Skip to main content

research: Sustainable agrifood systems

Sustainable and Resilient Farming Systems Intensification in the Eastern Gangetic Plains (SRFSI)

The Eastern Gangetic Plains region of Bangladesh, India, and Nepal is home to the greatest concentration of rural poor in the world. This region is projected to be one of the areas most affected by climate change. Local farmers are already experiencing the impact of climate change: erratic monsoon rains, floods and other extreme weather events have affected agricultural production for the past decade. The region’s smallholder farming systems have low productivity, and yields are too variable to provide a solid foundation for food security. Inadequate access to irrigation, credit, inputs and extension systems limit capacity to adapt to climate change or invest in innovation. Furthermore, large-scale migration away from agricultural areas has led to labor shortages and increasing numbers of women in agriculture.

The Sustainable and Resilient Farming Systems Intensification (SRFSI) project aims to reduce poverty in the Eastern Gangetic Plains by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women. CIMMYT, project partners and farmers are exploring Conservation Agriculture-based Sustainable Intensification (CASI) and efficient water management as foundations for increasing crop productivity and resilience. Technological changes are being complemented by research into institutional innovations that strengthen adaptive capacity and link farmers to markets and support services, enabling both women and men farmers to adapt and thrive in the face of climate and economic change.

In its current phase, the project team is identifying and closing capacity gaps so that stakeholders can scale CASI practices beyond the project lifespan. Priorities include crop diversification and rotation, reduced tillage using machinery, efficient water management practices, and integrated weed management practices. Women farmers are specifically targeted in the scaling project: it is intended that a third of participants will be women and that at least 25% of the households involved will be led by women.

The 9.7 million Australian dollar (US$7.2 million) SRFSI project is a collaboration between CIMMYT and the project funder, the Australian Centre for International Agricultural Research. More than 20 partner organizations include the Departments of Agriculture in the focus countries, the Bangladesh Agricultural Research Institute, the Indian Council for Agricultural Research, the Nepal Agricultural Research CouncilUttar Banga Krishi VishwavidyalayaBihar Agricultural UniversityEcoDev SolutionsiDEAgrevolutionRangpur-Dinajpur Rural ServicesJEEViKASakhi BiharDreamWork SolutionsCSIRO and the Universities of Queensland and Western Australia.

OBJECTIVES

  • Understand farmer circumstances with respect to cropping systems, natural and economic resources base, livelihood strategies, and capacity to bear risk and undertake technological innovation
  • Develop with farmers more productive and sustainable technologies that are resilient to climate risks and profitable for smallholders
  • Catalyze, support and evaluate institutional and policy changes that establish an enabling environment for the adoption of high-impact technologies
  • Facilitate widespread adoption of sustainable, resilient and more profitable farming systems

 

Zero-tillage service provision is key to facilitating adoption.
Zero-tillage service provision is key to facilitating adoption.
Service provider Azgad Ali and farmer Samaru Das have a fruitful relationship based on technology promoted through CIMMYT's SRSFI project.
Service provider Azgad Ali and farmer Samaru Das have a fruitful relationship based on technology promoted through CIMMYT’s SRSFI project.
A zero-tillage multi-crop planter at work in West Bengal.
Bablu Modak demonstrates his unpuddled mechanically transplanted rice.
Bablu Modak demonstrates his unpuddled mechanically transplanted rice.
CIMMYT's SRFSI team and the community walk through the fields during a field visit in Cooch Behar.
CIMMYT’s SRFSI team and the community walk through the fields during a field visit in Cooch Behar.

MasAgro Wheat

MasAgro Wheat, a component of CIMMYT’s MasAgro project, conducts research on wheat genetics and physiology to improve plant structure, increase the resilience and disease resistance of wheat, and its yield potential in Mexico and abroad. In 2015, main achievements of MasAgro Wheat included:

  • More than 100 agronomic and physiological traits of 60 elite lines of high-yielding potential from CIMMYT Core Germplasm II set (CIMCOG II) were evaluated with high throughput phenotyping technologies.
  • Five elite lines were selected after analyzing three years of data collected from consecutive trials of the CIMCOG I set. Some lines were chosen for their resistance to lodging.
  • Aerial phenotyping platforms with remote sensors where used to identify five high-yielding and drought tolerant lines and seven outstanding heat tolerant lines from more than 600 elite lines tested in the field.
  • Nine Mexican students continued their doctoral studies in prestigious international universities with the benefit of acknowledged experts as advisers and using data from the MasAgro Wheat field trials. Three students concluded their doctoral studies and two more are in line to achieve their degree in the first semester of 2016.

Objectives

  • To raise wheat yield potential by 2 percent globally, with a view to increasing yield potential by 50 percent over 20 years.
  • In the case of Mexico, to raise wheat production by 350,000 tons (10 percent) in 10 years, 750,000 tons (22 percent) in 15 years and 1.7 million tons (50 percent) in 20 years, in the same acreage currently devoted to wheat production.

Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI)

Agricultural intensification is both a need and an opportunity for countries in sub-Sahara Africa. For intensification to occur sustainably — with minimum negative environmental and social consequences — it is widely recognized that resources must be used with much greater efficiency. Although much emphasis is being placed in current research for development work on increasing the efficiency with which land, water and nutrients are being used, farm power appears as the “forgotten resource.” However, farm power in countries sub-Saharan Africa is declining due to the collapse of most hire tractor schemes, the decline in number of draft animals and the decline in human labor related to rural-urban migration. Another aspect of low farm power is high labor drudgery, which affects women, who generally due the majority of threshing, shelling and transport by head-loadings, disproportionally. Undoubtedly, sustainable intensification in these countries will require an improvement of farm-power balance through increased power supply — via improved access to mechanization — and/or reduced power demand – via energy saving technologies such as conservation agriculture techniques.

The Farm Mechanization and Conservation Agriculture for Sustainable Intensification project examines how best to exploit synergies between small-scale-mechanization and conservation agriculture. The overall goal of the project is to improve farm power balance, reduce labour drudgery, and minimize biomass trade-offs in Eastern and Southern Africa, through accelerated delivery and adoption of two-wheel-tractor-based technologies by smallholders.

This project is now in the second phase, which began on June 1, 2017.

OBJECTIVES

  • To evaluate and demonstrate two wheel tractor-based technologies in the four selected sites of Eastern and Southern Africa, using expertise/knowledge/skills/implements from Africa, South Asia and Australia
  • To test site-specific market systems to deliver two wheel tractor-based mechanization in the four countries
  • To identify improvements in national markets and policies for wide delivery of two wheel tractor-based mechanization
  • To create awareness on two wheel tractor-based technologies in the sub-region and share knowledge and information with other regions

Borlaug Institute for South Asia (BISA)

The Borlaug Institute for South Asia (BISA) is a non-profit international research institute dedicated to food, nutrition and livelihood security as well as environmental rehabilitation in South Asia, which is home to more than 300 million undernourished people. BISA is a collaborative effort involving the CIMMYT and the Indian Council for Agricultural Research. The objective of BISA is to harness the latest technology in agriculture to improve farm productivity and sustainably meet the demands of the future. BISA is more than an institute. It is a commitment to the people of South Asia, particularly to the farmers, and a concerted effort to catalyze a second Green Revolution.

BISA was established on October 5, 2011, through an agreement between the Government of India (GoI) and CIMMYT and was bolstered by the globally credible name of Nobel Laureate Norman Ernest Borlaug. The institution draws on the decades of experience and success by CIMMYT, the Consultative Group on International Agricultural Research (CGIAR), and a global network of partners in using research to generate tangible benefits for farmers internationally. BISA is supported by a growing number of national stakeholders in South Asia. It is committed to stronger collaborations for accelerated impact, most prominently with the Indian Council of Agricultural Research (ICAR) and the three state governments (Punjab, Bihar, and Madhya Pradesh) where BISA farms are located.

Objectives

  • Ensure access to the latest in research and technologies that are currently not available in the region
  • Strategize research aimed at doubling food production in South Asia while using less water, land and energy
  • Strengthen cutting-edge research that validates and tests new technologies to significantly increase yield potential
  • Develop technologies for higher productivity in rice, maize and wheat based farming systems
  • Design research outputs targeted to small and marginal farmers across the region
  • Build on CIMMYT’s vast germplasm resources, and make research products and know-how developed by BISA freely available to stakeholders
  • Create a new generation of scientists to work with new technologies through training programs that will retain them in South Asia
  • Enable researchers to pursue multiple strategies and research possibilities while simultaneously allowing for more meaningful collaboration with national institutions
  • Build a forum with partners from all sectors – research centers, governments, science community, businesses and farmers – to transform farmers’ lives and improve food security in the region
  • Develop a policy environment that embraces new technologies and encourages investments in agricultural research
  • Develop and utilize BISA as a regional platform that focuses on agricultural research in the whole of South Asia

Download the BISA Annual Report 2022.

For more information:

Meenakshi Chandiramani
Office Manager
CIMMYT-BISA
m.chandiramani@cgiar.org

Richa Sharma Puri
Communication Specialist
CIMMYT-BISA
r.puri@cgiar.org

Taking Maize Agronomy to Scale in Africa (TAMASA)

Taking Maize Agronomy to Scale in Africa (TAMASA) is a 4-year project seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania.

The overall purpose of TAMASA is to use innovative approaches to transform agronomy that:

  • Use available geospatial and other data and analytics to map maize areas, soil constraints, and actual and yields at different scale.
  • Work with service providers (i.e. input suppliers, government and private research and extension services, agro-dealers, and others) to identify and co-develop systems and applications that transform this data and information to useable products that support their businesses or programs to reach clients more effectively
  • Build capacity in national programs to support and sustain these approaches.

The core products and services of this project include:

  • Annual assessments and digital maps of maize growing areas, actual and attainable yields in core research areas or focal areas.
  • Decision-support tools for ex-ante spatial analysis, nutrient management, fertilizer formulation and variety selection.
  • Open-access databases of agronomic data.
  • Increased capacity in national programs and partners through in-country data science and software application training and mentoring.

How the data revolution could help design better agronomic investments

Profitability under different fertilization recommendation scenarios in Ethiopia and Tanzania, measured in U.S. dollars per hectare.
Profitability under different fertilization recommendation scenarios in Ethiopia and Tanzania, measured in U.S. dollars per hectare.

What fertilizer application will give me the best returns? What maize crop variety should I use?

Each farmer faces constraints related to weather uncertainty, soil fertility management challenges, or access to finance and markets. To improve their yields and incomes, African smallholder farmers need agronomic advice adapted to their specific circumstances. The challenge is even greater in sub-Saharan Africa, where agricultural production landscapes are highly diverse. Yet traditional agronomic research was not designed to fit with complex agroecological regions and farming systems. Compounding the problem, research organizations often have limited resources to develop the necessary experiments to generate farm- and site-specific agronomic advice at scale.

“Agronomic research is traditionally not equipped to consider spatial or socio-economic diversity among the millions of farmers it targets,” said Sebastian Palmas, data scientist at the International Maize and Wheat Improvement Center (CIMMYT) in Nairobi, Kenya.

Palmas presented some of the learnings of the Taking Maize Agronomy to Scale in Africa (TAMASA) project during a science seminar called “A spatial ex ante framework for guiding agronomic investments in sub-Saharan Africa on March, 4, 2019.

The project, funded by the Bill & Melinda Gates Foundation, has used data to improve the way agronomic research for development is done. Researchers working on the TAMASA project addressed this challenge by using available geospatial information and other big data resources, along with new data science tools such as machine learning and Microsoft’s AI for Earth. They were able to produce and package information that can help farmers, research institutions and governments take better decisions on what agronomic practices and investments will give them the best returns.

By adapting the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model to the conditions of small farmers in TAMASA target countries (Ethiopia, Nigeria and Tanzania), using different layers of information, CIMMYT and its partners have developed a versatile geospatial tool for evaluating crop yield responses to fertilizer applications in different areas of a given country. Because calculations integrate spatial variation of fertilizer and grain prices, the tool evaluates the profitability — a key factor influencing farmers’ fertilizer usage — for each location. The project team can generate maps that show, for instance, the estimated agronomic and economic returns to different fertilizer application scenarios.

The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year. (Photo: CIMMYT)
The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year. (Photo: CIMMYT)

Making profits grow

These tools could potentially help national fertilizer subsidy programs be more targeted and impactful, like the ambitious Ethiopia’s Fertilizer Blending initiative which distributes up to 250,000 tons of fertilizer annually. Initial calculations showed that, by optimizing diammonium phosphate (DAP) and urea application, the profitability per hectare could improve by 14 percent on average, compared to the current fertilizer recommendations.

Such an approach could generate farm-specific advice at scale and boost farmers’ incomes. It could also provide insights on many different issues, like estimating market demand for a new fertilizer blend, or the estimated quantity of additional fertilizer required to bring about a targeted maize yield increase.

Future extensions of the framework may incorporate varietal differences in nutrient management responses, and thus enable seed companies to use the framework to predict where a new maize hybrid would perform best. Similarly, crop breeders could adapt this ex ante assessment tool to weigh the pros and cons of a specific trait and the potential impact for farmers.

The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year.

GENNOVATE

GENNOVATE is a global comparative research initiative which addresses the question of how gender norms influence men, women and youth to adopt innovation in agriculture and natural resource management.

Carried out in conjunction with 11 CGIAR research programs worldwide and across 125 rural communities in 26 countries, this qualitative comparative study aims to provide authoritative research to advance gender-transformative approaches and catalyze change in international agricultural and natural resource management research for development.

In discussion groups and individual interviews, roughly 6,000 rural study participants of different socioeconomic backgrounds and age groups are reflecting on and comparing local women’s and men’s expected roles and behaviors — or gender norms— and how these social rules affect their ability to access, adopt, adapt and benefit from innovations in agricultural and natural resource management.

The initiative’s research process strives to give rural women and men a voice by providing authoritative, contextually grounded evidence on how gender interacts with agricultural innovations. It also aims to strengthen CGIAR research program capacities to know the target beneficiaries, design for them, and be accountable to them.

Central to the qualitative field study is an exploration of women’s and men’s agency at the core of which is the capacity to make important decisions pertaining to one’s life. For rural women and men, these decisions relate to agriculture and natural resource management, as well as to other significant events in the private (household) and public (community) spheres.

OBJECTIVES

  • What are the most important new agricultural practices and technologies for the men and for the women in a given village?
  • What qualities make a woman or a man a good farmer?
  • Do young people in this village follow local customs of women doing certain agricultural activities and men others?
  • Are there differences between a woman who is innovative and a man who is innovative?

Nutritious Maize for Ethiopia (NuME)

Nutritious Maize for Ethiopia (NuME) is implemented in collaboration with research institutions, international non-governmental organizations, universities and public and private seed companies in Ethiopia.

Through the development and dissemination of new maize varieties, including quality protein maize (QPM), and the deployment of improved agronomic practices, NuME is helping to reduce food insecurity by strengthening Ethiopia’s capacity to feed itself.

NuME brings QPM to rural maize producers in the Ethiopian maize belt and beyond, where consumers – especially young children and women – are at risk of lysine deficiency. Since 2003, the Ethiopian Institute of Agricultural Research and CIMMYT have made good progress in breeding, resulting in new QPM hybrids and open-pollinated varieties adapted to all major maize-producing agro-ecologies in Ethiopia, including the high-potential mid-altitude and highland zones, as well as adapted to drought-prone zones.

Partners:  Ethiopian research institutions, international non-governmental organizations, universities and public and private seed companies

Nepal Seed and Fertilizer Project (NSAF)

The Nepal Seed and Fertilizer (NSAF) project facilitates sustainable increases in Nepal’s national crop productivity, income and household-level food and nutrition security, across 20 districts, including five earthquake-affected districts.

Nepal’s agriculture is mostly small-scale and subsistence-oriented, characterized by a mix of crop and livestock farming. The agriculture sector represents about one-third of the country’s gross domestic product and employs 75 percent of the labor force.

Over half of Nepal’s farms operate on less than half a hectare, with the majority unable to produce enough to meet their household food requirements for the whole year. Combined with an increasing urban population, it will not be possible for the country to meet future food demand without increased agricultural productivity and competitiveness of domestic production.

Major cereal crops and vegetables currently have low yields, but there are significant prospects for increases through improved seed and soil fertility management practices. A large part of this yield gap results from a lack of knowledge, inadequate access to affordable improved technologies, extension services and markets due to weak public and private sector capacity to provide support services needed by small scale farmers.

NSAF promotes the use of improved seeds and integrated soil fertility management technologies along with effective and efficient extension, including the use of digital and information and communications technologies. The project will specifically increase availability of technologies to improve productivity in cauliflower, lentils, maize, onions, rice and tomatoes. It will also build competitive seed and fertilizer systems that significantly expand seed production, marketing and distribution by enhancing the capacity of public and private sectors in seed and fertilizer value chains.

Agriculture development needs to be locally owned and led through inclusive business models involving women and disadvantaged groups and farmers institutions. There is a need to further the development of Nepal’s cereals, legumes and vegetable sector by:

  • Strengthening public-private coordination mechanisms
  • Developing market systems that are agile, resilient, and adaptive
  • Propelling agricultural growth through evidence-based policy change and harmonization.

Food security in Ukraine

Supplemental funds released in 2022 will be used to respond to the impact of the Ukraine war at the household level. CIMMYT and its partners will develop food security and resilient agriculture market systems, to advance the delivery of improved agriculture input management knowledge and technologies, application of best crop management practices, and development of local capacity to apply improved technologies.

The objective is to build resilience of smallholder farmers in four areas:

  • Protecting and sustaining crop production for strengthening local food production and consumption systems.
  • Supporting efficient agriculture supply chain.
  • Strengthening local cooperatives and micro, small- and medium-sized agribusiness enterprises.
  • Addressing the impact of global fertilizer shortages by exploring innovative products, novel application techniques and local market development.

Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA)

The Sustainable Intensification of Maize-Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA) program aims to improve maize and legume productivity by 30 percent and to reduce the expected downside yield risk by 30 percent on approximately on approximately 650,000 farm households by 2023. Launched in 2010, the focal countries of program research are Australia, Botswana, Burundi, Ethiopia, Kenya, Malawi, Mozambique, Tanzania, South Sudan, Uganda, Rwanda, Zambia and Zimbabwe.

The main thrust of the SIMLESA program is increasing farm-level food security, productivity and incomes through promotion of maize-legume intercropping systems in the context of reduced climate risk and change.

The program has also laid the foundation for developing conservation agriculture based sustainable intensification options, including integration of improved maize and legume varieties identified for their compatibility with CA-based practices; promoting technology adoption by both female and male farmers; capacity building for national agricultural research systems of partner countries; creating enhanced partnerships and collaboration with established innovation platforms for coordinated scaling-out of SIMLESA-generated options and practices.

Funding Institutions: Australian Centre for International Agricultural Research (ACIAR)

Partners: National agricultural systems of Ethiopia, Kenya, Malawi, Mozambique and Tanzania, as well as international and local research centers, extension agencies, non-governmental organizations, universities and agribusinesses along the value chain.

Read the final report of the SIMLESA project

Agricultural Innovation Program (AIP)

The Agricultural Innovation Program (AIP) for Pakistan is working to sustainably increase agricultural productivity and incomes in the agricultural sector through the promotion and dissemination of modern technologies/practices in the livestock, horticulture (fruits and vegetables) and cereals (wheat, maize and rice) sector. The CIMMYT-led project aims to foster emergence of a dynamic, responsive, and competitive system of science and innovation in Pakistan.

This unique project places particular emphasis on building partnerships between public research and those it serves, including farmers and the private sector. AIP operates through three activity windows: commissioned projects, a competitive grants system and human resource development. Within these activity windows AIP addresses complex agricultural systems, but is divided into four “science windows’” including cereals and cereal systems, livestock, vegetables and perennial horticulture. The key indicator of AIP’s success is the number of small farmers who adopt or benefit from productivity or value-enhancing technologies.

OBJECTIVES

The long term goals of the project are food security, environmental protection, gender sensitization and poverty reduction through the adoption of sustainable technologies, resource management practices, advance agricultural models and improved systems.

Building resilience, self-reliance and a reliable business model

Buena Milpa

The Buena Milpa project in Guatemala, conducted in collaboration with the country’s Agricultural Science and Technology Institute (ICTA), is aimed at implementing a sustainable intensification strategy for agriculture while reducing poverty, malnutrition and environmental damage.

The project, managed in collaboration with the U.S. Agency for International Development’s Feed the Future program, is based in the highlands of Guatemala, a region recognized for its diversity of maize varieties, flora and fauna. Farmers grow a wide variety of crops, including beans, legumes, pumpkin, fruit trees and native plants.

Through Buena Milpa, CIMMYT’s Sustainable Intensification Strategy for Latin America, with its focus on biodiversity conservation, participative breeding, soil conservation, farm diversification and maize, helps to conserve maize landraces and other important plants in the region.

Guatemala, where maize is a key food staple, is known for its wide maize biodiversity. The maize fields of most highland farmers are part of farm systems which includes animal husbandry (chickens, sheep or cattle). These complex farm systems diversify diets diet and sources of family income.

A range of soil conservation methods popular with farmers help preserve biodiversity. A variety of grasses, trees and other plants are used to ensure soil and field conservation.

Most of the maize in the region is grown on steep hillsides. Farmers have very little land and use as much of it as possible for crop production. Water and soil conservation practices aim to reduce the propensity to landslides, decrease erosion through soil cover, minimize the effects of erosion and help to settle the materials and soils mobilized through erosion.

The Buena Milpa project improves native maize landraces, increases productivity, improves plant architecture, grain and seed quality, thereby mitigating losses due to the effects of climate change and decreasing maize reserves, especially during periods of seasonal hunger.

Most farmers involved in the project belong to a Mayan ethnic group that has historically been marginalized and excluded from development processes. A social inclusion strategy fosters the participation of indigenous people, women, children, the young and the elderly in order to benefit everyone involved in maize production systems.

Links with other actors foster activities to generate information that raises awareness about how people are socially excluded, to inform and sensitize local actors about social dynamics that limit inclusion.

OBJECTIVES

  • Natural resource conservation
  • Soil and water conservation strategies to reduce erosion and maintain soil water
  • Understand maize diversity in the highlands of Guatemala
  • System diversification, taking into account different types of farms in the region
  • Design social inclusion strategy
  • Set up community seed banks to be the base of biodiversity conservation and participative breeding efforts
  • Foster innovation and reduce food insecurity and malnutrition
  • Increase sustainability of maize-based systems in the highlands
  • Empower farmers and train strategic actors by linking research to farmers’ needs and facilitating information exchange

Cereal Systems Initiative for South Asia (CSISA)

Intensive cereal cropping systems that include rice, wheat and/or maize are widespread throughout South Asia. These systems constitute the main economic activity in many rural areas and provide staple food for millions of people. The decrease in the rate of growth of cereal production, for both grain and residue, in South Asia is therefore of great concern. Simultaneously, issues of resource degradation, declining labor availability and climate variability pose steep challenges for achieving the goals of improving food security and rural livelihoods.

The Cereal Systems Initiative for South Asia (CSISA) was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

The project’s aim is to enhance the productivity of cereal-based cropping systems, increase farm incomes and reduce the environmental footprint of production through sustainable intensification technologies and management practices.

Operating in rural “innovation hubs” in Bangladesh, India and Nepal, CSISA complements regional and national efforts and involves public, civil society and private sector partners in the development and dissemination of improved cropping systems, resource-conserving management technologies, policies and markets. CSISA supports women farmers by ensuring their access and exposure to modern and improved technological innovations, knowledge and entrepreneurial skills that can help them become informed and recognized decision makers in agriculture.

The project is led by CIMMYT with partners the International Rice Research Institute and the International Food Policy Research Institute and funded by the U.S. Agency for International Development and the Bill & Melinda Gates Foundation.

OBJECTIVES

  • Promote resource-conserving practices, technologies and services that increase yield with less water, labor and input costs
  • Impart new knowledge on cropping management practices, from applied research
  • Improve access to market information and enterprise development.
  • Strengthen policy analysis to remove constraints to the adoption of new technologies
  • Build strategic partnerships and capacity to help sustain and enhance the scale of benefits of improved cereal growth

Core research to impact themes within CSISA include:

  • Coping with climate extremes in rice-wheat cropping systems
  • Accelerating the emergence of mechanized solutions for sustainable intensification
  • Strengthening the foundations of agro-advisory and precision management through knowledge organization and data integration at scale
  • Increasing the capacity of partners to conduct participatory science and field reconnaissance to target and prioritize development interventions