride in his wife's achievements.
Anzuma Begam’s husband takes pride in his wife’s achievements.

After engaging with the project, Begam decided apply conservation agriculture-based sustainable intensification practices on her small plot of land. She began to produce mechanically transplanted rice and strip-till maize. Her first harvest in 2015 deepened her understanding of the benefits of comparatively low utilization of irrigation, pesticides and labor.

Begam has since yielded a bumper maize crop using strip-till technology and her socioeconomic progress is an inspiration to her charland community. Even the floods of June 2017 failed take the smiles off her family’s faces and, in 2018, she and her family moved from a shack into a well-built tin-shaded house.

The profits from Begam’s higher yielding and more reliable maize and rice harvests have ensured access to proper education and food for her children, and her husband now helps cultivate their land using conservation agriculture technologies. “Anzuma did the right thing by not listening to my wrong decision back then in 2014,” he explains. “SRFSI showed her the right way to attain self-reliance through conservation agriculture technologies. I am proud of my wife.”

The Sustainable and Resilient Farming Systems Intensification (SRFSI) project is funded by the Australian Centre for International Agricultural Research (ACIAR).

Is a world without hunger possible, asks Germany’s minister Gerd Müller during his visit to CIMMYT

CIMMYT staff welcome Minister Müller and his team at the entrance of CIMMYT’s global headquarters in Mexico. (Photo: Alfonso Cortés/CIMMYT)
CIMMYT staff and management welcome Minister Müller (front row, fifth from left) and his team at the entrance of CIMMYT’s global headquarters in Mexico. (Photo: Alfonso Cortés/CIMMYT)

On March 4, 2019, staff from the International Maize and Wheat Improvement Center (CIMMYT) welcomed Gerd Müller, Germany’s Federal Minister of Economic Cooperation and Development (BMZ), for a short visit to CIMMYT’s global headquarters in Mexico. Before exploring the campus and sitting down to hear about CIMMYT’s latest innovations in maize and wheat research, Minister Müller challenged the scientists gathered there by asking: “Is a world with no hunger actually possible?”

“It is possible, but it will require a lot of research and development activities to get there,” replied CIMMYT’s director general, Martin Kropff.

With $3.5 billion generated in benefits annually, CIMMYT is well positioned for Minister Müller’s challenge. CIMMYT works throughout the developing world to improve livelihoods and foster more productive, sustainable maize and wheat farming. Its portfolio squarely targets critical challenges, including food insecurity and malnutrition, climate change and environmental degradation. In addition, over 50 percent of maize and wheat grown in the developing world is based on CIMMYT varieties.

The director of CIMMYT’s Global Wheat Program, Hans Braun (left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Alfonso Cortés/CIMMYT)
The director of CIMMYT’s Global Wheat Program, Hans Braun (left), shows one of the 28,000 unique maize seed varieties housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center. (Photo: Alfonso Cortés/CIMMYT)

Germany has generously supported CIMMYT’s work for decades in a quest to answer this very question, which aligns with the German government’s agenda to improving food and nutrition security, the environment and livelihoods.

“CIMMYT is working to find ways to allow developing countries to grow maize and wheat on less land so that a larger percentage of it can be freed for nutritious and higher value cash crops. This requires better seeds that are adapted to biotic and abiotic stressors, smarter agronomy and machinery, which CIMMYT develops with partners,” Kropff explained.

CIMMYT works between smallholders and small companies to create an incentive on one side to grow varieties and on the other side, to increase demand for quality grain that will ultimately become the tortillas and bread on customers’ dinner tables. These sustainable sourcing and breeding efforts depend on the breathtaking diversity of maize and wheat housed at CIMMYT’s genebank, the Wellhausen-Anderson Plant Genetic Resources Center, which is supported by German funding along with solar panels that generate clean energy for the genebank.

Through funding for the CGIAR Research Program on WHEAT and the CIM Integrated Experts Program, Germany’s GIZ and BMZ have also supported CIMMYT research into gender and innovation processes in Africa, Central and South Asia, enhancing gender awareness in both projects and rural communities and mainstreaming gender-sensitive approaches in agricultural research. As a result, CIMMYT researchers and partners have increased gender equality in wheat-based cropping systems in Ethiopia, reduced the burden of women’s wheat cleaning work in Afghanistan, and hosted a series of training courses promoting the integration of gender awareness and analysis in research for development.

The German delegation watches the work of a lab technician counting wheat root chromosomes. (Photo: Alfonso Cortés/CIMMYT)
The German delegation watches the work of a lab technician counting wheat root chromosomes. (Photo: Alfonso Cortés/CIMMYT)

In addition, the CIM Integrated Experts program has allowed CIMMYT to increase its efforts to scale up agricultural innovations and link research to specific development needs. With support from GIZ and in collaboration with the PPPLab, in 2018 CIMMYT researchers developed a trial version of the Scaling Scan, a tool which helps researchers to design and manage scaling at all project phases: at the beginning, during and after implementation.

CIMMYT is committed to improving livelihoods and helping farmers stay competitive through increasing labor productivity and reducing costs. CIMMYT’s mechanization team works to identify, develop, test and improve technologies that reduce drudgery and enable smallholders in Mexico, sub-Saharan Africa and South Asia to adopt sustainable intensification practices, which require greater farm power and precision. In Ethiopia, CIMMYT has an ongoing collaboration with the GIZ/BMZ green innovation center — established as part of the ONE WORLD – No Hunger initiative — and is working with GIZ in Namibia to provide knowledge, expertise and capacity building on conservation agriculture. This includes the organization of training courses to mechanics and service providers on everything from the use to the repair of machinery and small-scale mechanization services.

“We’re on a mission to improve livelihoods through transforming smallholder agriculture, much of which depends on empowering women, scaling, market development and pushing for policies that would create the right incentives. Partnerships with local and international stakeholders such as Germany are at the core of CIMMYT’s operations and allow for us to have global impact,” said Kropff.

More photos of the visit are available here.

“Could we turn it on?” asks Germany’s federal minister of economic cooperation and development, Gerd Müller, during a small-scale machinery demonstration to show off the latest achievements of MasAgro, an innovative sustainable intensification project that works with more than 500,000 maize and wheat farmers in Mexico. (Photo: Alfonso Cortés/CIMMYT)
“Could we turn it on?” asks Germany’s federal minister of economic cooperation and development, Gerd Müller, during a small-scale machinery demonstration to show off the latest achievements of MasAgro, an innovative sustainable intensification project that works with more than 500,000 maize and wheat farmers in Mexico. (Photo: Alfonso Cortés/CIMMYT)

Solving the “last mile” challenge of maize seeds

Philomena Muthoni Mwangi stands at the entrance of her agrodealer shop, Farm Care, in the village of Ngarariga. (Photo: Jerome Bossuet/CIMMYT)
Philomena Muthoni Mwangi stands at the entrance of her agrodealer shop, Farm Care, in the village of Ngarariga. (Photo: Jerome Bossuet/CIMMYT)

Agrodealers play a pivotal role in delivering the gains of the green revolution to millions of smallholders in Africa. Reaching even the most remote corners of the continent, they give farmers access to agricultural inputs and services.

So far, seed systems research has mainly focused on the factors influencing farmers’ adoption of or seed companies’ investment in new varieties. However, little is known about independent agrodealers, who play an important role in the “last mile” of seed systems, distributing improved maize seeds and fertilizers as well as giving agronomic advice. There is a gap of knowledge about who they are, their needs and constraints, and the ways in which they secure and develop their businesses.

Understanding how to better support agrodealers is important for the International Maize and Wheat Improvement Center (CIMMYT), to ensure that new varieties reach the largest possible number of farmers. Under the Stress Tolerant Maize for Africa (STMA) project, CIMMYT has launched a new research effort to better understand agrodealers in Kenya, with a specific focus on maize seed marketing.

Researchers are now testing the tools and expect to begin field work in March 2019, during the next maize planting season. “We want to collect detailed quantitative and qualitative data about the way agrodealers outsource and choose their maize varieties, and how they market these seeds to farmers,” explained CIMMYT associate scientist Pieter Rutsaert, who leads the study. This research will help government agencies, NGOs and funders to design better interventions related to agrodealers, for greater and more sustainable impact.

CIMMYT researchers Jason Donovan (left) and Pieter Rutsaert (right) discuss the research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)
CIMMYT researchers Jason Donovan (left) and Pieter Rutsaert (right) discuss the research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)

The million-shilling question

The way questions are selected and phrased, and data collected, is critical. “Figuring out how to ask the right question to the right person is a hard business, especially when we ask agrodealers to evaluate their own performance,” recognized Rutsaert. For example, it could be challenging to estimate the importance of maize seed sales if owners are hesitant to provide details about their businesses to outsiders. Anticipating the challenges of collecting reliable and comparable data, Rutsaert’s team will use visual tools, like illustrated cards, to facilitate conversations with interviewees. They will also use innovative exercises, like the shop investment game, where owners are asked how they would invest one million Kenyan shillings (about US$10,000).

Standing behind the counter of her shop, selling bags of feeding supplements for dairy cattle and small pesticide bottles on dusty shelves, Philomena Muthoni Mwangi explained she had run out of maize seeds for sale. This small agrodealer in the village of Ngarariga, in central Kenya, will restock her maize seeds from a big agrovet shop nearby at the onset of the rainy season.

This is quite common, as agrodealers do not take risks when it comes to selling new varieties. Not knowing the future demand, leftover seed stock after the planting season would severely reduce Mwangi’s potential profit, as margins per bag are low. To address this issue, CIMMYT researchers will conduct an intercept farmer survey in the coming weeks, to better understand what farmers look for when buying maize seeds.

Agrodealers are not a homogeneous group. Ranging from large one-stop shops to small shacks, their business models, seed marketing strategy and type of clients may differ a lot. This study will provide useful insights to design targeted seed scaling strategies that consider all kinds of agrodealers, moving away from a one-size-fits-all approach.

The Stress Tolerant Maize for Africa (STMA) project is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).

The 70-year-old owner of a farm input shop in Kikuyu town, Kiambu County, answers the questions of CIMMYT researchers. (Photo: Jerome Bossuet/CIMMYT)
The 70-year-old owner of a farm input shop in Kikuyu town, Kiambu County, answers the questions of CIMMYT researchers. (Photo: Jerome Bossuet/CIMMYT)

Support groups open women’s access to farm technologies in northeast India

In Odisha and Bihar, CSISA has leveraged the social capital of women's self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)
In Odisha and Bihar, CSISA has leveraged the social capital of women’s self-help groups formed by the government and other civil society partners and which offer entry points for training and social mobilization, as well as access to credit. (Photo: CSISA)

Self-help groups in Bihar, India, are putting thousands of rural women in touch with agricultural innovations, including mechanization and sustainable intensification, that save time, money, and critical resources such as soil and water, benefiting households and the environment.

The Bihar Rural Livelihoods Promotion Society, locally known as Jeevika, has partnered with the Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT), to train women’s self-help groups and other stakeholders in practices such as zero tillage, early sowing of wheat, direct-seeded rice and community nurseries.

Through their efforts to date, more than 35,000 households are planting wheat earlier than was customary, with the advantage that the crop fully fills its grain before the hot weather of late spring. In addition, some 18,000 households are using zero tillage, in which they sow wheat directly into unplowed fields and residues, a practice that improves soil quality and saves water, among other benefits. As many as 5,000 households have tested non-flooded, direct-seeded rice cultivation during 2018-19, which also saves water and can reduce greenhouse gas emissions.

An autonomous body under the Bihar Department of Rural Development, Jeevika is also helping women to obtain specialized equipment for zero tillage and for the mechanized transplanting of rice seedlings into paddies, which reduces women’s hard labor of hand transplanting.

“Mechanization is helping us manage our costs and judiciously use our time in farming,” says Rekha Devi, a woman farmer member of Jeevika Gulab self-help group of Beniwal Village, Jamui District. “We have learned many new techniques through our self-help group.”

With more than 100 million inhabitants and over 1,000 persons per square kilometer, Bihar is India’s most densely-populated state. Nearly 90 percent of its people live in rural areas and agriculture is the main occupation. Women in Bihar play key roles in agriculture, weeding, harvesting, threshing, and milling crops, in addition to their household chores and bearing and caring for children, but they often lack access to training, vital information, or strategic technology.

Like all farmers in South Asia, they also face risks from rising temperatures, variable rainfall, resource degradation, and financial constraints.

Jeevika has formed more than 700,000 self-help groups in Bihar, mobilizing nearly 8.4 million poor households, 25,000 village organizations, and 318 cluster-level federations in all 38 districts of Bihar.

The organization also fosters access for women to “custom-hiring” businesses, which own the specialized implement for practices such as zero tillage and will sow or perform other mechanized services for farmers at a cost. “Custom hiring centers help farmers save time in sowing, harvesting and threshing,” said Anil Kumar, Program Manager, Jeevika.

The staff training, knowledge and tools shared by CSISA have been immensely helpful in strengthening the capacity of women farmers, according to D. Balamurugan, CEO of Jeevika. “We aim to further strengthen our partnership with CSISA and accelerate our work with women farmers, improving their productivity while saving their time and costs,” Balamurugan said.

CSISA is implemented jointly by the International Maize and Wheat Improvement Center (CIMMYT), the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). It is funded by the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID).

Digital imaging tools make maize breeding much more efficient

Mainassara Zaman-Allah conducts a demonstration of the use of unmanned aerial vehicles (UAV) at the Chiredzi research station in Zimbabwe.
Mainassara Zaman-Allah conducts a demonstration of the use of unmanned aerial vehicles (UAV) at the Chiredzi research station in Zimbabwe.

To keep up with growing maize demand, breeders aim at optimizing annual yield gain under various stress conditions, like drought or low fertility soils. To that end, they identify the genetic merit of each individual plant, so they can select the best ones for breeding.

To improve that process, researchers at the International Maize and Wheat Improvement Center (CIMMYT) are looking at cost-effective ways to assess a larger number of maize plants and to collect more accurate data related to key plant characteristics. Plant phenotyping looks at the interaction between the genetic make-up of a plant with the environment, which produces certain characteristics or traits. In maize, for example, this may manifest in different leaf angles or ear heights.

Recent innovations in digital imagery and sensors save money and time in the collection of data related to phenotyping. These technologies, known as high-throughput phenotyping platforms, replace lengthy paper-based visual observations of crop trials.

Authors of a recent review study on high-throughput phenotyping tools observe that obtaining accurate and inexpensive estimates of genetic value of individuals is central to breeding. Mainassara Zaman-Allah, an abiotic stress phenotyping specialist at CIMMYT in Zimbabwe and one of the co-authors, emphasizes the importance of improving existing tools and developing new ones. “Plant breeding is a continuously evolving field where new tools and methods are used to develop new varieties more precisely and rapidly, sometimes at reduced financial resources than before,” he said. “All this happens to improve efficiency in breeding, in order to address the need for faster genetic gain and reduction of the cost of breeding.”

“Under the Stress Tolerant Maize for Africa (STMA) project, we are working on implementing the use of drone-based sensing, among other breeding innovations, to reduce time and cost of phenotyping, so that the development of new varieties costs less,’’ said Zaman-Allah. “The use of drones cuts time and cost of data collection by 25 to 75 percent  compared to conventional methods, because it enables to collect data on several traits simultaneously — for example canopy senescence and plant count,” he explained.

Another great innovation developed under this CIMMYT project is what Zaman-Allah calls the ear analyzer. This low-cost digital imaging app allows to collect maize ear and kernel trait data 90 percent faster. This implies higher productivity and rigor, as more time is dedicated to data analysis rather than time spent on data collection. Using digital image processing, the ear analyzer gives simultaneous data of more than eight traits, including ear size and number, kernel number, size and weight.

Measuring maize attributes such as ear size, kernel number and kernel weight is becoming faster and simpler through digital imaging technologies.
Measuring maize attributes such as ear size, kernel number and kernel weight is becoming faster and simpler through digital imaging technologies.

Some national agricultural research systems and NGOs have adopted this digital imagery tool to better assess maize yields in farmers’ fields. For instance, CIMMYT and GOAL have used this tool to assess the extent of fall armyworm impact on maize crops yield in eastern Zimbabwe.

Scientists are exploring the use of different sensors for phenotyping, such as Red, Green and Blue (RGB) digital imaging or Light Detection and Ranging (LIDAR) devices. Infrared thermal and spectral cameras could lead to further progress towards faster maize breeding.

Such sensors can help collect numerous proxy data relating to important plant physiological traits or the plant environment, like plant height and architecture, soil moisture and root characteristics. This data can be used to assess the maize crop yield potential and stress tolerance.

Such breeding innovations are also making maize research more responsive to climate change and emerging pests and diseases.

Breaking Ground: Rahma Adam unleashes the agricultural productivity of Africa’s women and youth

Breaking Ground Rahma Adam

Despite great innovations in African agriculture in recent years, much of the continent still struggles to feed itself. With the population growing at an unprecedented rate, avoiding fatal food insecurity lies in the ability to maximize agricultural capacity.

Sociologist Rahma Adam believes there is one vital resource that remains untapped. One which, when unleashed, will not only increase food security but also boost livelihoods: the human capital of Africa’s women and youth.

“Smallholder production and livelihoods are stifled by the unequal access woman and youth have to farming information and resources, compared to men,” said Adam. “Limited access to land and technical services inhibits their agricultural productivity and holds back the food security of all.”

As a gender and development specialist with the International Maize and Wheat Improvement Center (CIMMYT), Adam adds a social inclusion lens to Africa’s development dialogue. Her research asks questions as to why women and youth are overrepresented among the poor and how to improve their access to agricultural training and markets.

The interaction between biology and anthropology has fascinated Adam since she was an undergraduate student at Macalester College. However, it was not until researching women and men in the local food markets of her native Dar es Salaam, Tanzania — as part of an exercise for her master’s degree in Public Policy at Harvard University — that she realized how social equity could improve the livelihoods of all African farmers.

“Working alongside farming women, I saw first-hand the disproportionate number of challenges they face to overcome poverty, gather finance for inputs, produce enough food to sustain a family and improve their livelihoods. However, I also saw their potential,” Adam explained.

Inspired to tackle these complex issues, she got her doctoral degree in rural sociology, with a focus on agriculture, gender and international development, from Pennsylvania State University. Following an early career with nonprofits and the World Bank, she joined CIMMYT as a gender and development specialist in 2015.

Since then, Adam has led research on how best to lift the agricultural productivity of women and youth to its full potential. Working with the Sustainable Intensification for Maize-Legumes Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project, she analyzed the role of gender and social inclusion in maize and legume value chains in Ethiopia, Kenya, Mozambique and Tanzania. She also identified intervention points to achieve gender and age equity across various nodes from field to plate, for example among producers, agrodealers, traders, processors and breeders.

“Promoting women and youth participation in agricultural value chains improves food security and livelihoods,” she explained. “Allowing these groups to have a voice and encouraging their leadership in farmer groups promotes their participation in agriculture.”

Partnerships for social inclusion

In eastern and southern Africa’s maize and legume farming systems, research shows that in most cases men have the final decision over maize crop production. Women have increased decision-making power regarding certain legumes, such as cowpeas and groundnuts, as they are mostly only for household consumption.

Adam’s work with SIMLESA found that promoting women’s participation in the production of legumes as cash crops is an opportunity to empower them, increase their household income and their food security.

Connecting women and youth to value chains through Agricultural Innovation Platforms improves their access to markets, credit, farming information and capacity development, she said. These platforms bring together farmers with extension workers, researchers, agrodealers, and NGO practitioners, so they can work together to improve maize and legume conservation agriculture-based sustainable intensification.

“It is important policy and development decision makers see that research demonstrates entry points to encourage women and youth to take an active role in value chains and improve productivity,” Adam said.

“You don’t want your research to sit on a shelf. This is why science policy dialogues — like the SIMLESA local, national and regional policy forums taking place this year — are important to ensure that research is introduced into the political landscape.”

An inclusive approach to research

Research must be designed and implemented in a way that women and men, including youth, can participate in and benefit from, Adam explained. They need to be considered in the research process, so they can increase their control of productive assets, participate in decision making, and decrease their labor burdens.

Adam has recently joined CIMMYT’s Stress Tolerant Maize for Africa (STMA) project to unpack gender issues in the formal maize seed sector. She will examine the relationship between gender and adoption of drought-tolerant and other improved varieties of maize. Adam will also analyze and categorize the differences in maize trait preferences between male and female farmers, and she will develop materials to integrate gender considerations in formal maize seed sector development.

“This information will be used by breeders to develop new maize varieties which are valuable to farmers and therefore have an increased chance of adoption,” the sociologist explained. “It will also help stakeholders get an idea of the rate men and women adopt improved varieties, and how they contribute to the evolution and performance of the seed sector in eastern and southern Africa.”

Providing training and consultation to her peers on gender and social inclusion is another important component of Adam’s work at CIMMYT. In June she will deliver a webinar on gender in research for CGIAR centers. At the end of the year she will participate in a regional seed sector workshop with other CGIAR experts, seed companies and NGOs, to ensure that partners use gender and social inclusion research.

Funded by the Australian Centre for International Agricultural Research (ACIAR), the SIMLESA project was led by the International Maize and Wheat Improvement Center (CIMMYT) in collaboration with the Rwanda Agricultural Board (RAB), CGIAR centers and national agricultural research institutes in Ethiopia, Kenya, Malawi, Mozambique, Tanzania and Uganda. Other regional and international partners include the Queensland Alliance for Agriculture and Food Innovation (QAAFI) at the University of Queensland, Australia, and the Association for Strengthening Agricultural Research in Eastern and Central Africa (ASARECA).

STMA is implemented by CIMMYT and is funded by the Bill & Melinda Gates Foundation and the United States of Agency for International Development (USAID).

How gender equity and social inclusion are improving the lives of rural families in Africa

Women have the potential to be drivers of agricultural transformation in Africa, holding the key to improving their families’ livelihoods and food security. However, constraints such as lack of access to initial capital, machinery, reliable markets, and knowledge and training are difficult to overcome, leading to restricted participation by women and young people in agricultural systems in Africa.

A new video from the Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) project highlights the importance of gender equity and social inclusion to achieving project impacts and outcomes, helping to drive transformative change towards securing a food-secure future for Africa. Case studies and interviews with women and men farmers — including young people — detail how SIMLESA’s approach has re-shaped their maize-based farming lives.

The video is aligned with the theme for International Women’s Day 2019, Think Equal, Build Smart, Innovate for Change,” which places the spotlight on innovative ways in which we can advance gender equality and the empowerment of women.

“This video is intended to educate the agricultural community and wider public on the importance of applying sustainable intensification agricultural practices and technologies in order to bridge the gender gap in agricultural productivity and achieve agricultural transformation for smallholder farmers in Africa,” said Rahma Adam, Gender and Development Specialist with CIMMYT in Kenya. “We hope stakeholders will be able to see the benefits of these practices and technologies, and work towards finding ways to implement them into their agricultural practices or programs.”

Launched in 2010, SIMLESA is led by the International Maize and Wheat Improvement Center (CIMMYT) and funded by the Australian Center for International Agricultural Research (ACIAR). It is implemented by national agricultural research systems, agribusinesses and farmers in partner countries including Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)
SIMLESA lead farmer Agnes Sendeza harvests maize cobs from a stook on her farm in Tembwe, Salima district, Malawi. (Photo: Peter Lowe/CIMMYT)

Putting equal opportunities at the center

Following a participatory research for development approach, the SIMLESA team works alongside farmers and partner organizations to achieve increased food production while minimizing pressure on the environment by using smallholder farmers’ resources more efficiently and empowering women, men and young people to make decisions.

The SIMLESA project achieves impact by integrating gender sensitivity into all project activities and developing a deep understanding of social contexts and factors that constrain access to, and adoption of, improved technologies. Initiatives are able to reach all individuals in the project’s target communities, leaving no one out.

“The benefits of fostering equal opportunities for women, men and young people through SIMLESA’s work are enormous,” said Adam. Equal opportunities mean better access to information, markets, and improved varieties of seeds; participation in field trials, demonstrations and training; and the provision of leadership opportunities in local innovation platforms.

Central to the success of the SIMLESA project is the concept of Agricultural Innovation Platforms. “Being members of these platforms, farmers can access credits, which they can use to purchase farm inputs,” explained Adam. “They are able to take part in collective marketing and get a better price for their crops. The Agricultural Innovation Platforms also facilitate training on better agribusiness management practices and the sharing of ideas about other productive investment opportunities to better farmers’ lives. All these benefits were hard to come by when the women and youth farmers were farming on their own without being associated to the SIMLESA project or part of the platforms.”

The words of Rukaya Hasani Mtambo, a farmer from Tanzania, are a testimony to the power of this idea. “As a woman, I am leader of our group and head of my household. I always encourage my fellow women, convincing them we are capable. We should not underestimate what we can do.”

To watch the full video, click here.

To watch other videos about the SIMLESA project, click here.

Tribal women in India find value in maize cultivation

Women applying required fertilizer along the tracks of seed drill. (Photo: Wasim Iftikar)
Women applying required fertilizer along the tracks of seed drill. (Photo: Wasim Iftikar)

Maize is a staple crop that requires a limited amount of water and inputs, and earns farmers a profit, thanks to its growing demand as food and feed for livestock. Adivasi women farmers in India’s Odisha state are increasing their yields by applying improved maize intensification technologies.

The Cereal Systems Initiative for South Asia (CSISA), led by the International Maize and Wheat Improvement Center (CIMMYT), is providing technical support to the Association for Development Initiatives, which implements the Odisha Primitive Tribal Group Empowerment and Livelihood Improvement Program (OPELIP) and the Odisha State Department of Agriculture at Gudugudia in Mayurbhanj.

“CSISA’s technical support to the women, focusing on improved maize cultivation techniques, helped the women improve their understanding, their capacity and their yields,” said Wasim Iftikar, Research Associate at CIMMYT. Improved maize hybrids, precision nutrient management techniques and improved weed management practices have helped the women increase their yields. This year the group harvested more than 3,300 kg from seven acres of land.

“We never thought we could earn money and support our families through maize cultivation. This is an eye-opener for us. We are planning to increase the area of cultivation for maize and will convince our family members and other women to join us,” says farmer Joubani Dehuri.

To view a photo essay recognizing these women and their work in honor of International Women’s Day 2019, please click here: https://adobe.ly/2ED9sns

The Cereal Systems Initiative for South Asia (CSISA) is a regional initiative to sustainably increase the productivity of cereal-based cropping systems, thus improving food security and farmers’ livelihoods in Bangladesh, India and Nepal. CSISA works with public and private partners to support the widespread adoption of resource-conserving and climate-resilient farming technologies and practices. The initiative is led by the International Maize and Wheat Improvement Center (CIMMYT), implemented jointly with the International Food Policy Research Institute (IFPRI) and the International Rice Research Institute (IRRI). It is funded by the U.S. Agency for International Development (USAID) and the Bill & Melinda Gates Foundation.

Farmers key to realizing EAT-Lancet report recommendations in Mexico, CIMMYT highlights

CIMMYT's director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)
CIMMYT’s director of innovative business strategies, Bram Govaerts (left), explained that three changes are needed to reduce the environmental impact of food systems in Mexico: innovation in production practices, reduction of food waste, and change of diets. (Photo: CIMMYT)

MEXICO CITY (CIMMYT) — The International Maize and Wheat Improvement Center (CIMMYT) was invited to discuss the findings of the EAT-Lancet Commission report and its implications for Mexico, during a launch event hosted by Mexico’s Health Department on March 4, 2019.

The report, published earlier this year, aims to offer an in-depth scientific analysis of the world’s food production systems and their impact on the planet and human health. It proposes a “planetary health diet” that balances nutrition with sustainable food production.

“Our first objective was to develop healthy diets for the 10 billion people who will inhabit the planet in 2050”, said Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute and member of the EAT-Lancet Commission. According to Dommarco, the healthy diet recommended for Mexico had to increase the intake of fruits, vegetables, legumes and whole grains to avert chronic diseases and combat malnutrition and obesity.

The report also makes several recommendations to reduce the environmental impact of food production, taking into account planetary boundaries. “The world needs to sustainably intensify food production and to produce basic foodstuffs of higher nutritional value”, said Fabrice DeClerck, EAT’s Science Director.

“If anybody is able to manage the complex systems that will sustainably yield the volume of nutritious food that the world needs, that’s the farmer”, said Bram Govaerts, Director of Innovative Business Strategies at CIMMYT. “In Mexico, more than 500 thousand farmers already innovate every day and grow maize, wheat and related crops under sustainable intensification practices that CIMMYT and Mexico’s Agriculture Department promote with MasAgro”.

Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture, said that the EAT-Lancet Commission report recommendations were very much in line with the strategic public policies that Mexico plans to implement in the coming years.

From left to right: Fabrice DeClerck, Science Director at the EAT Foundation; Hugo López-Gatell Ramírez, Mexico’s Undersecretary for Prevention and Promotion of Health; Teresa Shamah Levy, Deputy Director General for Evaluation and Surveys Research at Mexico’s Public Health Institute; Jorge Alcocer Varela, Mexico’s Secretary of Health; Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture; Bram Govaerts, Director of Innovative Business Strategies at CIMMYT; Rut Krüger Giverin, Norway’s Ambassador to Mexico; Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute; and Olav Kjørven, Chief Strategic Officer at the EAT Foundation. (Photo: CIMMYT)
From left to right: Fabrice DeClerck, Science Director at the EAT Foundation; Hugo López-Gatell Ramírez, Mexico’s Undersecretary for Prevention and Promotion of Health; Teresa Shamah Levy, Deputy Director General for Evaluation and Surveys Research at Mexico’s Public Health Institute; Jorge Alcocer Varela, Mexico’s Secretary of Health; Víctor Villalobos Arámbula, Mexico’s Secretary of Agriculture; Bram Govaerts, Director of Innovative Business Strategies at CIMMYT; Rut Krüger Giverin, Norway’s Ambassador to Mexico; Juan Ángel Rivera Dommarco, Director General of Mexico’s Public Health Institute; and Olav Kjørven, Chief Strategic Officer at the EAT Foundation. (Photo: CIMMYT)

International Women’s Day 2019: Women in seed systems in Africa

The maize seed sector in eastern and southern Africa is male-dominated. Most seed companies operating in the region are owned and run by men. Access to land and financial capital can often be a constraint for women who are keen on investing in agriculture and agribusiness. However, there are women working in this sector, breaking social barriers, making a contribution to improving household nutrition and livelihoods by providing jobs and improved seed varieties.

The Gender team within the International Maize and Wheat Improvement Center’s (CIMMYT) Socioeconomics Program conducted interviews with women owners of seed companies in eastern and southern Africa. They shared information on their background, their motivation to start their businesses, what sets their companies apart from the competition, the innovative approaches they use to ensure smallholder farmers adopt improved seed varieties, the unique challenges they face as women in the seed sector and the potential for growth of their companies. The resulting stories will be published as a report in May 2019.

These women in leading roles serve as mentors and examples to both male and female employees. In honor of International Women’s Day, held March 8, 2019, CIMMYT would like to share some of their stories to recognize these women — and many others like them — and the important work they do in seed systems in Africa.

Sylvia Horemans

Sylvia Horemans (right) and a warehouse supervisor (left) inspect seeds at Kamano Seeds. (Photo: Lucy Maina/CIMMYT)
Sylvia Horemans (right) and a warehouse supervisor (left) inspect seeds at Kamano Seeds. (Photo: Lucy Maina/CIMMYT)

Sylvia Horemans started Kamano Seeds in April 2004 together with her late husband Desire Horemans. The company derives its name from a stream that runs through their farm in Mwinilinga, Zambia. Kamano means a stream that never dries, aptly describing the growth the company has enjoyed over the years, enabling it to capture 15 percent of the country’s seed market share.  Sylvia became the company’s Chief Executive Officer in 2016.

“The initial business was only to sell commercial products but we realized there was a high demand for seed so we decided to start our own seed business,” says Sylvia. “We work with cooperatives which identify ideal farmers to participate in seed production.”

The company takes pride in the growth they have witnessed in their contract workers. “Most farmers we started with [now] have 20 to 40 hectares. Some are businessmen and have opened agrodealer shops where they sell agricultural inputs,” Sylvia announced.

Kamano prides itself in improving the lives of women smallholders and involving women in decision-making structures. “We empower a lot of women in agriculture through our out-grower scheme,” says Sylvia. She makes a deliberate effort to recruit women farmers, ensuring they receive payment for their seeds. “We pay the women who did the work and not their husbands.”

To read the full story, please click here.

Zubeda Mduruma

Zubeda Mduruma (right) and her colleague check maize seeds at Aminata Quality Seeds. (Photo: Lucy Maina/CIMMYT)
Zubeda Mduruma (right) and her colleague check maize seeds at Aminata Quality Seeds. (Photo: Lucy Maina/CIMMYT)

Zubeda Mduruma, 65, is a plant breeder. She took to agriculture from a young age, as she enjoyed helping her parents in the family farm. After high school, Zubeda obtained a bachelor’s degree in Agriculture. Then she joined Tanzania’s national agriculture research system, working at the Ilonga Agricultural Research Institute (ARI-Ilonga) station. She then pursued her master’s in Plant Breeding and Biometry from Cornell University in the United Stations and obtained a doctorate in Plant Breeding at Sokoine University of Agriculture in Tanzania, while working and raising her family. “I wanted to be in research, so I could breed materials which would be superior than what farmers were using, because they were getting very low yields,” says Zubeda. In the 22 years she was at Ilonga, Zubeda was able to release 15 varieties.

Aminata Quality Seeds is a family business that was registered in 2008, owned by Zubeda, her husband and their four daughters. Aminata entered the seed market as an out-grower, producing seed for local companies for two years. The company started its own seed production in 2010, and the following year it was marketing improved varieties. “I decided to start a company along the Coast and impart my knowledge on improved technologies, so farmers can get quality crops for increased incomes,” says Zubeda.

Zubeda encourages more women to venture into the seed business. “To do any business, you have to have guts. It is not the money; it is the interest. When you have the interest, you will always look for ways on how to start your seed business.”

To read the full story, please click here.

Grace Malindi

Grace Malindi (second from right) at her office in Lilongwe, Malawi. (Photo: Lucy Maina/CIMMYT)
Grace Malindi (second from right) at her office in Lilongwe, Malawi. (Photo: Lucy Maina/CIMMYT)

Grace Malindi, 67, started Mgom’mera in Malawi in 2014 with her sister Florence Kahumbe, who had experience in running agrodealer shops. Florence was key in setting up the business, particularly through engagement with agro-dealers, while Grace’s background in extension was valuable in understanding their market. Grace has a doctoral degree in Human and Community Development with a double minor in Gender and International Development and Agriculture Extension and Advisory from the University of Illinois Urbana-Champaign in the United States. Mgom’mera is a family-owned enterprise. Grace’s three children are involved in the business, serving as directors.

Mgom’mera distinguishes itself from other seed companies because of its focus on maize varieties that have additional nutritive value. The company uses the tagline “Creating seed demand from the table to the soil.” It educates farmers not only on how to plant the seed they sell, but also on how to prepare nutritious dishes with their harvest. The company stocks ZM623, a drought-tolerant open-pollinated variety, and Chitedze 2, a quality protein maize. In the 2019 maize season it will also sell MH39, a pro-vitamin A variety. In addition, they are looking forward to beginning quality protein maize hybrid production in the near future, having started the process of acquiring materials from CIMMYT.

Grace observes that women entrepreneurs are late entrants in seed business. “You need agility, flexibility and experience to run a seed business and with time you will improve,” says Grace, advising women who may be interested in venturing into this male-dominated business.

To read the full story, please click here.

New publications: Gender and agricultural innovation in Oromia region, Ethiopia

Despite formal decentralization, agricultural services in Ethiopia are generally “top-down,” claim the authors of a recently published paper on gender and agricultural innovation. “Extension services,” they explain, “are supply-driven, with off-the-shelf technologies transferred to farmers without expectation of further adaptation.”

Drawing on GENNOVATE case studies from two wheat-growing communities in Ethiopia’s Oromia region, the authors examine how a small sample of women and men smallholders attempt to innovate with improved wheat seed, row planting, and the broad bed maker, introduced through the Ethiopian agricultural extension system. They also introduce the concept of tempered radicals, an analytic lens used to understand how individuals try to initiate change processes, and assess whether this can have validity in rural settings.

Dinke Abebe shows a handful of wheat at a traditional seed storage house in Boru Lencha village, Hetosa district, Arsi highlands, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Dinke Abebe shows a handful of wheat at a traditional seed storage house in Boru Lencha village, Hetosa district, Arsi highlands, Ethiopia. (Photo: Peter Lowe/CIMMYT)

As the authors demonstrate through their literature review on cultural norms in the region, there are powerful institutional gender constraints to change processes, which can be punitive for women.

Ethiopian women smallholders are particularly disadvantaged because they have limited access to productive assets such as irrigation water, credit and extension services. Therefore, they find it harder to implement innovations. The study asserts that strategies to support innovators, and women innovators in particular, must be context-specific as well as gender-sensitive.

Read the full article “Gender and agricultural innovation in Oromia region, Ethiopia: from innovator to tempered radical” in Gender, Technology and Development.

Development of research methodology and data collection was supported by the CGIAR Gender and Agricultural Research Network, the World Bank, the Government of Mexico, the Government of Germany, and the CGIAR Research Programs on Maize and Wheat. Data analysis was supported by the Bill & Melinda Gates Foundation.

Check out other recent publications by CIMMYT researchers below:

  1. Alternative use of wheat land to implement a potential wheat holiday as wheat blast control: in search of feasible crops in Bangladesh. 2019. Mottaleb, K.A., Singh, P.K., Xinyao He, Akbar Hossain, Kruseman, G., Erenstein, O. In: Land Use Policy v. 82, p. 1-12.
  2. Applications of machine learning methods to genomic selection in breeding wheat for rust resistance. 2019. González-Camacho, J.M., Ornella, L., Perez-Rodriguez, P., Gianola, D., Dreisigacker, S., Crossa, J. In: Plant Genome v. 11, no. 2, art. 170104.
  3. Genetic diversity and population structure of synthetic hexaploid-derived wheat (Triticum aestivum L.) accessions. 2019. Gordon, E., Kaviani, M., Kagale, S., Payne, T.S., Navabi, A. In: Genetic Resources and Crop Evolution v. 66, no. 2, p. 335-348.
  4. Genomic-enabled prediction accuracies increased by modeling genotype × environment interaction in durum wheat. 2019. Sukumaran, S., Jarquín, D., Crossa, J., Reynolds, M.P. In: Plant Genome v. 11, no. 2, art. 170112.
  5. Improved water-management practices and their impact on food security and poverty: empirical evidence from rural Pakistan. 2019. Ali, A., Rahut, D.B., Mottaleb, K.A. En: Official Journal of the World Water Council Water Policy v. 20, no. 4, p. 692-711.
  6. Integrating genomic-enabled prediction and high-throughput phenotyping in breeding for climate-resilient bread wheat. 2019. Juliana, P., Montesinos-Lopez, O.A., Crossa, J., Mondal, S., Gonzalez-Perez, L., Poland, J., Huerta-Espino, J., Crespo-Herrera, L.A., Velu, G., Dreisigacker, S., Shrestha, S., Perez-Rodriguez, P., Pinto Espinosa, F., Singh, R.P. In: Theoretical and Applied Genetics v. 132, no. 1, p. 177-194.
  7. Pre-harvest management is a critical practice for minimizing aflatoxin contamination of maize. 2019. Mahuku, G., Nzioki, H., Mutegi, C., Kanampiu, F., Narrod, C., Makumbi, D. In: Food Control v. 96, p. 219-226.
  8. Root-lesion nematodes in cereal fields: importance, distribution, identification, and management strategies. 2019. Mokrini, F., Viaene, N., Waeyenberge, L., Dababat, A.A., Moens, M. In: Journal of Plant Diseases and Protection v. 126, no. 1, p. 1-11.
  9. Spider community shift in response to farming practices in a sub-humid agroecosystem of southern Africa. 2019. Mashavakure, N., Mashingaidze, A.B., Musundire, R., Nhamo, N., Gandiwa, E., Thierfelder, C., Muposhi, V.K. In: Agriculture, Ecosystems and Environment v. 272, p. 237-245.
  10. Threats of tar spot complex disease of maize in the United States of America and its global consequences. 2019. Mottaleb, K.A., Loladze, A., Sonder, K., Kruseman, G., San Vicente, F.M. In: Mitigation and Adaptation Strategies for Global Change v. 24, no. 2, p. 281–300.

Policy forum in Mozambique recommends scaling sustainable agriculture practices

A woman stands on a field intercropping beans and maize in Sussundenga, Manica province, Mozambique. (Photo: Luis Jose Cabango)
A woman stands on a field intercropping beans and maize in Sussundenga, Manica province, Mozambique. (Photo: Luis Jose Cabango)

For many small farmers across sub-Saharan Africa, the crop yields their livelihoods depend on are affected by low-quality inputs and severe challenges like climate change, pests and diseases. Unsustainable farming practices like monocropping are impacting soil health and reducing the productivity of their farms.

Sustainable intensification practices based on conservation agriculture entail minimal soil disturbance, recycling crop plant matter to cover and replenish the soil, and diversified cropping patterns. These approaches maintain moisture, reduce erosion and curb nutrient loss. Farmers are encouraged and supported to intercrop maize with nitrogen-fixing legumes — such as beans, peas and groundnuts — which enrich the soil with key nutrients. Farmers are equally advised to cultivate their crops along with trees, instead of deforesting the land to create room for farming.

These practices result in higher incomes for farmers and better food and nutrition for families. Adopting conservation agriculture also improves farmers’ climate resilience. Combined with good agronomic practices, conservation agriculture for sustainable intensification can increase yields up to 38 percent.

Since 2010, the Sustainable Intensification of Maize and Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project has promoted effective ways to produce more food while protecting the environment across Eastern and Southern Africa. In particular, the SIMLESA project aims at sustainably increasing the productivity of maize and legume systems in the region.

The SIMLESA project demonstrated the advantages of deploying low-carbon and low-cost mechanization adapted to smallholder farming: it addresses labor shortages at critical times like planting or weeding, boosting farmers’ productivity and yields. The SIMLESA project introduced mechanization in different phases: first improved manual tools like the jab planter, later draft power machinery innovations such as rippers, and finally motorized mechanization in the form of small four-wheel tractors.

Farmers visit a field from Total LandCare demonstrating conservation agriculture for sustainable intensification practices in Angónia, Tete province, Mozambique.
Farmers visit a field from Total LandCare demonstrating conservation agriculture for sustainable intensification practices in Angónia, Tete province, Mozambique.

From proof of concept to nation-wide adoption

In Mozambique, conservation agriculture-based sustainable intensification practices have significantly expanded: from 36 farmers in six villages in four districts in 2010, to over 190,000 farmers in more than 100 villages in nine districts by the end of 2018. This remarkable result was achieved in collaboration with partners such as the Mozambican Agricultural Research Institute (IIAM), extension workers, communities and private companies.

“Smallholder agriculture mechanization reduced the amount of labor required for one hectare of land preparation, from 31 days to just 2 hours. This enabled timely farming activities and a maize yield increase of about 170 kg per hectare, reflecting an extra 3-4 months of household food security,” said the national coordinator for SIMLESA in Mozambique, Domingos Dias.

Following its successes, SIMLESA and its partners have embarked on a series of meetings to discuss how to leverage public-private partnerships to expand conservation agriculture practices to other regions.

Throughout February and March 2019, a series of policy forums at sub-national and national levels will be held across the seven SIMLESA countries: Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

The first policy dialogue took place on February 7 in Chimoio, in Mozambique’s district of Manica. Key agriculture stakeholders attended, including representatives from CIMMYT, IIAM, the Ministry of Agriculture, as well as policy makers, private sector partners and international research institutes.

Participants of the SIMLESA policy forum in Chimoio, Manica province, Mozambique, pose for a group photo.
Participants of the SIMLESA policy forum in Chimoio, Manica province, Mozambique, pose for a group photo.

“We are delighted at SIMLESA’s unique strategy of involving multiple partners in implementing conservation agriculture for sustainable intensification practices. This has, over the years, allowed for faster dissemination of these practices and technologies in more locations in Mozambique, thereby increasing its reach to more farmers,” said Albertina Alage, Technical Director for Technology Transfer at IIAM. “Such policy forums are important to showcase the impact of conservation agriculture to policy makers to learn and sustain their support for scaling up conservation agriculture for sustainable intensification,” she added.

Forum participants called for better coordination between the public and the private sector to deliver appropriate machinery for use by smallholders in new areas. They recommended adequate support to enable farmers to better integrate livestock and a diverse cropping system, as well as continue with conservation agriculture trials and demonstration activities. Besides involving farmers, their associations and agro-dealer networks in scaling conservation agriculture initiatives, participants agreed to promote integrated pest and disease management protocols. This is considering the recent outbreak of the fall armyworm, which devasted crops in many countries across sub-Saharan Africa.

“The SIMLESA project is and will always be a reference point for our research institute and the Ministry of Agriculture in our country. The good progress of SIMLESA and the results of this forum will help to draw strategies for continuity of this program implemented by government and other programs with the aim to increase production and productivity of farmers,” Alage concluded.

The SIMLESA project is a science for development alliance, funded by the Australian Centre for International Agricultural Research (ACIAR) and led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with national research institutes in Ethiopia, Kenya, Malawi, Mozambique and Tanzania.