Samuel Gameda
Samuel Gameda is a soil scientist working within CIMMYT’s Sustainable Agrifood Systems (SAS) program.
Samuel Gameda is a soil scientist working within CIMMYT’s Sustainable Agrifood Systems (SAS) program.
Tek Sapkota currently leads the Climate Change Science Group within CIMMYT’s Sustainable Agrifood Systems (SAS) program and is based in CIMMYT headquarters in Mexico. He carries out research in the area of agricultural systems, soil science and environmental sciences. He is particularly involved in studying agro-ecosystems management consequences on nutrient dynamics and their effect on food security, climate change adaptation and mitigation. He is a member of the Climate Investment Committee in OneCGIAR.
Sapkota has served in IPCC as Lead author as well as Review editor. He is an associate Editor of Nature Scientific Report and Frontiers in Sustainable Food Systems journals. He is an agricultural expert in the India GHG platform.
MasAgro Farmer, a component of CIMMYT’s MasAgro project, develops a sustainable intensification strategy for maize, wheat and similar grains by building hubs based on research platforms, demonstration modules and extension areas where sustainable farming practices and technologies are tested, improved and adapted. In 2015, main achievements included:
MasAgro is a research for rural development project supported by Mexico’s Secretariat of Agriculture and Rural Development.
The project promotes the sustainable intensification of maize and wheat production in Mexico. MasAgro develops capacities and research activities aimed at raising maize and wheat yields stability and profitability in Mexico. The program also seeks to increase farmer income and production systems sustainability by implementing collaborative research initiatives, developing and promoting the use of improved seed, sustainable technologies and farming practices.
MasAgro Maize, a component of CIMMYT’s MasAgro project, promotes the sustainable development of both maize grain and seed producers by breeding maize hybrids with conventional technologies and improving native maize seed in collaborative breeding projects with participant farmers. MasAgro’s improved maize seeds are tested in collaboration with the local seed sector that, in turn, commercializes the best adapted materials in Mexico’s growing regions. In 2015, MasAgro Maize’s main results were:
MasAgro Maize partners are encouraged to apply for licenses to commercialize CIMMYT maize hybrids, following the procedures described in the Allocations page.
The Eastern Gangetic Plains region of Bangladesh, India, and Nepal is home to the greatest concentration of rural poor in the world. This region is projected to be one of the areas most affected by climate change. Local farmers are already experiencing the impact of climate change: erratic monsoon rains, floods and other extreme weather events have affected agricultural production for the past decade. The region’s smallholder farming systems have low productivity, and yields are too variable to provide a solid foundation for food security. Inadequate access to irrigation, credit, inputs and extension systems limit capacity to adapt to climate change or invest in innovation. Furthermore, large-scale migration away from agricultural areas has led to labor shortages and increasing numbers of women in agriculture.
The Sustainable and Resilient Farming Systems Intensification (SRFSI) project aims to reduce poverty in the Eastern Gangetic Plains by making smallholder agriculture more productive, profitable and sustainable while safeguarding the environment and involving women. CIMMYT, project partners and farmers are exploring Conservation Agriculture-based Sustainable Intensification (CASI) and efficient water management as foundations for increasing crop productivity and resilience. Technological changes are being complemented by research into institutional innovations that strengthen adaptive capacity and link farmers to markets and support services, enabling both women and men farmers to adapt and thrive in the face of climate and economic change.
In its current phase, the project team is identifying and closing capacity gaps so that stakeholders can scale CASI practices beyond the project lifespan. Priorities include crop diversification and rotation, reduced tillage using machinery, efficient water management practices, and integrated weed management practices. Women farmers are specifically targeted in the scaling project: it is intended that a third of participants will be women and that at least 25% of the households involved will be led by women.
The 9.7 million Australian dollar (US$7.2 million) SRFSI project is a collaboration between CIMMYT and the project funder, the Australian Centre for International Agricultural Research. More than 20 partner organizations include the Departments of Agriculture in the focus countries, the Bangladesh Agricultural Research Institute, the Indian Council for Agricultural Research, the Nepal Agricultural Research Council, Uttar Banga Krishi Vishwavidyalaya, Bihar Agricultural University, EcoDev Solutions, iDE, Agrevolution, Rangpur-Dinajpur Rural Services, JEEViKA, Sakhi Bihar, DreamWork Solutions, CSIRO and the Universities of Queensland and Western Australia.
MasAgro Wheat, a component of CIMMYT’s MasAgro project, conducts research on wheat genetics and physiology to improve plant structure, increase the resilience and disease resistance of wheat, and its yield potential in Mexico and abroad. In 2015, main achievements of MasAgro Wheat included:
Agricultural intensification is both a need and an opportunity for countries in sub-Sahara Africa. For intensification to occur sustainably — with minimum negative environmental and social consequences — it is widely recognized that resources must be used with much greater efficiency. Although much emphasis is being placed in current research for development work on increasing the efficiency with which land, water and nutrients are being used, farm power appears as the “forgotten resource.” However, farm power in countries sub-Saharan Africa is declining due to the collapse of most hire tractor schemes, the decline in number of draft animals and the decline in human labor related to rural-urban migration. Another aspect of low farm power is high labor drudgery, which affects women, who generally due the majority of threshing, shelling and transport by head-loadings, disproportionally. Undoubtedly, sustainable intensification in these countries will require an improvement of farm-power balance through increased power supply — via improved access to mechanization — and/or reduced power demand – via energy saving technologies such as conservation agriculture techniques.
The Farm Mechanization and Conservation Agriculture for Sustainable Intensification project examines how best to exploit synergies between small-scale-mechanization and conservation agriculture. The overall goal of the project is to improve farm power balance, reduce labour drudgery, and minimize biomass trade-offs in Eastern and Southern Africa, through accelerated delivery and adoption of two-wheel-tractor-based technologies by smallholders.
This project is now in the second phase, which began on June 1, 2017.
The Borlaug Institute for South Asia (BISA) is a non-profit international research institute dedicated to food, nutrition and livelihood security as well as environmental rehabilitation in South Asia, which is home to more than 300 million undernourished people. BISA is a collaborative effort involving the CIMMYT and the Indian Council for Agricultural Research. The objective of BISA is to harness the latest technology in agriculture to improve farm productivity and sustainably meet the demands of the future. BISA is more than an institute. It is a commitment to the people of South Asia, particularly to the farmers, and a concerted effort to catalyze a second Green Revolution.
BISA was established on October 5, 2011, through an agreement between the Government of India (GoI) and CIMMYT and was bolstered by the globally credible name of Nobel Laureate Norman Ernest Borlaug. The institution draws on the decades of experience and success by CIMMYT, the Consultative Group on International Agricultural Research (CGIAR), and a global network of partners in using research to generate tangible benefits for farmers internationally. BISA is supported by a growing number of national stakeholders in South Asia. It is committed to stronger collaborations for accelerated impact, most prominently with the Indian Council of Agricultural Research (ICAR) and the three state governments (Punjab, Bihar, and Madhya Pradesh) where BISA farms are located.
Download the BISA Annual Report 2022.
For more information:
Meenakshi Chandiramani
Office Manager
CIMMYT-BISA
m.chandiramani@cgiar.org
Richa Sharma Puri
Communication Specialist
CIMMYT-BISA
r.puri@cgiar.org
Taking Maize Agronomy to Scale in Africa (TAMASA) is a 4-year project seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania.
The overall purpose of TAMASA is to use innovative approaches to transform agronomy that:
The core products and services of this project include:
What fertilizer application will give me the best returns? What maize crop variety should I use?
Each farmer faces constraints related to weather uncertainty, soil fertility management challenges, or access to finance and markets. To improve their yields and incomes, African smallholder farmers need agronomic advice adapted to their specific circumstances. The challenge is even greater in sub-Saharan Africa, where agricultural production landscapes are highly diverse. Yet traditional agronomic research was not designed to fit with complex agroecological regions and farming systems. Compounding the problem, research organizations often have limited resources to develop the necessary experiments to generate farm- and site-specific agronomic advice at scale.
“Agronomic research is traditionally not equipped to consider spatial or socio-economic diversity among the millions of farmers it targets,” said Sebastian Palmas, data scientist at the International Maize and Wheat Improvement Center (CIMMYT) in Nairobi, Kenya.
Palmas presented some of the learnings of the Taking Maize Agronomy to Scale in Africa (TAMASA) project during a science seminar called “A spatial ex ante framework for guiding agronomic investments in sub-Saharan Africa” on March, 4, 2019.
The project, funded by the Bill & Melinda Gates Foundation, has used data to improve the way agronomic research for development is done. Researchers working on the TAMASA project addressed this challenge by using available geospatial information and other big data resources, along with new data science tools such as machine learning and Microsoft’s AI for Earth. They were able to produce and package information that can help farmers, research institutions and governments take better decisions on what agronomic practices and investments will give them the best returns.
By adapting the Quantitative Evaluation of the Fertility of Tropical Soils (QUEFTS) model to the conditions of small farmers in TAMASA target countries (Ethiopia, Nigeria and Tanzania), using different layers of information, CIMMYT and its partners have developed a versatile geospatial tool for evaluating crop yield responses to fertilizer applications in different areas of a given country. Because calculations integrate spatial variation of fertilizer and grain prices, the tool evaluates the profitability — a key factor influencing farmers’ fertilizer usage — for each location. The project team can generate maps that show, for instance, the estimated agronomic and economic returns to different fertilizer application scenarios.
Making profits grow
These tools could potentially help national fertilizer subsidy programs be more targeted and impactful, like the ambitious Ethiopia’s Fertilizer Blending initiative which distributes up to 250,000 tons of fertilizer annually. Initial calculations showed that, by optimizing diammonium phosphate (DAP) and urea application, the profitability per hectare could improve by 14 percent on average, compared to the current fertilizer recommendations.
Such an approach could generate farm-specific advice at scale and boost farmers’ incomes. It could also provide insights on many different issues, like estimating market demand for a new fertilizer blend, or the estimated quantity of additional fertilizer required to bring about a targeted maize yield increase.
Future extensions of the framework may incorporate varietal differences in nutrient management responses, and thus enable seed companies to use the framework to predict where a new maize hybrid would perform best. Similarly, crop breeders could adapt this ex ante assessment tool to weigh the pros and cons of a specific trait and the potential impact for farmers.
The TAMASA team plans to publish the code and user-friendly interface of this new geospatial assessment tool later this year.
The Malawi Improved Seed Systems and Technologies (MISST) consortium project works to make elite, drought- and stress-resistant maize seed available to farmers in Malawi.
Funding Institutions: United States Agency for International Development, Government of Malawi
Principal Coordinator: Peter Setimela
GENNOVATE is a global comparative research initiative which addresses the question of how gender norms influence men, women and youth to adopt innovation in agriculture and natural resource management.
Carried out in conjunction with 11 CGIAR research programs worldwide and across 125 rural communities in 26 countries, this qualitative comparative study aims to provide authoritative research to advance gender-transformative approaches and catalyze change in international agricultural and natural resource management research for development.
In discussion groups and individual interviews, roughly 6,000 rural study participants of different socioeconomic backgrounds and age groups are reflecting on and comparing local women’s and men’s expected roles and behaviors — or gender norms— and how these social rules affect their ability to access, adopt, adapt and benefit from innovations in agricultural and natural resource management.
The initiative’s research process strives to give rural women and men a voice by providing authoritative, contextually grounded evidence on how gender interacts with agricultural innovations. It also aims to strengthen CGIAR research program capacities to know the target beneficiaries, design for them, and be accountable to them.
Central to the qualitative field study is an exploration of women’s and men’s agency at the core of which is the capacity to make important decisions pertaining to one’s life. For rural women and men, these decisions relate to agriculture and natural resource management, as well as to other significant events in the private (household) and public (community) spheres.
Nutritious Maize for Ethiopia (NuME) is implemented in collaboration with research institutions, international non-governmental organizations, universities and public and private seed companies in Ethiopia.
Through the development and dissemination of new maize varieties, including quality protein maize (QPM), and the deployment of improved agronomic practices, NuME is helping to reduce food insecurity by strengthening Ethiopia’s capacity to feed itself.
NuME brings QPM to rural maize producers in the Ethiopian maize belt and beyond, where consumers – especially young children and women – are at risk of lysine deficiency. Since 2003, the Ethiopian Institute of Agricultural Research and CIMMYT have made good progress in breeding, resulting in new QPM hybrids and open-pollinated varieties adapted to all major maize-producing agro-ecologies in Ethiopia, including the high-potential mid-altitude and highland zones, as well as adapted to drought-prone zones.
Partners: Ethiopian research institutions, international non-governmental organizations, universities and public and private seed companies