Moti Jaleta is a senior agricultural economist. He has been working at the International Maize and Wheat Improvement Center (CIMMYT) since 2011 and currently coordinates an IFAD-funded project on enhancing smallholder wheat productivity through sustainable intensification in Rwanda and Zambia.
Jaleta’s research areas of interest include adoption and impact assessments of improved agricultural technologies, with special focus on maize and wheat; crop-livestock interactions and their implications on the sustainability of cereal-based mixed farming systems; analysis of the roles of agricultural markets and value chain development in smallholder commercialization; and impact assessments of conservation agriculture-based practices as a means of sustainable intensification of smallholder farming in maize and wheat based systems of Eastern and Southern Africa.
New research shows that smallholder farmers in Ethiopia used various coping mechanisms apart from fungicides in response to the recent wheat rust epidemics in the country. Scientists from the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR) call for continuous support to research and extension programs to develop and disseminate improved wheat varieties with resistant traits to old and newly emerging rust races.
Rising wheat yields cannot catch up rising demand
Wheat is the fourth largest food crop in Ethiopia cultivated by smallholders, after teff, maize and sorghum. Ethiopia is the largest wheat producer in sub-Saharan Africa and average farm yields have more than doubled in the past two decades, reaching 2.74 tons per hectare on average in 2017/18. Farmers who use improved wheat varieties together with recommended agronomic practices recorded 4 to 6 tons per hectare in high-potential wheat growing areas such as the Arsi and Bale zones. Yet the country remains a net importer because demand for wheat is rapidly rising.
The Ethiopian government has targeted wheat self-sufficiency by 2023 and the country has huge production potential due to its various favorable agroecologies for wheat production.
However, one major challenge to boosting wheat production and yields is farmersâ vulnerability to rapidly evolving wheat diseases like wheat rusts.
The Ethiopian highlands have long been known as hot spots for stem and yellow wheat rusts caused by the fungus Puccinia spp., which can spread easily under favorable climatic conditions. Such threats may grow with a changing climate.
Recurrent outbreaks of the two rusts destroyed significant areas of popular wheat varieties. In 2010, a yellow rust epidemic severely affected the popular Kubsa variety. In 2013/14, farmers in the Arsi and Bale zones saw a new stem rust race destroy entire fields of the bread wheat Digalu variety.
In response to the 2010 yellow rust outbreak, the government and non-government organizations, seed enterprises and other development supporters increased the supply of yellow rust resistant varieties like Kakaba and Dandaâa.
Fungicide is not the only solution for wheat smallholder farmers
Two household panel surveys during the 2009/10 main cropping season, before the yellow rust epidemic, and during the 2013/14 cropping season analyzed farmersâ exposure to wheat rusts and their coping mechanisms. From the survey, 44% of the wheat farming families reported yellow rust in their fields during the 2010/11 epidemic.
Household data analysis looked at the correlation between household characteristics, their coping strategies against wheat rust and farm yields. The study revealed there was a 29 to 41% yield advantage by increasing wheat area of the new, resistant varieties even under normal seasons with minimum rust occurrence in the field. Continuous varietal development in responding to emerging new rust races and supporting the deployment of newly released rust resistant varieties could help smallholders cope against the disease and maintain improved yields in the rust prone environments of Ethiopia.
The case study showed that apart from using fungicides, increasing wheat area under yellow rust resistant varieties, increasing diversity of wheat varieties grown, or a combination of these strategies were the main coping mechanisms farmers had taken to prevent new rust damages. Large-scale replacement of highly susceptible varieties by new rust resistant varieties was observed after the 2010/11 epidemic.
The most significant wheat grain yield increases were observed for farmers who increased both area under resistant varieties and number of wheat varieties grown per season.
The additional yield gain thanks to the large-scale adoption of yellow rust resistant varieties observed after the 2010/11 epidemic makes a very strong case to further strengthen wheat research and extension investments, so that more Ethiopian farmers have access to improved wheat varieties resistant to old and newly emerging rust races.
Members of the International Maize Improvement Consortium Africa (IMIC – Africa) and other maize and wheat research partners discovered the latest innovations in seed and agronomy at Embu and Naivasha research stations in Kenya on August 27 and 28, 2019. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to present sustainable solutions for farmers to cope with poor soils, a changing climate and emerging diseases and pests, such as wheat rust, maize lethal necrosis or fall armyworm.
Versatile seeds and conservation agriculture offer farmers yield stability
âMaize is food in Kenya. Wheat is also gaining importance for our countries in eastern Africa,â KALRO Embu Center Director, Patrick Gicheru, remarked. âWe have been collaborating for many years with CIMMYT on maize and wheat research to develop and disseminate improved technologies that help our farmers cope against many challenges,â he said.
Farmers in Embu, like in most parts of Kenya, faced a month delay in the onset of rains last planting season. Such climate variability presents a challenge for farmers in choosing the right maize varieties. During the field days, CIMMYT and KALRO maize breeders presented high-yielding maize germplasm adapted to diverse agro-ecological conditions, ranging from early to late maturity and from lowlands to highlands.
JoĂŁo Saraiva, from the Angolan seed company Jardins dâAyoba, said having access to the most recent improved maize germplasm is helpful for his young seed company to develop quality seeds adapted to farmersâ needs. He is looking for solutions against fall armyworm, as the invasive species is thriving in the Angolan tropical environment. He was interested to hear about CIMMYTâs progress to identify promising maize lines resistant to the caterpillar. Since fall armyworm was first observed in Africa in 2016, CIMMYT has screened almost 1,200 inbred lines and 2,900 hybrids for tolerance to fall armyworm.
âHopefully, we will be developing and releasing the first fall armyworm-tolerant hybrids by the first quarter of 2020,â announced B.M. Prasanna, director of CIMMYTâs Global Maize Programme and the CGIAR Research Program on Maize (MAIZE).
âThrough continuous innovations to build varieties that perform well despite dry spells, heat waves or disease outbreak, maize scientists have been able to deliver significant yield increases each year across various environments,â explained Prasanna. âThis genetic gain race is important to respond to growing grain demands despite growing climate risks and declining soil health.â
Berhanu Tadesse, maize breeder at the Ethiopian Institute for Agricultural Research (EIAR), was highly impressed by the disease-free, impeccable green maize plants at Embu station, remembering the spotted and crippled foliage during a visit more than a decade ago. This was âvisual proof of constant progress,â he said.
For best results, smallholder farmers should use good agronomic practices to conserve water and soil health. KALRO agronomist Alfred Micheni demonstrated different tillage techniques during the field tour including the furrow ridge, which is adapted to semi-arid environments because it retains soil moisture.
A vibrant local seed industry is needed for farmers to access improved varieties. Seed growers must be able to produce pure, high-quality seeds at competitive costs so they can flourish in business and reach many smallholder farmers.
Double haploid technology enables breeders to cut selection cycles from six to two, ultimately reducing costs by one third while ensuring a higher level of purity. Sixty percent of CIMMYT maize lines are now developed using double haploid technology, an approach also available to partners such as the Kenyan seed company Western Seeds.
The Seed Production Technology for Africa (SPTA) project, a collaboration between CIMMYT, KALRO, Corteva Agriscience and the Agricultural Research Council, is another innovation for seed companies enabling cheaper and higher quality maize hybrid production. Maize plants have both female and male pollen-producing flowers called tassels. To produce maize hybrids, breeders cross two distinct female and male parents. Seed growers usually break the tassels of female lines manually to avoid self-pollination. SPTA tested a male sterility gene in Kenya and South Africa, so that female parents did not produce pollen, avoiding a detasseling operation that damages the plant. It also saves labor and boosts seed yields. Initial trial data showed a 5 to 15% yield increase, improving the seed purity as well.
World-class research facilities to fight new and rapidly evolving diseases
The KALRO Naivasha research station has hosted the maize lethal necrosis (MLN) quarantine and screening facility since 2013. Implementing rigorous phytosanitary protocols in this confined site enables researchers to study the viral disease first observed in Africa 2011 in Bomet country, Kenya. Working with national research and plant health organizations across the region and the private sector, MLN has since been contained.
A birdâs eye view of the demonstration plots is the best testimony of the impact of MLN research. Green patches of MLN-resistant maize alternate with yellow, shrivelled plots. Commercial varieties are susceptible to the disease that can totally wipe out the crop, while new MLN-resistant hybrids yield five to six tons per hectare. Since the MLN outbreak in 2011, CIMMYT has released 19 MLN-tolerant hybrids with drought-tolerance and high-yielding traits as well.
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
A major challenge to achieving food security is to accelerate the varietal replacement on the market. CIMMYT scientists and partners have identified the lengthy and costly seed certification process as a major hurdle, especially in Kenya. The Principal Secretary of the State Department for Research in the Ministry of Agriculture, Livestock, and Fisheries, Hamadi Boga, pledged to take up this issue with the Kenya Plant and Health Inspectorate Service (KEPHIS).
âSuch rapid impact is remarkable, but we cannot rest. We need more seed companies to pick up these new improved seeds, so that our research reaches the maximum number of smallholders,ââ concluded Prasanna.
This year opens the Decade of Family Farming (#FamilyFarmingDecade), which aims to improve the life of family farmers around the world. In an earnest discussion, two leaders in the global agriculture community reflect on the challenges facing family farmers, the promises of high- and low-tech solutions, and their hopes for the future.
A conversation between Martin Kropff, Director General of the International Maize and Wheat Improvement Centre (CIMMYT) and Trevor Nicholls, CEO of CABI.
On the unique challenges facing family farms
Trevor Nicholls (CABI): Family farmers come in many shapes and sizes but for me, the words âfamily farmerâ bring a focus on smallholders and people who are starting on a journey of making a farming business. It depends on which part of the world youâre talking about; a family farm in the UK is perhaps very different to a small family farm in Ethiopia. And family farms can grow from just a small plot to being quite large commercial enterprises.
Martin Kropff (CIMMYT): All agriculture started with family farms. Fifty years ago in my home country, the Netherlands, farms were almost all family farms. When we look globally, farms in places like India, Pakistan, and Kenya are very often small, and the whole family is involved.
KROPFF: When the whole family is involved, gender dynamics come out. In a way, family farming is very often the farming done by women. This makes women the most important players in agriculture in many developing countries. Itâs crucial to recognize this and understand their decision-making. For example, our research shows that men and women value different traits in crop varieties. We need to understand this to have successful interventions.
NICHOLLS: Weâve seen something similar through our Plantwise plant clinics, where farmers come for practical plant health advice. We see a definite pattern of men bringing in cash crops for advice, and women looking more at fruits and vegetables to feed their family. But overall, mostly men come into our clinics, particularly in certain parts of the world. Weâre trying to encourage more female participation by timing the clinics so that they fit into womenâs routines without getting in the way of taking care of elderly relatives or getting kids off to school. Sometimes really simple things can open up access and improve the gender balance.
KROPFF: When the whole family is involved, there are also downsides. In Africa, young people do much of the weeding.
NICHOLLS: Thatâs right, they may be pulled out of school for weeding.
KROPFF: This really worries me. Hand weeding is such hard labor, such an intensive use of energy; it seems like it should be something of the past. Children donât want to do it anymore. My wife is from the generation where children still did weeding in the Netherlands. She remembers standing in the fields weeding when the sun was extremely warm while her friends were out doing other things.
NICHOLLS: It starts kids off on the wrong path, doesnât it? If their experience of farming is backbreaking weeding from the age of 8 onwards, itâs highly unlikely to attract them into farming as a career.
A farmer uses a smartphone to access market information.
On keeping young people interested in farming
NICHOLLS: We need to look at things like weed control as a social issue. Itâs possible, for example, to use beneficial insects to limit the spread of certain weeds that infest farmland. Biocontrol and Integrated Pest Management should be seen as ways of reducing the spread of certain weeds, and also as ways to reduce the burden on women and youth.
KROPFF: I agree. Similarly, weâre finding that small-scale mechanization is making a difference for youth, and also womenâs labor in Latin America, Africa and Asia, where CIMMYT has been introducing two-wheel tractors that can be engineered in local workshops. Suddenly, smallholders can harvest the entire wheat crop of 20 families in one day. This saves so much time, money, and effort, eliminating some of the âbadâ labor that may discourage youth and unfairly burden women. Farmers can focus on the âniceâ aspects of the business. Itâs a real game changer for family farming.
NICHOLLS: Yes and this can also be amplified through digital technology. People refer to the âUber-izationâ of tractors, where farmers are able to hire a piece of mechanical equipment for a very short space of time, and maybe it even comes with an experienced driver or operator. Weâre finding that digital tools like artificial intelligence, satellite imaging, smartphones, and other modern technologies, will intrigue youth anywhere in the world. These will hopefully have an impact on bringing more youth back into farming, as they start to see it as technologically enabled rather than straightforward muscle power.
On the transformations that need to happen
KROPFF: If we want to keep youth engaged, and improve farmersâ livelihoods, I think farming needs to become more entrepreneurial. Many family farms are only half a hectare. I think this has to grow somehow, though land rights and ownership are a challenge
NICHOLLS: As farming becomes more business-like in Africa then weâre going to see the same sort of consolidation that we saw in the United States and Europe, whereby farm sizes do get larger even if land ownership remains fragmented.
This could happen through cooperatives, which offer economies of scale and also help farmers spread the costs of things like access to inputs, advice, weather insurance and crop insurance. But we need to view cooperatives as more than a way to infuse new technologies into the farming system. They are in fact a channel for helping farmers gain stronger business skills, so they can get a better bargain for themselves.
KROPFF: In Mexico we are working with 300,000 smallholder farmers in a sustainable maize and wheat sourcing initiative. Rather than âpushingâ new varieties and technologies at farmers, we help them partner with maize and wheat companies to create a local demand for high quality, sustainable products. Real scaling up, especially for wheat and maize, needs more than extension. Farmers need better links to the market.
NICHOLLS: If farms get larger and more mechanized, it means fewer people are involved in the business of farming. This shift means that people will need other rural occupations, so that they donât just leave the land and move to the city. We need investments in other productive activities in rural areas. This could be around post-harvest processing of crops: adding value locally rather than shipping the raw materials elsewhere.
KROPFF: Exactly. Weâve been doing more work on this in the last ten years. CIMMYT works on wheat and maize, and these are products that need to be processed. Doing this locally would also help people save food in the future for more difficult times, instead of selling to someone from the city who may buy it for an unfair price. Farmers these days have access via smartphones to market information, which is empowering. We see it happening in Africa. Itâs really crucial.
NICHOLLS: Weâre certainly seeing the power of digital technologies, which are also helping us move beyond just responding to crop pests and diseases to being able to get better at predicting outbreaks on a micro-scale. By linking ground observations through our Plantwise clinics with satellite observation technology and data, weâve developed a program called PRISE (Pest Risk Information SErvice), which provides farmers with alerts before a pest is likely to reach its peak point, so that they can be prepared and take preventative measures.
KROPFF: Without a doubt, smallholder farmer communities are rapidly entering the digital age, and tools on weather prediction, selection of varieties, market information are very important and transforming the way people farm.
A farmer requests weather information via SMS.
On climate change
KROPFF: Climate change is going to be the issue affecting family farmers, especially in Asia and Africa where the population will grow by 2 billion people who need food that has been produced on their own continents. Yields have to rise and climate change brings yields down. We have to help smallholder family farmers keep doing their job and ensure crop yields, which is why climate change is embedded into 70% of our work at CIMMYT. One major area is developing and testing heat- and drought-tolerant varieties that suit local climates. Last year I was in Zimbabwe, which was experiencing El Niño, and I was very impressed by the difference in maize yields from drought and heat-tolerant varieties compared to the normal varieties.
NICHOLLS: Thatâs very good. In addition to drought and heat, we see pests and diseases appearing in new places as a result of climate change. Pests and diseases will cause crop losses of up to 40% on average. Stemming those losses is critical. Weâre seeing invasive species, such as fall armyworm, and many invasive weeds and trees that are effectively stealing arable and pastoral land from farmers, as well as water resources.
Pest-resistant crops have great long-term potential, but farmers also need short-term solutions while they wait for new varieties to become available. One of CABIâs strengths is scanning for solutions from other parts of the world. With fall armyworm, we are looking to South America, where the pest originates, for solutions and natural enemies. Weâre also scanning our fungal culture collection for samples that may have properties that can form the basis for biopesticides, and therefore open up a program of biological control.
Hopes for the future
NICHOLLS: Iâm very optimistic for family farmers. They are incredibly resilient and resourceful people, and they survive and thrive in pretty difficult circumstances. But the world is getting more challenging for them by the day. I think the Sustainable Development Goals (SDGs) have framed many of the issues very well, in terms of food security and livelihoods, sustainable consumption and production, and this will help to focus attention on family farmers.
I do see some quite encouraging signs, particularly in Africa, where the CAADP (Comprehensive Africa Agricultural Development Programme) has brought much greater coordination among countries. Weâre seeing more unity in the requests we receive from our member countries to help them address the issues that are in the SDGs. That makes the work of our organizations easier, because weâre addressing a broader set of demands. And in turn, that will benefit family farmers.
Technology, be it biotechnology or telecommunications and ICTs, is becoming so much more affordable over time. The rate that smartphone usage is spreading in Africa and Asia is incredible. In many areas we actually have most of the technology we need today. Itâs about getting it put into practice effectively with large numbers of farmers. So I remain very optimistic about the future.
KROPFF: Iâm an optimist by nature. Thatâs also why Iâm in this job: itâs not easy, but I really believe that change is possible if we have our act together and collaborate with CABI and other international research partners, national systems and the private sector. For a long time, people said that there was no Green Revolution in Africa, where yields remained one ton per hectare. But today we see yields increasing in countries like Nigeria, and in Ethiopia, where maize yields are 3.5 tons per hectare. Good things are happening because of family farming.
I believe that to increase yields you need three components: better seeds for more resilient crop varieties; sustainable intensification to grow more nutritious food per unit of water, land and soil; and good governance, to properly manage resources. We need to invest in all of these areas.
NICHOLLS: I fully agree. We need to work on all these areas, and harness the power of modern technology to help family farmers thrive now, and in the future.
This interview has been edited for length and clarity.
This yearâs African Green Revolution Forum (AGRF), which took place from September 3-6, 2019 in Accra, Ghana, focused on the potential of digital agriculture to transform African agriculture through innovations such as precision agriculture solutions for smallholder farmers, access to mobile financial services, data-driven agriculture, and ICT-enabled extension.
Committed to a digital transformation of African agricultural that benefits many, not a few.
Despite its importance of the continental economy and untapped resources, African farming sector is still dominated by ageing smallholders cultivating few acres of cropland, using not much inputs and lagging far behind productivity world standards.
Many experts believe digital agriculture could help African agriculture leapfrog to overcome its geographical, social and economic bottlenecks, bringing successful technologies to scale faster, and market opportunities even for remote smallholders. Some countries like Ghana or Kenya are becoming digital hubs for agritech-savvy young entrepreneurs along the food value chains, from drone for Ag, linking farmers to the marketplace, or offering mobile mechanization or financial services.
Improving smallholdersâ resilience through digital innovations
The millions of African rainfed farmers are in a risky business, from rising climate shocks to emerging pests and diseases like the invasive fall armyworm or the maize lethal necrosis. CIMMYT Director General Martin Kropff highlighted the importance of digital tools to predict these risks through smart, scalable early warning systems like the award-winning diagnostic tool Marple that helps map wheat rust outbreaks. Researchers can also better predict the farmsâ responses to these risks through accurate modelling. They can for instance better assess the potential yield benefits of drought and heat tolerance under different climate change scenarios.
CIMMYT crop breeders use tablet-based disease scoring applications and test new imagery and high-tech sensors for more accurate and cost-effective data collection. Kropff underlined the key role digital tools play to speed up science breakthroughs and impact delivery at the farm level.
Tailored advice for farmers and policy-makers to enable sustainable intensification
âThe future is no longer where it used to be. Farmersâ reality has become even more unpredictable,â said Enock Chikava, deputy director, agricultural development at the Bill & Melinda Gates foundation during a vivid debate on how to reshape the future agronomic research so it delivers more site-specific and responsive advice.
Much of the agronomy work within the region remains fragmented across research institutes, commodities and projects, and struggles to go beyond blanket recommendations that are most of the time not adapted to local farming conditions.
However, there is a fast-growing wealth of georeferenced data that can describe the diverse farming landscapes and socio-economic context of each African smallholder farmer. The starting point to exploit these data and get the right solutions for each farmer is to ask the right questions.
Moderated by Samuel Gameda, CIMMYT soil scientist, who shared the lessons from the Taking Maize Agronomy to Scale (TAMASA) project, this session on Agronomy at Scale discussed what public information goods like crop yield prediction maps or extension apps, such as the maize variety selector, would be the most useful for farmers and large-scale agronomic initiatives to trigger this much needed sustainable intensification of millions of African smallholdings. What investments would make a difference to scale the use of these new decision-support tools?
âAgronomic research must be carried out from a broader perspective of large-scale relevance and application. It is also more and more a joint effort and responsibility between smallholder farmers, the research community and public and private sectors, with each component playing specific and interacting roles. The current era of powerful and accessible ICT tools and big data analytics make this much more feasible and should be incorporated to enable precision agronomy for all, this is my take home message,â said Gameda.
âThis data revolution will only work if we invest in research data quality and data management,â stressed Bram Govaerts, CIMMYTâs Integrated Development Program director. âThat will generate better evidence for decision-makers to guide impact investment plans, deciding on which technology e.g. a new drought-tolerant crop variety and put the money in the right leveraging point,â Govaerts concluded.
The largest forum on African agriculture, AGRF 2019 gathered more than 2,200 delegates and high-level dignitaries, from heads of State and government officials to leaders of global and regional development institutions; top agri-food businesses and local entrepreneurs; financial institutions; mobile network operators and tech leaders, as well as lead representatives of farmer organizations.
Cover photo: Delegation from the International Maize and Wheat Improvement Center (CIMMYT) at the African Green Revolution Forum (AGRF) 2019.
A new study published in the Canadian Journal of Development Studies shows how some of Bangladeshâs indigenous women are overcoming social norms and institutional biases to gain direct access to maize and wheat agricultural innovations through developing women-led agricultural organizations, which benefit low-income Muslim women members as well.
Agriculture is important to Bangladeshâs economy and employs a large percentage of the male and female population as farmers, hired labor, and decision-makers. Bangladesh also has a positive policy commitment to gender equality. The UN Sustainable Development Goals are embedded into the countryâs national growth plans, including a strong commitment to Goal 5, Gender Equality, and Goal 10, Reduced Inequalities.
However, this new study shows that agricultural innovation programs are primarily directed at middle-income male farmers. Institutional biases in agricultural partners â extension officers, research organizations, policymakers, private sector partners and others â can hamper indigenous peoples and women from participating in wheatâmaize innovation processes, as they rarely meet the requisite criteria: sufficient land and social capital. In addition, their participation in markets varies according to their socioeconomic location in society.
Drawing on GENNOVATE case studies, the authors provide insights into how overlapping layers of disadvantage are being challenged in one community in northern Bangladesh.
Indigenous Santal women in the community are active in agriculture, both in the field and in decision-making, but are often marginalized by agricultural partners. Through mobilizing themselves organizationally into a woman-led agricultural organization, they have provided a forum for the delivery of technical training. This process has encouraged low-income Muslim women â who work in the field but are also marginalized by agricultural partners â to join the organization and benefit from training as well.
The findings provide insights into how agricultural research partners can work to strengthen the contribution and voices of the women who have long experienced differing forms of marginalization and to support their efforts to secure technical training.
The data used in this article is derived from GENNOVATE (Enabling Gender Equality in Agricultural and Environmental Innovation), a global research initiative supported by the Bill & Melinda Gates Foundation. This is a cross-CGIAR initiative examining how interactions between gender norms, agency and other contextual factors shape access to, adoption of and benefits from agricultural innovations in rural communities worldwide.
Trends in regional and chronological diversity of maize (zea mays l.) germplasm in Pakistan. 2019. Maqbool, M.A.| Aslam, M. | Issa, A.B. | Babar Manzoor Atta. In: Pakistan Journal of Botany v. 51, no. 2, p. 1-13.
Starting machinery to husk maize cobs at Green Farm near Kitale, Trans-Nzoia. (Photo: Peter Lowe/CIMMYT)
The development community is introducing increasingly complex and systemic technological designs for sustainable improvements to agriculture. Yet, a systemic perspective is hard to find in “adoption-outcome” focused analyses of technological change processes. In order to improve development interventions, it is necessary not only to analyze both successes and failures, but also the process and impacts of technological change.
Researchers at the International Maize and Wheat Improvement Center (CIMMYT) and the Institute of Development Studies (IDS) recently published a paper on rethinking technological change in smallholder agriculture, arguing against the conventional approach to studying technology adoption.
The problem with the concept of technology adoption
While the adoption rate of newly introduced technologies is still used in the evaluation of agricultural research and development, the theory of technology adoption is an insufficient framework for understanding technological change. It is too linear, too binary, too focused on individual decisions and gives an inaccurate and misleading picture to researchers.
The theory of adoption treats technology like a âblack boxâ that is transferred smoothly from one setting to another, following a linear progression of old and inferior tools and methods to new improved ones. This theory is too simplistic to align with the complex realities of the capabilities and agency of multiple actors. In addition, in cases of participatory technology development, where intended users are involved in the creation of innovations, adoption rates are often limited due to the relatively small scale of the project.
Using adoption rate as the only indicator of success or failure can lead researchers to ignore wider impacts of the introduction of a new technology. Adoption rates could go up, but use of a new technology could cause harm to social relations, the local environment, or its resilience. Low adoption rates could classify a program as a failure, while farmers benefited substantially in undetected ways, for example forming networks or acquiring new skills and knowledge. A singular focus on adoption rates thus limits our understanding of what happens in processes of technological change.
Farmer Kausila Chanara direct dry seeding rice in Ramghat, Surkhet, Nepal. (Photo: Peter Lowe/CIMMYT)
An alternative conceptual framework
In addition to the introduction of a new technology to small-scale farming systems, technological change involves the agency of many social actors. The agency of farmers, scientists, project managers and extension officers is key to understand whether a new technology is perceived to be useful, accessible or realistic, as well as how it is adjusted and changing social relations.
A new framework is needed to capture this reconfiguration of social and technological components that result from the introduction of a new technology to a community.
The authors of this paper propose an alternative conceptual framework with an agent-, practice- and process-oriented approach to better understand technological change. The framework is composed of four key components: propositions, encounters, dispositions and responses.
Propositions are composed of artefacts, methods, techniques and practices and a proposed mode of engagement in agricultural production. Encounters can be deliberately organized, for example a field day, or spontaneous, when a farmer sees a neighbor using a new tool. Intended users of technology may be disposed to respond in a variety of different ways, and dispositions may change over time. Finally, responses are a process or pathway that is likely to involve adjustment or recalibration to make the new technology work for the farmer.
Further work to operationalize this framework is needed. The authors suggest a next step of developing indicators to measure learning, experimentation and behavioral change as part of analyzing technological change processes.
At the African Green Revolution Forum 2019, global and African leaders come together to develop actionable plans that will move African agriculture forward. This year, the forum is taking place in Ghana on the week of September 3, 2019, under the theme âGrow digital: Leveraging digital transformation to drive sustainable food systems in Africa.â Participants will explore the practical application of the emerging elements of the digital era such as big data, blockchain, digital IDs, drones, machine learning, robotics, and sensors.
CIMMYT’s work in this area is showcased in a new leaflet entitled âData-driven solutions for Africa: Using smart tools to combat climate change.â The leaflet highlights innovations such as crowdsourced crop disease tracking and response systems in Ethiopia, low-cost imaging tools to speed up the development of hardier varieties, and combining geospatial data with crop models to predict climate change and deliver personalized recommendations to farmers.
A new publication highlights the diverse ways in which CIMMYT’s research is propelling the digital transformation of agriculture in Africa.
Speaking at the conference attended by 2,000 delegates and high-level dignitaries, CIMMYT Director General Martin Kropff will give the keynote remarks during the session âDigital innovations to strengthen resilience for smallholders in African food systemsâ on September 3. This panel discussion will focus on how the data revolution can support African smallholder farmers to adapt quickly challenges like recurrent droughts or emerging pests, including the invasive fall armyworm. The Global Resilience Partnership (GRP), the Food and Agriculture Organization of the United Nations (FAO), CABI, and the Minister of Agriculture of Burkina Faso will be among the other panelists in the session.
The same day, CIMMYT will also participate to an important âAgronomy at scale through data for goodâ panel discussion with speakers from the Bill & Melinda Gates Foundation, research organizations and private companies. The session will highlight how digital agriculture could help deliver better targeted, site-specific agronomic advice to small farmers.
During the forum, the CIMMYT delegation will seek collaborations in other important drivers of change like gender transformation of food systems and smallholder mechanization.
They will join public sector leaders, researchers, agri-preneurs, business leaders and farmers in outlining how to leverage the growth in digital technologies to transform food systems and agricultural livelihoods in Africa.
Access to affordable quality seed is one of the prerequisites to increase agricultural production and improve the livelihoods of Nepali farmers. However, there are significant challenges to boost Nepalâs seed industry and help sustainably feed a growing population.
Six years ago, Nepal launched its National Seed Vision 2013-2025. This strategic plan aims at fostering vibrant, resilient, market-oriented and inclusive seed systems in public-private partnership modalities, to boost crop productivity and enhance food security.
The Nepal Seed and Fertilizer (NSAF) project, led by the International Maize and Wheat Improvement Center (CIMMYT), is supporting the government to enhance national policies and guidelines, and private seed companies to build competitive seed businesses and hybrid seed production.
General view of a hybrid maize field from Lumbini Seed Company, a NSAF project partner, in Nepalâs Bhairahawa district. (Photo: Subhas Sapkota)
Quality seed can increase crop yield by 15-20%. However, there are critical challenges hindering the growth of Nepalâs seed industry. Existing seed replacement rate for major cereals is low, around 15%. About 85% of Nepali farmers are unable to access recently developed improved seeds â instead, they are cultivating decades-old varieties with low yield and low profits. Some of the factors limiting the development of seed systems are the high cost of seed production and processing, the limited reach of mechanization, and the low use of conservation agriculture practices.
The demand for hybrid seeds in Nepal is soaring but research in variety development is limited. Most of the countryâs supply comes from imports.
In collaboration with the Nepal Agricultural Research Council (NARC), the NSAF project team is working with seed companies and cooperatives to scale hybrid seed production of maize, tomato and rice. Through this project, CIMMYT collaborated with the Seed Quality Control Center (SQCC) and national commodity programs of the NARC to draft the first hybrid seed production and certification guidelines for Nepal to help private seed companies produce and maintain standards of hybrid seeds.
Extension and promotion activities are essential to bring improved seed varieties to farmers. Standard labelling and packaging also needs to be strengthened.
Yubak Dhoj G.C., Secretary of Nepalâs Ministry of Agriculture and Livestock Development, explained the importance of seed stakeholdersâ collaboration to achieve the National Seed Vision targets. (Photo: Bandana Pradhan/CIMMYT)
A joint effort
CIMMYT and its partners organized a two-day workshop to review the progress of the National Seed Vision. The event attracted 111 participants from government institutions, private companies and development organizations engaged in crop variety development, seed research, seed production and dissemination activities.
In the opening remarks, Yubak Dhoj G.C., Secretary of Nepalâs Ministry of Agriculture and Livestock Development, addressed the seed sector scenario and its challenges. He stressed the importance of collaboration among seed stakeholders to meet the targets of the National Seed Vision in the next six years.
During the technical sessions, Madan Thapa, Chief of the SQCC, analyzed the current status of the National Seed Vision and highlighted the challenges as well as the opportunities to realize it.
Laxmi Kant Dhakal, Chairperson of the Seed Entrepreneurs Association of Nepal (SEAN) emphasized the importance of private sector engagement and other support areas to strengthen seed production and marketing of open-pollinated varieties and hybrids.
Seed systems specialist AbduRahman Beshir shares CIMMYTâs experiences in hybrid testing and seed business promotion in Nepal. (Photo: Bandana Pradhan/CIMMYT)
Tara Bahadur Ghimire, Principal Scientist at NARC, gave an overview of the status of NARC varieties, source seed and resource allocation.
Dila Ram Bhandari, former Chief of SQCC, led a discussion around the assumptions and expectations that arose while developing the National Seed Vision.
Technical leads of maize, rice, wheat and vegetables presented a road map on hybrid variety development and seed production in line with the National Seed Visionâs targets for each crop.
âA large quantity of hybrid seeds, worth millions of dollars, is being imported into Nepal each year,â explained AbduRahman Beshir, Seed Systems Lead of CIMMYTâs NSAF project. âHowever, if stakeholders work together and strengthen the local seed system, there is a huge potential in Nepal not only to become self-sufficient but also to export good quality hybrid seeds in the foreseeable future. Under the NSAF project we are witnessing a few seed companies that have initiated hybrid seed production of maize and tomato.â
In one of the exercises, workshop participants were divided in groups and examined different topics related to the realization of the National Seed Vision. They looked at genetic resources, hybrid and open-pollinated variety development, source seed production and supply, private sector engagement and marketing, seed extension and varietal adoption by farmers, seed quality control services, and roles of research partners and other stakeholders. The groups presented some of the major challenges and opportunities related to these topics, as well as recommendations, which will be documented and shared.
The outcomes of this mid-term review workshop will inform policy and guide the discussions at the upcoming International Seed Conference to be held in early September 2019.
In one of the breakout sessions, a group discusses challenges and recommendation to improve private sector engagement. (Photo: Bandana Pradhan/CIMMYT)
Regulating hybrid seed production
At the workshop, participants thoroughly discussed the draft hybrid seed production and certification guidelines, developed under the NSAF project.
The guidelines are the first of their kind in Nepal and essential to achieve the targets of the National Seed Vision, by engaging the private sector in hybrid seed production.
Hari Kumar Shrestha, CIMMYTâs Seed Systems Officer, and other seed experts from the SQCC presented the main features and regulatory implications of the guidelines.
After the workshop, the guidelines were sent to the National Seed Board for approval.
By 2012, young Bangladeshi mechanic Md Ole Ullah was working with the USAID funded Agricultural Mechanization and Irrigation Project, implemented by the International Maize and Wheat Improvement Center (CIMMYT), and International Development Enterprises (iDE Bangladesh). The new collaboration helped Ole develop the market for his locally-manufactured machines. Read more here.
Climate Services for Resilient Development (CSRD) is a global partnership that connects climate and environmental science with data streams to generate decision support tools and training for decision-makers in developing countries. Translating complex climate information into easy to understand actionable formats to spread awareness in the form of climate services is core to CSRDâs mission. CSRD works across South Asia (with emphasis on Bangladesh), the Horn of Africa (Ethiopia), and in South America (Colombia) to generate and provide timely and useful climate information, decision tools and services. In South Asia, CSRD focusses the development, supply and adaptation of agricultural climate services to reduce vulnerability by increasing resiliency in smallholder farming systems. These goals are strategically aligned with the Global Framework for Climate Services.
Project description
CSRD in South Asia aims to have the impact by increasing climate resilient farm management, indicated by increased use of climate services and climate information to inform farmers on how to better manage their production systems. CSRD also aims to develop and validate models for agricultural climate services that can be replicated in other regions with similar farming systems and climate risks, while also fine-tuning weather and climate advisories to be most useful to farmersâ decision-making. A series of sustained contributions to CSRDâs Action and Learning Framework Pillars 1-4, detailed below, are envisioned as major project outcomes:
Pillar 1: Create the solution space: CSRD works to establish a problem-focus, to engage key stakeholders, to create a platform for sustained communication and collaboration, and to build synergies among relevant programs.
Pillar 2: Utilize quality data, products, and tools CSRD provides access to useful and available information and technology, and to develop tailored products and services responsive to problem-specific needs.
Pillar 3: Build capacities and platforms CSRD supports the use of targeted products and services, and to promote sustainability, scalability, and replicability.
Pillar 4: Build knowledge A key goal of CSRDâs work is to identify and promote good practices among the global climate services community and to support research efforts and innovation that increase the effectiveness of climate services.
Outputs
CSRD in South Asia will ultimately generate the following broad outputs and services:
A strengthened enabling environment for the generation, uptake, and use of weather and climate services to support resilient agricultural development.
Download the report summarizing CSRD activities, achievements, and challenges during the first year (from November 2016 through December 2017).
The CSRD consortium in South Asia is led by the International Maize and Wheat Improvement Center (CIMMYT) in partnership with the Bangladesh Meteorological Department (BMD), Bangladesh Department of Agricultural Extension (DAE), Bangladesh Agricultural Research Council (BARC), Bangladesh Agricultural Research Institute (BARI), International Center for Integrated Mountain Development (ICIMOD), International Institute for Climate and Society (IRI), University de Passo Fundo (UPF), and the University of Rhode Island (URI). This consortium provides strength and technical expertise to develop relevant climate products that can assist farmers and other stakeholders with relevant information to improve decision making, with the ultimate goal of increasing resilience to climate-related risks. The CSRD consortium also works to assure that climate information can be conveyed in ways that are decision-relevant to farmers and other agricultural stakeholders.
MARPLE (Mobile and Real-time PLant disEase) Diagnostics is a revolutionary mobile lab developed by a team from the John Innes Centre (JIC), the International Maize and Wheat Improvement Center (CIMMYT) and the Ethiopian Institute of Agricultural Research (EIAR). It uses nanopore sequence technology to rapidly diagnose and monitor wheat rust in farmersâ fields.
Designed to be used without constant electricity and in varying temperatures, the suitcase-sized lab allows researchers to identify wheat rust to strain level in just 48 hours â something that used to take months using other tools.
The MARPLE team was recognized as Innovator of the Year for international impact in 2019 by the UK Biotechnology and Biological Sciences Research Council (BBSRC).
A new video from the John Innes Centre shows how the MARPLE Diagnostics kit will allow Ethiopia to quickly identify wheat rust strains, instead of sending samples to labs abroad.
Farmers harvest squash in Uttarakhand, India. (Photo: Jitendra Raj Bajracharya/ICIMOD)
To mitigate the food security and economic risks of South Asiaâs frequent and intense droughts, scientists and policymakers from the South Asian Association for Regional Cooperation (SAARC), the International Centre for Integrated Mountain Development (ICIMOD) and the International Maize and Wheat Improvement Center (CIMMYT) recently joined forces to launch an innovative decision support and agricultural planning system that combines remote sensing and  climate data analysis for drought monitoring and early warning.
The Regional Drought Monitoring and Outlook System application was unveiled during a workshop to train experts and policymakers in its use at relevant regional and national institutes in Islamabad, Pakistan, from July 29 to August 1, 2019. The Regional Drought Monitoring and Outlook System is the product of an ICIMOD-CIMMYT partnership through the United States Agency for International Development (USAID) and the National Aeronautics and Space Administration (NASA) supported SERVIR Hindu Kush Himalaya (HKH) programme, in collaboration with Climate Service for Resilient Development (CSRD), led by ICIMOD and CIMMYT, respectively.
âCommonly associated with epic flooding, particularly in the enormous breadbasket region known as the Indo-Gangetic Plains that extends across Pakistan, India, southern Nepal, and Bangladesh, the region also faces droughts driven by rising temperatures and erratic rainfall and which threaten crops, food security, and livelihoods,â said Faisal Mueen Qamer, Remote Sensing Specialist of ICIMOD, which helped develop the system and organize the workshop.
âWe expect the system to foster resilience in South Asian agriculture, while supporting future institutional frameworks and policies for farm compensation and adaptation, through decision makersâ access to timely and action-oriented information,â Qamar explained.
With a growing population of 1.6 billion people, South Asia hosts 40% of the worldâs poor and malnourished on just 2.4% of its land. A 2010 study found a linear drop of 7.5% in rainfall in South Asia from 1900 to 2005.
âShrinking glaciers, water scarcity, rising sea levels, shifting monsoon patterns, and heat waves place considerable stress on South Asian countries, whose primary employment sector remains agriculture,â said Mohammad Faisal, Director General for South Asia at Pakistan’s Ministry of Foreign Affairs, during the workshop opening.
Participants at the regional workshop on earth observation and climate data analysis for agriculture drought monitoring in South Asia. (Photo: ICIMOD)
Raising awareness about drought and its mitigation
Twenty-three participants from six South Asia countries plus five expert instructors attended the workshop, which offered presentations and hands-on training on a suite of applications and associated data analysis tools, including the South Asian Land Data Assimilation System (SALDAS), the Regional Drought Explorer, and the National Drought Early Warning System.
Muhammad Azeem Khan, Member of the Food Security & Climate Change at the Planning Commission of Pakistan, said the scale of present and future climate challenges is clearly evident.
âIn Pakistan, we regularly see parts of the country in the grip of severe drought, while others have flash floods,â Khan commented during the workshop closing, while commending its organizers. âFrequent drought diminishes agricultural production and food security, especially for people in rural areas. Effectively managing the impacts of climate change requires a response that builds and sustains South Asiaâs social, economic, and environmental resilience, as well as our emergency response capacity.â
Through CSRD, a global partnership that connects climate and environmental science with data streams to generate decision support tools and training for decision-makers in developing countries, CIMMYT helped extend the Regional Drought Monitoring and Outlook System to Bangladesh, from its original coverage of Afghanistan, Nepal, and Pakistan.
âTranslating complex climate information into easy-to-understand and actionable formats is core to CSRDâs mission and helps spread awareness about climate challenges,â said Tim Krupnik, CIMMYT cropping systems agronomist based in Bangladesh. âThis consortium provides strength and technical expertise to develop relevant climate products, including decision-support information for farmers and other stakeholders, thus fostering resilience to climate-related risks.â
Direct sowing of wheat seed into a recently-harvested rice field using the âHappy Seederâ implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)
A research paper published in the worldâs leading scientific journal, Science Magazine, indicates that using the Happy Seeder agriculture technology to manage rice residue has the potential of generating 6,000-11,500 Indian rupees (about US$85-160) more profits per hectare for the average farmer. The Happy Seeder is a tractor-mounted machine that cuts and lifts rice straw, sows wheat into the soil, and deposits the straw over the sown area as mulch.
The paper âFields on fire: Alternatives to crop residue burning in Indiaâ evaluates the public and private costs and benefits of ten alternate farming practices to manage rice residue, including burn and non-burn options. Happy Seeder-based systems emerge as the most profitable and scalable residue management practice as they are, on average, 10%â20% more profitable than burning. This option also has the largest potential to reduce the environmental footprint of on-farm activities, as it would eliminate air pollution and would reduce greenhouse gas emissions per hectare by more than 78%, relative to all burning options.
This research aims to make the business case for why farmers should adopt no-burn alternative farming practices, discusses barriers to their uptake and solutions to increase their widespread adoption. This work was jointly undertaken by 29 Indian and international researchers from The Nature Conservancy, the International Maize and Wheat Improvement Centre (CIMMYT), the University of Minnesota, the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) and other organizations.
Every year, some 23 million tonnes of rice residue is burnt in the states of Haryana, Punjab and Western Uttar Pradesh, contributing significantly to air pollution and short-lived climate pollutants. In Delhi NCR, about half the air pollution on some winter days can be attributed to agricultural fires, when air quality level is 20 times higher than the safe threshold defined by WHO. Residue burning has enormous impacts on human health, soil health, the economy and climate change.
The burning of crop residue, or stubble, across millions of hectares of cropland between planting seasons is a visible contributor to air pollution in both rural and urban areas. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
âDespite its drawbacks, a key reason why burning continues in northwest India is the perception that profitable alternatives do not exist. Our analysis demonstrates that the Happy Seeder is a profitable solution that could be scaled up for adoption among the 2.5 million farmers involved in the rice-wheat cropping cycle in northwest India, thereby completely eliminating the need to burn. It can also lower agricultureâs contribution to Indiaâs greenhouse gas emissions, while adding to the goal of doubling farmers income,â says Priya Shyamsundar, Lead Economist at The Nature Conservancy and one of the lead authors of the paper.
âBetter practices can help farmers adapt to warmer winters and extreme, erratic weather events such as droughts and floods, which are having a terrible impact on agriculture and livelihoods. In addition, Indiaâs efforts to transition to more sustainable, less polluting farming practices can provide lessons for other countries facing similar risks and challenges,â explains M.L. Jat, CIMMYT cropping systems specialist and a co-author of the study.
CIMMYT principal scientist M. L. Jat shows a model of a no-till planter that facilitates no-burn farming. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
âWithin one year of our dedicated action using about US$75 million under the Central Sector Scheme on âPromotion of agriculture mechanization for in-situ management of crop residue in the states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi,â we could reach 0.8 million hectares of adoption of Happy Seeder/zero tillage technology in the northwestern states of India,â said Trilochan Mohapatra, director general of the Indian Council of Agricultural Research (ICAR). âConsidering the findings of the Science article as well as reports from thousands of participatory validation trials, our efforts have resulted in an additional direct farmer benefit of US$131 million, compared to a burning option,â explained Mohapatra, who is also secretary of Indiaâs Department of Agricultural Research and Education.
The Government of India subsidy in 2018 for onsite rice residue management has partly addressed a major financial barrier for farmers, which has resulted in an increase in Happy Seeder use. However, other barriers still exist, such as lack of knowledge of profitable no-burn solutions and impacts of burning, uncertainty about new technologies and burning ban implementation, and constraints in the supply-chain and rental markets. The paper states that NGOs, research organizations and universities can support the government in addressing these barriers through farmer communication campaigns, social nudging through trusted networks and demonstration and training. The private sector also has a critical role to play in increasing manufacturing and machinery rentals.
This research was supported by the Susan and Craig McCaw Foundation, the Institute on the Environment at the University of Minnesota, the CGIAR Research Program on Wheat (WHEAT), and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The Happy Seeder was originally developed through a project from the Australian Centre for International Agricultural Research (ACIAR).
For more information, or to arrange interviews with the researchers, please contact:
Seema Paul, Managing Director, The Nature Conservancy â India seema.paul@tnc.org
About CIMMYT
The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat, and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies.
About The Nature Conservancy â India
We are a science-led global conservation organisation that works to protect ecologically important lands and water for nature and people. We have been working in India since 2015 to support Indiaâs efforts to âdevelop without destructionâ. We work closely with the Indian government, research institutions, NGOs, private sector organisations and local communities to develop science-based, on-the-ground, scalable solutions for some of the countryâs most pressing environmental challenges. Our projects are aligned with Indiaâs national priorities of conserving rivers and wetlands, address air pollution from crop residue burning, sustainable advancing renewable energy and reforestation goals, and building health, sustainable and smart cities.
Indiaâs farmers feed millions of people. (Photo: Dakshinamurthy Vedachalam)
A new economic study in the journal Science shows that thousands of farmers in northern India could increase their profits if they stop burning their rice straw and adopt no-till practices to grow wheat. Alternative farming practices could also cut farmersâ greenhouse gas emissions from on-farm activities by as much as 78% and help lower air pollution in cities like New Delhi.
The new study compares the costs and benefits of 10 distinct land preparation and sowing practices for northern Indiaâs rice-wheat cropping rotations, which are spread across more than 4 million hectares. The direct seeding of wheat into unplowed soil and shredded rice residues was the best option â it raises farmersâ profits through higher yields and savings in labor, fuel, and machinery costs.
The study, conducted by a global team of eminent agriculture and environmental scientists, was led by researchers from The Nature Conservancy, the International Maize and Wheat Improvement Center (CIMMYT), the Indian Council of Agricultural Research (ICAR), the Borlaug Institute for South Asia (BISA) and the University of Minnesota.
A burning issue
To quickly and cheaply clear their fields to sow wheat each year, farmers in northern India burn an estimated 23 million tons of straw from their rice harvests. That enormous mass of straw, if packed into 20-kilogram 38-centimeter-high bales and piled on top of each other, would reach a height of over 430,000 kilometers â about 1.1 times the distance to the moon.
Regulations are in place in India to reduce agricultural fires but burning continues because of implementation challenges and lack of clarity about the profitability of alternate, no-burn farming.
Farmers have alternatives, the study shows. To sow wheat directly without plowing or burning rice straw, farmers need to purchase or rent a tractor-mounted implement known as the âHappy Seeder,â as well as attach straw shedders to their rice harvesters. Leaving straw on the soil as a mulch helps capture and retain moisture and also improves soil quality, according to M.L. Jat, CIMMYT Principal Scientist, cropping systems specialist and a co-author of the study.
A combine harvester (left) equipped with the Super Straw Management System, or Super SMS, works alongside a tractor fitted with a Happy Seeder. (Photo: Sonalika Tractors)
Win-win
The Science study demonstrates that it is possible to reduce air pollution and greenhouse gas emissions in a way that is profitable to farmers and scalable.
The paper shows that Happy Seeder-based systems are on average 10%â20% more profitable than straw burning options.
âOur study dovetails with 2018 policies put in place by the government of India to stop farmers from burning, which includes a US$166 million subsidy to promote mechanization to manage crop residues within fields,â said Priya Shyamsundar, Lead Economist, Global Science, of The Nature Conservancy and first author of the study.
Shyamsundar noted that relatively few Indian farmers currently sow their wheat using the Happy Seeder but manufacturing of the Seeder had increased in recent years. âLess than a quarter of the total subsidy would pay for widespread adoption of the Happy Seeder, if aided by government and NGO support to build farmer awareness and impede burning.â
“With a rising population of 1.6 billion people, South Asia hosts 40% of the world’s poor and malnourished on just 2.4% of its land,â said Jat, who recently received Indiaâs prestigious Rafi Ahmed Kidwai Award for outstanding and impact-oriented research contributions in natural resource management and agricultural engineering. âBetter practices can help farmers adapt to warmer winters and extreme, erratic weather events such as droughts and floods, which are having a terrible impact on agriculture and livelihoods. In addition, Indiaâs efforts to transition to more sustainable, less polluting farming practices can provide lessons for other countries facing similar risks and challenges.â
In November 2017, more than 4,000 schools closed in Delhi due to seasonal smog. This smog increases during October and November when fields are burned. It causes major transportation disruptions and poses health risks across northern India, including Delhi, a city of more than 18 million people.
Some of these problems can be resolved by the use of direct sowing technologies in northwestern India.
âWithin one year of our dedicated action using about US$75 million under the Central Sector Scheme on âPromotion of agriculture mechanization for in-situ management of crop residue in the states of Punjab, Haryana, Uttar Pradesh and NCT of Delhi,â we could reach 0.8 million hectares of adoption of Happy Seeder/zero tillage technology in the northwestern states of India,â said Trilochan Mohapatra, director general of the Indian Council of Agricultural Research (ICAR). âConsidering the findings of the Science article as well as reports from thousands of participatory validation trials, our efforts have resulted in an additional direct farmer benefit of US$131 million, compared to a burning option,â explained Mohapatra, who is also secretary of Indiaâs Department of Agricultural Research and Education.
This research was supported by the Susan and Craig McCaw Foundation, the Institute on the Environment at the University of Minnesota, the CGIAR Research Program on Wheat (WHEAT), and the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS). The Happy Seeder was originally developed through a project from the Australian Centre for International Agricultural Research (ACIAR).
For more information, or to arrange interviews with the researchers, please contact: