Skip to main content

research: Sustainable agrifood systems

New publications: Understanding changes in farming systems to propose adapted solutions

A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)
A farmers group stands for a photograph at a demonstration plot of drought-tolerant (DT) maize in the village of Lobu Koromo, in Ethiopia’s Hawassa Zuria district. (Photo: P. Lowe/CIMMYT)

Farming systems are moving targets. Agricultural Research and Development (R&D) must understand where they come from and where they are going to offer solutions that are adapted. This is one of the main objectives of the Trajectories and Trade-offs for Intensification of Cereal-based systems (ATTIC), project funded by the CGIAR Research Program on Maize (MAIZE) and implemented by the International Maize and Wheat Improvement Center (CIMMYT) and the Farming System Ecology group at Wageningen University & Research.

A recent study led by Yodit Kebede — who obtained her PhD last year under the ATTIC project — examined the drivers of change affecting smallholder farming in southern Ethiopia, farmer’s responses to these changes, and consequences for agricultural landscapes.

As in many parts of the developing world, small farms in southern Ethiopia have become smaller. Population increase and urban expansion have been major drivers of this change. Population has been increasing over 3% annually in Ethiopia, the second most populated country in Africa. Grazing areas and forests were converted to cropland, putting stress on the availability of livestock feed and fuelwood.

Farmers responded to these changes through three broad trajectories: diversification — mixed cropping and intercropping, particularly for the smallest farms —, specialization — often in high-value but non-food crops — and consolidation — maintenance or increase of farm area. Each of these trajectories has its own specific R&D needs, although farms following a consolidation trajectory are often favored by R&D programs. The same three trajectories can be identified in many rural areas where rural transformation has not taken place yet, in Africa and elsewhere in the developing world.

The loss of grassland and forest produced a landscape more susceptible to erosion and loss of soil fertility. However, all outcomes from these landscape changes may not be negative. Another study conducted by the same authors in the same study area demonstrated that an increasingly fragmented agricultural landscape may lead to increased pest control by natural enemies.

While aiming to mitigate against negative outcomes from landscape changes — for example, land degradation — policies should be careful not to inadvertently reduce some of the positive outcomes of these changes, such as increased pest control. As concluded by the study, “a better understanding of interlinkages and tradeoffs among ecosystem services and the spatial scales at which the services are generated, used, and interact is needed in order to successfully inform future land use policies”.

Read the full study:
Drivers, farmers’ responses and landscape consequences of smallholder farming systems changes in southern Ethiopia

See more recent publications by CIMMYT researchers:

  1. Estimation of hydrochemical unsaturated soil parameters using a multivariational objective analysis. 2019. Lemoubou, E.L., Kamdem, H.T.T., Bogning, J.R., Tonnang, H. In: Transport in Porous Media v. 127, no. 3, p. 605-630.
  2. Analyses of African common bean (Phaseolus vulgaris L.) germplasm using a SNP fingerprinting platform : diversity, quality control and molecular breeding. 2019. Raatz, B., Mukankusi, C., Lobaton, J.D., Male, A., Chisale, V., Amsalu, B., Fourie, D., Mukamuhirwa, F., Muimui, K., Mutari, B., Nchimbi-Msolla, S., Nkalubo, S., Tumsa, K., Chirwa, R., Maredia, M.K., He, Chunlin In: Genetic Resources and Crop Evolution v.66, no. 3, p. 707-722.
  3. Deep blade loosening increases root growth, organic carbon, aeration, drainage, lateral infiltration and productivity. 2019. Hamilton, G.J., Bakker, D., Akbar, G., Hassan, I., Hussain, Z., McHugh, A., Raine, S.R. In: Geoderma v. 345, p. 72-92.
  4. Maize crop nutrient input requirements for food security in sub-Saharan Africa. 2019. Berge, H.F.M. ten., Hijbeek, R., Loon, M.P. van., Rurinda, J., Fantaye, K. T., Shamie Zingore, Craufurd, P., Heerwaarden, J., Brentrup, F., Schröder, J.J., Boogaard, H., Groot, H.L.E. de., Ittersum, M.K. van. In: Global Food Security v. 23 p. 9-21.
  5. Primary hexaploid synthetics : novel sources of wheat disease resistance. 2019. Shamanin, V., Shepelev, S.S., Pozherukova, V.E., Gultyaeva, E.I., Kolomiets, T., Pakholkova, E.V., Morgounov, A.I. In: Crop Protection v. 121, p. 7-10.
  6. Understanding the factors influencing fall armyworm (Spodoptera frugiperda J.E. Smith) damage in African smallholder maize fields and quantifying its impact on yield. A case study in Eastern Zimbabwe. 2019. Baudron, F., Zaman-Allah, M., Chaipa, I., Chari, N., Chinwada, P. In: Crop Protection v. 120 p. 141-150.
  7. Predicting dark respiration rates of wheat leaves from hyperspectral reflectance. 2019. Coast, O., Shahen Shah, Ivakov, A., Oorbessy Gaju, Wilson, P.B., Posch, B.C., Bryant, C.J., Negrini, A.C.A., Evans, J.R., Condon, A.G., Silva‐Pérez, V., Reynolds, M.P. Pogson, B.J., Millar A.H., Furbank, R.T., Atkin, O.K. In: Plant, Cell and Environment v. 42, no. 7, p. 2133-2150.
  8. Morphological and physiological responses of Guazuma ulmifolia Lam. to different pruning dates. 2019. Ortega-Vargas, E., Burgueño, J., Avila-Resendiz, C., Campbell, W.B., Jarillo-Rodriguez, J., Lopez-Ortiz, S. In: Agroforestry Systems v. 93 no. 2 p. 461-470.
  9. Stripe rust resistance in wild wheat Aegilops tauschii Coss.: genetic structure and inheritance in synthetic allohexaploid Triticum wheat lines. 2019. Kishii, M., Huerta-Espino, J., Hisashi Tsujimoto, Yoshihiro Matsuoka. In: Genetic Resources and Crop Evolution v. 66, no. 4, p.  909-920.
  10. Comparative assessment of food-fodder traits in a wide range of wheat germplasm for diverse biophysical target domains in South Asia. 2019. Blummel, M., Updahyay, S.R., Gautam, N.R., Barma, N.C.D., Abdul Hakim, M., Hussain, M., Muhammad Yaqub Mujahid, Chatrath, R., Sohu, V.S., Gurvinder Singh Mavi, Vinod Kumar Mishra, Kalappanavar, I.K., Vaishali Rudra Naik, Suma S. Biradar., Prasad, S.V.S., Singh, R.P., Joshi, A.K. In: Field Crops Research v. 236, p. 68-74.
  11. Comment on ‘De Roo et. al. (2019). On-farm trials for development impact? The organization of research and the scaling of agricultural technologies. 2019. Wall, P.C., Thierfelder, C., Nyagumbo, I., Rusinamhodzi, L., Mupangwa, W. In: Experimental Agriculture v. 55 no. 2 p. 185-194.
  12. High-throughput phenotyping enabled genetic dissection of crop lodging in wheat. 2019. Singh, D., Xu Wang, Kumar, U., Liangliang Gao, Muhammad Noor, Imtiaz, M., Singh, R.P., Poland, J.A. In: Frontiers in Plant Science v. 10 art. 394.
  13. Differential response from nitrogen sources with and without residue management under conservation agriculture on crop yields, water-use and economics in maize-based rotations. 2019. Jat, S.L., Parihar, C.M., Singh, A.K., Hari S. Nayak, Meena, B.R., Kumar, B., Parihar M.D., Jat, M.L. In: Field Crops Research v. 236, p. 96-110.
  14. Drip irrigation and nitrogen management for improving crop yields, nitrogen use efficiency and water productivity of maize-wheat system on permanent beds in north-west India. 2019. Sandhu, O.S., Gupta, R.K., Thind, H.S., Jat, M.L., Sidhu, H.S., Singh, Y. In: Agricultural Water Management v. 219 p. 19-26.
  15. Impact of tillage and crop establishment methods on crop yields, profitability and soil physical properties in rice–wheat system of Indo‐gangetic plains of India. Kumar, V., Gathala, M.K., Saharawat, Y.S., Parihar, C.M., Rajeev Kumar, Kumar, R., Jat, M.L., Jat, A.S., Mahala, D.M., Kumar, L., Hari S. Nayak, Parihar M.D., Vikas Rai, Jewlia, H.R., Bhola R. Kuri In: Soil Use and Management v. 35, no. 2, p. 303-313.
  16. Increasing profitability, yields and yield stability through sustainable crop establishment practices in the rice-wheat systems of Nepal. 2019. Devkota, M., Devkota, K.P., Acharya, S., McDonald, A. In: Agricultural Systems v. 173, p. 414-423.
  17. Identification of donors for low-nitrogen stress with maize lethal necrosis (MLN) tolerance for maize breeding in sub-Saharan Africa. 2019. Das, B., Atlin, G.N., Olsen, M., Burgueño, J., Amsal Tesfaye Tarekegne, Babu, R., Ndou, E., Mashingaidze, K., Lieketso Moremoholo |Ligeyo, D., Matemba-Mutasa, R., Zaman-Allah, M., San Vicente, F.M., Prasanna, B.M., Cairns, J.E. In: Euphytica v. 215, no. 4, art. 80.
  18. On-farm trials as ‘infection points’? A response to Wall et al. 2019. Andersson, J.A., Krupnik, T.J., De Roo, N. In: Experimental Agriculture v. 55, no. 2 p. 195-199.
  19. Doing development-oriented agronomy: Rethinking methods, concepts and direction. 2019. Andersson, J.A., Giller, K.Ehttps://repository.cimmyt.org/handle/10883/20154. In: Experimental Agriculture v. 55, no. 2, p. 157-162.
  20. Scale-appropriate mechanization impacts on productivity among smallholders : Evidence from rice systems in the mid-hills of Nepal. 2019. Paudel, G.P., Dilli Bahadur KC, Rahut, D.B., Justice, S., McDonald, A. In: Land Use Policy v. 85, p. 104-113.

Do smallholders get the right seed and inputs from their agrodealer?

Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)
Judith Thomson, agrodealer in Mbalizi, Mbeya district, Tanzania. (Photo: Owekisha Kwigizile)

Many Tanzanian smallholder farmers fail to produce even 1 ton of maize grain per hectare. To improve crop yields, a farmer needs the right seeds and complementary inputs, including inorganic fertilizer. The “right” inputs will depend upon what his or her geographical location and farming system are. How many farmers have access to such inputs and advice? What is the distribution of agrodealers in rural areas? What do they stock, and at what prices?

The International Maize and Wheat Improvement Center (CIMMYT) recently carried out a survey of agrodealers in Uganda and Tanzania to answer such questions related to the last-mile delivery of seeds and other agronomic inputs.

This is a joint initiative from two projects — Taking Maize Agronomy to Scale in Africa (TAMASA) and Strengthening product profile-based maize breeding and varietal turnover in Eastern and Southern Africa — funded by the Bill & Melinda Gates Foundation and USAID.

For the study, CIMMYT teams interviewed 233 agrodealers in Uganda and 299 agrodealers in Tanzania. The survey started in September 2019, just before the main maize planting season, and covered five districts in each country, in both easy-to-reach and remote areas.

The study focuses particularly on two types of agricultural inputs: maize seeds — similar to an earlier survey done this year in Kenya — and fertilizer.

Are agrodealers catalyzers of varietal turnover?

For maize seed, researchers looked at which varieties are available at the agrodealer and how do they decide on what to stock.

Agrodealers were also asked to report the key selling attribute of the different varieties they had in store whether it was yield, drought tolerance, maturity level or another marketing characteristic like pricing or packaging. Such information will give some better insights for CIMMYT’s maize breeding team about perceived differences along the seed value chain on key attributes and product profiles.

For example, a new variety in Uganda that was tolerant to maize lethal necrosis (MLN), was mainly promoted as a double cobber and not as MLN tolerant. And unlike in Uganda, there was no “cheap variety” option available in Tanzania, according to the agrodealers interviewed for the study, although high seed prices were often mentioned as the main barrier for seed purchases.

Better understanding how retailers select their varieties could help improve varietal turnover, a key indicator of how fast CIMMYT’s research reaches out farmers.

Besides their own role, it is also interesting to see how agrodealers perceive external challenges to influence farmer adoption of improved varieties. In Uganda, agrodealers saw counterfeit seed and government free seed distributions to farmers as the main challenges for their business, issues that were not frequently mentioned in Tanzania.

Understanding input market characteristics

Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)
Enumerator Mary Mdache (left) interviews Shangwe Stephano, staff of BAYDA agrovet shop in Haydom town, Mbulu district, Tanzania. (Photo: Furaha Joseph)

The use of fertilizer is very low in sub-Saharan Africa, around 8-12 kg per hectare, twenty times less than Western standards. Fertilizer access and affordability have been cited as key factors in the low rates of uptake.

The study may shed some new light on this, as it looks at what types of fertilizer is available to farmers at agrodealer shops, and what drives sale and prices. Researchers will examine whether there is a competition effect and how transport costs or subsidies impede the growth of the fertilizer market.

Georeferencing of interviewed agrodealers and farmer population mapping will help reveal the degree to which agrodealers are concentrated in particular areas, leaving other areas with relatively little local access to inputs. Project researchers will investigate how marketing conditions vary across such situation, examining, for instance, how input pricing strategies, selection and quality varies spatially. The team will also use data collected on fertilizer prices to further refine regional fertilizer profitability maps.

Such mapping exercises could help improve the relevance of extension advice. As an example, to tackle acid soils or phosphorus deficiency, could farmers find the recommended input, lime or appropriate P fertilizer at the right time and right price, so that it is profitable for them?

The detailed results of the study are expected in early 2020 to guide agronomic investments and policies for more functional input markets that drive a much-needed sustainable intensification of African smallholder agriculture.

Investing in drought-tolerant maize is good for Africa

Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)
Geoffrey Ochieng’, a smallholder farmer from northern Uganda. He plants the UH5051 variety on his land. (Photo: Joshua Masinde/CIMMYT)

Zambia’s vice-president has recently called to reduce maize dominance and increase crop and diet diversification in his country. The reality is that maize is and will remain a very important food crop for many eastern and southern African countries. Diet preferences and population growth mean that it is imperative to find solutions to increase maize production in these countries, but experts forecast 10 to 30% reduction in maize yields by 2030 in a business-as-usual scenario, with projected temperature increases of up to 2.7 degrees by 2050 and important drought risks.

Knowing the importance of maize for the food security of countries like Zambia, it is crucial to help maize farmers get better and more stable yields under erratic and challenging climate conditions.

To address this, the International Maize and Wheat Improvement Center (CIMMYT) and its partners have been developing hundreds of new maize varieties with good drought tolerance across sub-Saharan Africa. Stakeholders in the public research and African seed sectors have collaborated through the Drought Tolerant Maize for Africa (DTMA) project and the Stress Tolerant Maize for Africa (STMA) initiative to develop drought-tolerant seed that also incorporates other qualities, such as nutritional value and disease resistance.

A groundbreaking impact study six years ago demonstrated that drought-tolerant maize significantly reduced poverty and food insecurity, particularly in drought years.

A new study from CIMMYT and the Center for Development Research (ZEF) in the main maize growing areas of Zambia confirms that adopting drought-tolerant maize can increase yields by 38% and reduce the risks of crop failure by 36%.

Over three quarters of the rainfed farmers in the study experienced drought during the survey. These farming families of 6 or 7 people were cultivating 4 hectares of farmland on average, half planted with maize.

Another study on drought-tolerant maize adoption in Uganda estimated also good yield increases and lower crop failure risks by 26 to 35%.

A balancing act between potential gains and climate risks

Drought-tolerant maize has a transformational effect. With maize farming becoming less risky, farmers are willing to invest more in fertilizer and other inputs and plant more maize.

However, taking the decision of adopting new farm technologies in a climate risky environment could be a daunting task. Farmers may potentially gain a lot but, at the same time, they must consider downside risks.

As Gertrude Banda, a lead farmer in eastern Zambia, put it, hybrid seeds have a cost and when you do not know whether rains will be enough “this is a gamble.” In addition to climate uncertainty, farmers worry about many other woes, like putting money aside for urgent healthcare, school fees, or cooking nutritious meals for the family.

Information is power

An additional hurdle to adoption is that farmers may not know all the options available to cope with climate risks. While 77% of Zambia households interviewed said they experienced drought in 2015, only 44% knew about drought-tolerant maize.

This inequal access to knowledge and better seeds, observed also in Uganda, slows adoption of drought-tolerant maize. There, 14% of farmers have adopted drought-tolerant maize varieties. If all farmers were aware of this technology, 8% more farmers would have adopted it.

Because farmers are used to paying for cheap open-pollinated varieties, they are only willing to pay half of the hybrid market price, even though new hybrids are performing very well. Awareness campaigns on the benefits of drought-tolerant maize could boost adoption among farmers.

According to the same study, the potential for scaling drought-tolerant maize could raise up to 47% if drought-tolerant varieties were made available at affordable prices at all agrodealers. Several approaches could be tested to increase access, such as input credit or subsidy schemes.

Read the full articles:
Impacts of drought-tolerant maize varieties on productivity, risk, and resource use: Evidence from Uganda

Productivity and production risk effects of adopting drought-tolerant maize varieties in Zambia

Heterogeneous seed access and information exposure: implications for the adoption of drought-tolerant maize varieties in Uganda

These impact studies were made possible through the support provided by the Bill & Melinda Gates Foundation and the US Agency for International Development (USAID), funders of the Stress Tolerant Maize for Africa (STMA) initiative.

New mobile technology to help farmers improve yields and stabilize incomes

An international team of scientists is working with farmers in the Yaqui Valley, in Mexico’s Sonora state, to develop and test a new mobile technology that aims to improve wheat and sugarcane productivity by helping farmers manage factors that cause the yield gap between crop potential and actual field performance.

Scientists have been developing and testing a smartphone app where farmers can record their farming activities — including sowing date, crop type and irrigation — and receive local, precise crop management advice in return.

This project is a private-public partnership known as Mexican COMPASS, or Mexican Crop Observation, Management & Production Analysis Services System.

Research has shown that proper timing of irrigation is more important to yields than total water amounts. Earlier planting times have also been shown to improve wheat yields. Having optimum dates for both activities could help farmers improve yields and stabilize their incomes.

COMPASS smartphone app interface. (Photo: Saravana Gurusamy/Rezatec)
COMPASS smartphone app interface. (Photo: Saravana Gurusamy/Rezatec)

The COMPASS smartphone app uses earth observation satellite data and in-situ field data captured by farmers to provide information such as optimum sowing date and irrigation scheduling.

“Sowing and irrigation timing are well known drivers of yield potential in that region — these are two features of the app we’re about to validate during this next season,” explained Francelino Rodrigues, Precision Agriculture Scientist at the International Maize and Wheat Improvement Center (CIMMYT).

Sound data

Technological innovation for crop productivity is needed now more than ever with threats to food security increasing and natural resources becoming scarcer. Farmers are under increasing pressure to produce more with less, which means greater precision is needed in their agricultural practices.

The Yaqui Valley, Mexico’s biggest wheat producing area, is located in the semi-arid Sonoran Desert in the northern part of Mexico. Water security is a serious challenge and farmers must be very precise in their irrigation management.

The Mexican COMPASS consortium, which is made up of the geospatial data analytics company Rezatec, the University of Nottingham, Booker Tate, CIMMYT and the Colegio de Postgraduados (COLPOS) in Mexico, evolved as a way to help Mexican farmers improve their water use efficiency.

“Yaqui Valley farmers are very experienced farmers, however they can also benefit by using an app that is designed locally to inform and record their decisions,” Rodrigues explained.

The smartphone app will also allow farmers to record and schedule their crop management practices and will give them access to weekly time-series Normalized Difference Vegetation Index (NDVI) maps, that will allow farmers to view their fields at any time from any location.

“All of this information is provided for free! That’s the exciting part of the project. The business model was designed so that farmers will not need to pay for access to the app and its features, in exchange for providing their crop field data. It’s a win-win situation,” said Rodrigues.

CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)
CIMMYT research assistant Lorena Gonzalez (center) helps local farmers try out the new COMPASS app during the workshop in Ciudad Obregon, Sonora state, Mexico. (Photo: Alison Doody/CIMMYT)

Farmer-centered design

The app is now in the validation stage and COMPASS partners are inviting farmers to test the technology on their own farms. A workshop on October 21 in Ciudad Obregon provided farmers with hands-on training for the app and allowed them to give their feedback.

Over 100 farmers attended the workshop, which featured presentations from Saravana Gurusamy, project manager at Rezatec, Iván Ortíz-Monasterio, principal scientist at CIMMYT, and representatives from local farmer groups Asociación de Organismos de Agricultores del Sur de Sonora (AOASS) and Distrito de Riego del Río Yaqui (DRRYAQUI). The workshop featured a step-by-step demonstration of the app and practical exercises for farmers to test it out for themselves.

“We need technology nowadays because we have to deal with many factors. The profit we get for wheat is getting smaller and smaller each year, so we have to be very productive. I hope that this app can help me to produce a better crop,” said one local wheat farmer who attended the workshop.

User feedback has played a key role in the development of the app. COMPASS interviewed dozens of farmers to see what design worked for them.

“Initially we came up with a really complicated design. However, when we gave it to farmers, they didn’t know how to use it,” explained Rezatec project manager, Saravana Gurusamy. The team went back to the drawing board and with the feedback they received from farmers, came up with a simple design that any farmer, regardless of their experience with technology or digital literacy, could use.

A farmer who attended the workshop talks about his experience and the potential benefits of the app. See full video on YouTube.

Sitting down with Gurusamy after the workshop, he outlined his vision for the future of the app.

“My vision is to see all the farmers in Sonora, working in wheat using the app. The first step is to prove the technology here, then roll it out to all of Mexico and eventually internationally.”

Mexican COMPASS is a four year project funded by the UK Space Agency’s International Partnership Programme (IPP-UKSA) and the CGIAR Research Program on Wheat (WHEAT). It is a collaboration between Rezatec, the University of Nottingham and Booker Tate in the UK, and the International Maize and Wheat Improvement Center (CIMMYT) and the Colegio de Postgraduados (COLPOS) in Mexico.

Breaking Ground: Pieter Rutsaert looks to better marketing for faster adoption of climate-smart maize in Africa

Ever wondered why farmers prefer a certain maize variety over another? What crop traits different farmers value? How they make their seed selections at the market? Pieter Rutsaert, an expert in markets and value chains with the International Maize and Wheat Improvement Center (CIMMYT), analyzes the important factors that African farmers consider when purchasing maize varieties at agro-dealers and the implications for how the seed industry can better meet farmers’ needs.

Maize is the most important cereal crop in Africa, grown on over 29 million hectares of rainfed farmland and consumed daily by around 50% of the population. However, increasingly erratic weather patterns threaten the performance the maize varieties grown, putting household food security at risk.

“African smallholders typically plant maize seeds they are familiar with, but these varieties often lack the attributes to tolerate harsher weather including droughts, extreme heat or disease stress,” Rutsaert explains.

“Despite the existence of maize varieties bred to stand up to harsher weather, their intrinsic attributes alone are not enough to convince farmers to leave their preferred varieties. These stress-tolerant varieties need to be properly marketed to be competitive and increase their market share.”

With previous experience as a marketing consultant in the food industry, Rutsaert brings unique skills and approaches to CIMMYT’s Stress Tolerant Maize for Africa (STMA) project, to help businesses develop new seed distribution and marketing strategies to get climate-resilient varieties into farmers’ fields.

Pieter Rutsaert (right) discusses a research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)
Pieter Rutsaert (right) discusses a research study questionnaire with consultant enumerator Victor Kitoto. (Photo: Jerome Bossuet/CIMMYT)

Market intelligence on climate-smart seed

Rutsaert sees local agro-dealers as a strategic entry point for researchers to gather information on the varying farmer interests and conditions as information about seed demand is revealed at the point of purchase.

Despite large investments to support seed systems in sub-Saharan Africa, including investments to upgrade agro-dealer capacity, there is limited evidence into how women and men take decisions on maize seed purchases to support development initiatives.

“The agro-dealer space is where farmers decide what inputs to buy. In addition to providing farmers access to inputs at competitive prices, front-line agro-dealers offer technical assistance, such as advice on input use and production practices, and short-term credit for input purchases.”

Thus, agro-dealers offer the chance to learn about farmers’ unique conditions and ensure they adopt the right variety. Gathering these insights has the potential to support locally owned small and medium enterprises that produce stress-tolerant varieties, suited for local conditions, says the marketing expert.

An agent from a seed company (right) promotes sales at an agro-dealer shop. (Photo: Pieter Rutsaert/CIMMYT)
An agent from a seed company (right) promotes sales at an agro-dealer shop. (Photo: Pieter Rutsaert/CIMMYT)

Marketing strategies for agro-dealers

Compared to multinational seed companies, local seed businesses are expected to show greater willingness to seek out traditionally underserved segments of the seed market, such as poorer farmers or those located in less-favored production regions. However, local seed producers and retailers generally lack marketing capabilities and have a limited understanding of the costs and benefits of different approaches to market their seed, Rutsaert says.

“Without effective marketing strategies responding to the needs of different clients, farmers will stick to the seeds that they know, even when this might not be the best for their situation,” he continues.

Based on the market information gathered, Rutsaert works with agro-dealers to develop retail strategies, such as targeted marketing materials, provision of in-store seed decision support, and price incentives, to help women and men farmers get the inputs that work best.

Rutsaert says he is committed to use his private sector experience to improve CIMMYT’s understanding of the seed sector and build the capacity of local agro-dealers to distribute climate-resilient maize varieties throughout the African region.

The Stress Tolerant Maize for Africa (STMA) project seeks to develop maize cultivars with tolerance and resistance to multiple stresses for farmers, and support local seed companies to produce seed of these cultivars on a large scale. STMA aims to develop a new generation of over 70 improved stress tolerant maize varieties, and facilitate the production and use of over 54,000 metric tons of certified seed. The STMA project is funded by the Bill & Melinda Gates Foundation and USAID.

How Haryana cut stubble burning this season

Delhi’s fight against air pollution has more failures than success. As the Supreme Court lashed out at Punjab, Haryana and Uttar Pradesh on November 6, 2019, for not taking enough measures to curb crop residue burning in their farms, it also asked these states to reward farmers who refrained from doing so with Rs 100 per quintal of crop.

So what is Haryana doing right? The state started early, says S Narayanan, member secretary, Haryana Pollution Control Board.

It identified villages where farm fires were rampant last year and just as the kharif season began in June, it started distributing machines that can eliminate crop residue burning. “We did quite well on the technological front and supplied machines like Super sms, Rotavator, Happy Seeder and Zero Till Seed Drill,” he says.

“Any new technology takes time to be adopted,” says Kailash Chand Kalwania of the non-profit CIMMYT (International Maize and Wheat Improvement Centre). Last year, many farmers were given such machines on subsidy. They used it in small patches.

This year, they saw that the overall cost was less and the yield was high. Read more here.

Closing the yield gap: Why localized analysis matters

General view of the experimental field in Lempira, Honduras. (Photo: Nele Verhulst/CIMMYT)
General view of the experimental field in Lempira, Honduras. (Photo: Nele Verhulst/CIMMYT)

Populations in Central America are rising rapidly, but staple crop production seems unable to keep up with increasing food demands.

Maize yields are particularly low compared to other regions. Cumulatively, farmers in El Salvador, Guatemala, Honduras and Nicaragua produce maize on nearly 2.5 million hectares, with a large proportion of these maize systems also including beans, either through relay cropping or intercropping. Though potential yields are estimated to be as high as 10 metric tons per hectare, average production remains low at around 2.28.

There is clearly immense opportunity for improvement, but it is not always obvious which issues need tackling.

Yield gap analysis — which measures the difference between potential and actual yield — is a useful starting point for addressing the issue and identifying intensification prospects. It is not a new concept in applied agronomy, but it has not been adequately applied in many regions. For example, Analyses of Central America tend to be grouped with the rest of Latin America, making it difficult to provide recommendations tailored to local contexts.

I see a more comprehensive understanding of the region’s specific crop production limitations as the first step towards improving food security.

Along with fellow researchers from the International Maize and Wheat Improvement Center (CIMMYT) and other institutions, we set out to identify the main factors limiting production in these areas. We established field trials in six maize and bean producing regions in El Salvador, Guatemala and Honduras, which represent about three-quarters of the maize producing area. We assessed factors such as water stress, nutrient deficiency, pressure from pests and diseases, and inter-plant competition, hypothesizing that optimized fertilization and supplementary irrigation would have the greatest effects on yields.

A maize cob in La Libertad, El Salvador, shows kernels affected by tar spot complex which have not filled completely (Photo: Nele Verhulst/CIMMYT)
A maize cob in La Libertad, El Salvador, shows kernels affected by tar spot complex which have not filled completely (Photo: Nele Verhulst/CIMMYT)

We found that while improved fertilization improved maize yields by 11% on average, it did not have a significant effect on bean production. Irrigation had no effect, though this was mainly due to good rainfall distribution throughout the growing season in the study year. On average, optimized planting arrangements increased maize yields by 18%, making it the most promising factor we evaluated.

It was interesting though perhaps unsurprising to note that the contribution of each limiting factor to yield gaps carried across all sites and no single treatment effectively increased yields consistently across all sites. The trial results confirmed that production constraints are highly dependent on local management practices and agroecological location.

With this in mind, we recommend that development actors aiming to increase crop production begin by conducting multi-year, participatory experiments to understand the primary causes of yield gaps and identify the limitations specific to the areas in question, as this will allow for more effective research and policy efforts.

Read the full article “Factors contributing to maize and bean yield gaps in Central America vary with site and agroecological conditions” in The Journal of Agricultural Science.

India pollution: How a farming revolution could solve stubble burning

As pollution in Delhi is soaring, agriculture is seen as a big contributor. Farmers are setting fire to their fields to clear excess crop residue in time for the wheat sowing season. CIMMYT scientist M.L. Jat argues that India now needs to undergo a second, “evergreen” revolution, driven by technology such as the happy seeder.

CIMMYT studies show that agricultural productivity can be improved with the use of happy seeders and super sms machines by between 10 and 15%, by reducing labor costs and time and allowing nutrients from the crop residue to be recycled back into the soil. Dr Jat sees it as a win-win situation: “On one side you are increasing your productivity with the happy seeder,” he says, “And on the other you are saving your resources.”

Read more here.

Scientists develop an early warning system that delivers wheat rust predictions directly to farmers’ phones

One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)
One of the researchers behind the study, Yoseph Alemayehu, carries out a field survey in Ethiopia by mobile phone. (Photo Dave Hodson/CIMMYT)

TEXCOCO, Mexico — Using field and mobile phone surveillance data together with forecasts for spore dispersal and environmental suitability for disease, an international team of scientists has developed an early warning system which can predict wheat rust diseases in Ethiopia. The cross-disciplinary project draws on expertise from biology, meteorology, agronomy, computer science and telecommunications.

Reported this week in Environmental Research Letters, the new early warning system, the first of its kind to be implemented in a developing country, will allow policy makers and farmers all over Ethiopia to gauge the current situation and forecast wheat rust up to a week in advance.

The system was developed by the University of Cambridge, the UK Met Office, the Ethiopian Institute of Agricultural Research (EIAR), the Ethiopian Agricultural Transformation Agency (ATA) and the International Maize and Wheat Improvement Center (CIMMYT). It works by taking near real-time information from wheat rust surveys carried out by EIAR, regional research centers and CIMMYT using a smartphone app called Open Data Kit (ODK).

This is complemented by crowd-sourced information from the ATA-managed Farmers’ Hotline. The University of Cambridge and the UK Met Office then provide automated 7-day advance forecast models for wheat rust spore dispersal and environmental suitability based on disease presence.

All of this information is fed into an early warning unit that receives updates automatically on a daily basis. An advisory report is sent out every week to development agents and national authorities. The information also gets passed on to researchers and farmers.

Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)
Example of weekly stripe rust spore deposition based on dispersal forecasts. Darker colors represent higher predicted number of spores deposited. (Graphic: University of Cambridge/UK Met Office)

Timely alerts

“If there’s a high risk of wheat rust developing, farmers will get a targeted SMS text alert from the Farmers’ Hotline. This gives the farmer about three weeks to take action,” explained Dave Hodson, principal scientist with CIMMYT and co-author of the research study. The Farmers’ Hotline now has over four million registered farmers and extension agents, enabling rapid information dissemination throughout Ethiopia.

Ethiopia is the largest wheat producer in sub-Saharan Africa but the country still spends in excess of $600 million annually on wheat imports. More can be grown at home and the Ethiopian government has targeted to achieve wheat self-sufficiency by 2023.

“Rust diseases are a grave threat to wheat production in Ethiopia. The timely information from this new system will help us protect farmers’ yields, and reach our goal of wheat self-sufficiency,” said EIAR Director Mandefro Nigussie.

Wheat rusts are fungal diseases that can be dispersed by wind over long distances, quickly causing devastating epidemics which can dramatically reduce wheat yields. Just one outbreak in 2010 affected 30% of Ethiopia’s wheat growing area and reduced production by 15-20%.

The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control. “New strains of wheat rust are appearing all the time — a bit like the flu virus,” explained Hodson.

In the absence of resistant varieties, one solution to wheat rust is to apply fungicide, but the Ethiopian government has limited supplies. The early warning system will help to prioritize areas at highest risk of the disease, so that the allocation of fungicides can be optimized.

Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)
Example of weekly stripe rust environmental suitability forecast. Yellow to Brown show the areas predicted to be most suitable for stripe rust infection. (Graphic: University of Cambridge/UK Met Office)

The cream of the crop

The early warning system puts Ethiopia at the forefront of early warning systems for wheat rust. “Nowhere else in the world really has this type of system. It’s fantastic that Ethiopia is leading the way on this,” said Hodson. “It’s world-class science from the UK being applied to real-world problems.”

“This is an ideal example of how it is possible to integrate fundamental research in modelling from epidemiology and meteorology with field-based observation of disease to produce an early warning system for a major crop,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge and a co-author of the paper, adding that the approach could be adopted in other countries and for other crops.

“The development of the early warning system was successful because of the great collaborative spirit between all the project partners,” said article co-author Clare Sader-Allen, currently a regional climate modeller at the British Antarctic Survey.

“Clear communication was vital for bringing together the expertise from a diversity of subjects to deliver a common goal: to produce a wheat rust forecast relevant for both policy makers and farmers alike.”


RELATED PUBLICATIONS:

An early warning system to predict and mitigate wheat rust diseases in Ethiopia
https://doi.org/10.1088/1748-9326/ab4034

INTERVIEW OPPORTUNITIES:

Dave Hodson, Senior Scientist, International Maize and Wheat Improvement Center (CIMMYT)

FOR MORE INFORMATION, OR TO ARRANGE INTERVIEWS, CONTACT:

Marcia MacNeil, Communications Officer, CIMMYT. m.macneil@cgiar.org, +52 (55) 5804 2004 ext. 2070.

Rodrigo Ordóñez, Communications Manager, CIMMYT. r.ordonez@cgiar.org, +52 (55) 5804 2004 ext. 1167.

ACKNOWLEDGEMENTS:

This study was made possible through the support provided by the BBSRC GCRF Foundation Awards for Global Agriculture and Food Systems Research, which brings top class UK science to developing countries, the Delivering Genetic Gains in Wheat (DGGW) Project managed by Cornell University and funded by the Bill & Melinda Gates Foundation and the UK Department for International Development (DFID). The Government of Ethiopia also provided direct support into the early warning system. This research is supported by CGIAR Fund Donors.

ABOUT CIMMYT:

The International Maize and Wheat Improvement Center (CIMMYT) is the global leader in publicly-funded maize and wheat research and related farming systems. Headquartered near Mexico City, CIMMYT works with hundreds of partners throughout the developing world to sustainably increase the productivity of maize and wheat cropping systems, thus improving global food security and reducing poverty. CIMMYT is a member of the CGIAR System and leads the CGIAR Research Programs on Maize and Wheat and the Excellence in Breeding Platform. The Center receives support from national governments, foundations, development banks and other public and private agencies. For more information, visit staging.cimmyt.org.

ABOUT THE ETHIOPIAN INSTITUTE OF AGRICULTURAL RESEARCH (EIAR):

The Ethiopian Institute of Agricultural Research (EIAR) is one of the oldest and largest agricultural research institutes in Africa, with roots in the Ethiopian Agricultural Research System (EARS), founded in the late 1940s. EIAR’s objectives are: (1) to generate, develop and adapt agricultural technologies that focus on the needs of the overall agricultural development and its beneficiaries; (2) to coordinate technically the research activities of Ethiopian Agricultural Research System; (3) build up a research capacity and establish a system that will make agricultural research efficient, effective and based on development needs; and (4) popularize agricultural research results. EIAR’s vision is to see improved livelihood of all Ethiopians engaged in agriculture, agro-pastoralism and pastoralism through market competitive agricultural technologies.

Fight against fall armyworm in Asia benefits from experience in other regions

When the destructive fall armyworm arrived in Asia in the summer of 2018, scientists were not taken by surprise. They had been anticipating its arrival on the continent as the next stage of its aggressive eastward journey, driven by changing climatic conditions and international trade routes. The pest, native to North and South America, had invaded and spread throughout most of sub-Saharan Africa within two years, severely damaging billions of dollars of maize crops and threatening food security for millions of people. Asian countries would have to mobilize quickly to cope with this new threat.

After reaching India in 2018, the pest spread to other parts of Asia, including Bangladesh, mainland China, Indonesia, Laos, Myanmar, Nepal, Philippines, Sri Lanka, Taiwan, Thailand and Vietnam.

Fall armyworm is a major threat to Asia’s maize farmers, many of whom derive a crucial source of household income by selling maize as feed grain for the growing poultry sector. What is not sold is paramount for subsistence and daily nutrition in communities in the hills of Nepal, in the tribal regions of India, in the mountainous provinces of southern China, and in parts of Indonesia and the Philippines.

The pest is here to stay

Fall armyworm cannot be eradicated — once it has arrived in an agro-ecosystem, farmers must learn how to cope with it. Farmers in the Americas have lived with this pest for the last two hundred years, but their tools and management techniques cannot be simply applied in Africa or Asia. Solutions need to be tailored to specific countries and local contexts, to account for the vast differences in local ecologies, practices, policies and other conditions.

Timothy J. Krupnik and B.M. Prasanna are two of the scientists responding to fall armyworm in Asia. Both are with the International Maize and Wheat Improvement Center (CIMMYT). As a long-established organization with global presence, CIMMYT had decades of experience managing fall armyworm in its native lands before the global spread started. These scientists see the enormous threat to maize crops in Asia, and the negative impact it could have on the income and wellbeing of smallholders and their families, but they also point to opportunities to develop, validate and deploy effective solutions.

In South Asia, farmers have developed intensive agricultural techniques to produce food for rapidly growing populations, meaning agricultural inputs such as seeds, fertilizer and pesticides are more readily available than in much of Africa. The private sector is generally good at getting solutions to farmers, who are often willing and able to adopt new ways of farming. “The private sector in South Asia is in a good position to exchange and transfer technologies across the region,” explains Prasanna, who leads CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

The accessibility of pesticides also has its risks, says Krupnik, a senior scientist based in Bangladesh. “If used incorrectly, pesticides can be unsafe, environmentally damaging and even ineffective,” he says. Krupnik’s team is currently engaging with pesticide companies in Bangladesh, helping them develop an evidence-based response to fall armyworm. “We want to encourage effective, environmentally safer solutions such as integrated pest management that cause least harm to people and ecosystems,” he explained.

A fall armyworm curls up among the debris of the maize plant it has just eaten at CIMMYT’s screenhouse in Kiboko, Kenya. (Photo: Jennifer Johnson/CIMMYT)
A fall armyworm curls up among the debris of the maize plant it has just eaten at CIMMYT’s screenhouse in Kiboko, Kenya. (Photo: Jennifer Johnson/CIMMYT)

A global effort

The global nature of the challenge may have a silver lining. “Over the last three years, we have learned important lessons on fall armyworm management in Africa, including what technologies work and why,” says Prasanna. “With the pest now a global problem, there is great potential for cooperation among affected countries, especially between Africa and Asia.”

Researchers emphasize that a collective effort is needed to respond to the fall armyworm in Asia. CIMMYT is working with partners around the world to help leverage and share expertise and technologies across borders.

China has as much acreage of maize as the whole African continent, and has tremendous institutional expertise and capacity to deal with new challenges, explains Prasanna. His team is in discussions with Chinese researchers to share knowledge and solutions across Asia.

Bangladesh and Nepal are among the countries seeking linkages with international experts and researchers in other countries.

In Africa, CIMMYT was part of a global coalition of scientists and governments who joined forces in 2017 to tackle the fall armyworm threat and develop scientific solutions. The researchers want to see this approach expand into Asia, supported by the donor community.

As the pest continues its relentless expansion in the region, extensive work is ahead for both research and development institutions. Researchers need to identify and promote best management practices. Technologies will have to be environmentally sustainable, durable and inclusive, says Prasanna.

Joining hands

“To achieve this, we need a multidisciplinary team including breeders, pest management experts, seed specialists, agronomists and socioeconomists, who can share science-based evidence with development partners, governments and farmers,” Prasanna says.

CIMMYT researchers are on the path towards developing improved maize varieties with native genetic resistance to fall armyworm. They are also engaging with farming communities to make sure other integrated pest management solutions are available.

In addition to developing agronomic practices and technologies, scientists are reaching out to farming communities with the right messages, Krupnik explains. “As well as being technical experts, our scientists are embedded in the countries where we work. We’ve lived here for a long time, and understand how to engage with local partners,” he says.

Cross-border collaboration and knowledge transfer is already happening. Partners in Laos enthusiastically adapted fall armyworm informational materials from Bangladesh for local dissemination. Krupnik and his team have also collaborated on a video with guidance on how to identify and scout for fall armyworm in a field, developed by Scientific Animations without Borders.

Fall armyworm will continue its spread across Asia, and researchers will have many questions to answer, such as how fall armyworm interacts with very diverse Asian agro-ecosystems, the pest population dynamics, and measuring the economic impacts of interventions. Solutions need to be developed, validated and deployed for the short, medium and long term. Krupnik and Prasanna hope that international cooperation can support these crucial research-for-development activities.

“Fall armyworm is here to stay. We are running a marathon and not a 100-meter sprint,” proclaimed Prasanna. “Let’s work collectively and strategically so that the farmer is the ultimate winner.”

New tools guide interventions against acid soils in Africa using lime

Researchers visit maize fields in Ethiopia's Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)
Researchers visit maize fields in Ethiopia’s Wondo Genet Agricultural Research Center. (Photo: Peter Lowe/CIMMYT)

One major reason why maize productivity in sub-Saharan Africa is very low is poor soil health. Soil acidity is often mentioned because of its impact on crop yields and the extent of acid soils in the region. A recent soil mapping exercise, conducted by the Ethiopian Soil Information System (EthioSIS) under the administration of the Ethiopian Agricultural Transformation Agency (ATA), estimated that 43% of arable lands were affected by acid soils and that 3.6 million people, about 10% of the total rural population, live in areas with acidic soils.

Very acid soils — those with a pH below 5.5, roughly one hundred times more acidic than neutral soils — are associated with certain toxicities, like aluminum and iron excess, and some nutrient deficiencies. Soil acidity pushes soil nutrients out of reach of the plant, leading to stunting of root system and plant. As a result, the plant becomes also less tolerant to drought.

Soil acidification depends on soil nature, agroecology and farming systems. It happens through natural leaching of CO2 after rainfall and excess application of nitrogenous fertilizer or organic matter, for instance.

As a result, soil acidity significantly affects maize yields. In Ethiopia, studies have revealed substantial impacts on crop productivity related to acid soils and the importance of acid soil management for Ethiopia’s food security. The Ethiopian Institute of Agricultural Research (EIAR) estimated that soil acidity on wheat production alone costed the country over 9 billion Ethiopian Birr, about $300 million per year.

Acidic soils in the limelight

Preliminary analysis led by the International Food Policy Research Institute (IFPRI) suggests that yields of major cereal crops, such as wheat and barley, could increase by 20 to 40% with the application of lime in acidic areas of the country.

While these preliminary results are significant, we need to know more about local farmers’ experience with acidic soil and their mitigation strategies. Such impact assessments are however typically determined at either the national or experimental plot level and do not map where mitigating against acid soils would be the most profitable.

To improve acid soils, farmers may apply lime on their fields to raise the pH, a practice known as liming. How much lime to apply will depend on the crop, soil type but also on the quality of lime available. Liming has multiple beneficial effects like improving nitrogen fixation of legume nodules, boosting yields of legume crops.

But liming has a cost. It can quickly become a very bulky affair as we need to apply 3 to 4 tons per hectare for sandy soils and up to 8 tons per hectare for clay and humifere soils.

Furthermore, existing lime markets are quite limited or even non-existent in many areas, even those where acidic soils are prevalent. Developing supply chains from scratch is difficult and costly. Understanding the costs and potential returns to such investments is important. There are many questions to ask at different levels, from the farm and farming system to the lime supply chain. What are the available lime sources — calcitic, dolomite or blend — and lime quality? Where are the lime processing units and how could you assess the transport cost to the farms? What could be the crop yield response depending on the lime application?

User-friendly and scalable dashboard

IFPRI, in collaboration with EIAR, the International Maize and Wheat Improvement Center (CIMMYT) and the German aid agency GIZ, developed a pilot in Ethiopia’s Amhara region to help better target lime interventions for a greater impact. Amhara region was chosen because of the importance of acid soils, and access to extensive soil data.

Combination of several spatial datasets on soil quality, agroecological, weather, long-term agronomic trials and crop modelling tools enabled to generate at scale, georeferenced estimates of crop yield responses for different lime applications. Calibration of this spatial model for wheat estimated a yield increase of approximately 30% increasing the pH from 5.5 to 6.5, which is relatively consistent with general research data and expert opinion.

Mapped estimates of the grain prices and the delivered costs of lime, based on the location of the lime crushers in the region and transport costs, enables then to map out the spatial profitability of lime operations.

Initial calculations revealed a great variability of lime costs at the farmgate, with transportation representing at least half of total lime costs. It showed also that farmers often do not use the most cost-effective combination of inputs to tackle soil acidity.

Another possible application is to determine maize growing areas where lime benefits outweigh the costs, which would be ideal sites for demonstrating to farmers the positive impact lime applications could have to their livelihoods.

This Amhara lime dashboard prototype demonstrated its scalability. A national dashboard is currently being developed, which includes lime sources GPS location, grain prices and district-level soil quality mapping. This approach is tested also in Tanzania.

CIMMYT and its partners plan to package such tool in a user-friendly open-access web version that can be rapidly updated and customized depending on the area of intervention, for instance integrating a new lime source, and applied for different crops, and across the Eastern African region. Such dashboards will help development organizations and government make better informed decisions regarding lime investments.

What it takes to bring the best seed to farmers

Partnerships and how to increase impact were two of the key issues discussed by the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT) during their meeting in Kenya in October 6-10, 2019. Management and strategy discussions were combined with field trips and interactions with CIMMYT researchers and partners. Board members visited the research stations in Kiboko and Naivasha, as well as two partner seed companies in Machakos and Nairobi.

“To ensure CIMMYT’s crop breeding research benefits smallholder farmers, it is important for us to better understand how partnerships between CIMMYT and seed companies work on the ground, to know how seeds move from our research stations to the farmers,” said Marianne Bänziger, CIMMYT’s deputy director general for research and partnership.

CIMMYT board members and staff stand for a group photo outside the offices of East African Seed. (Photo: Jerome Bossuet/CIMMYT)
CIMMYT board members and staff stand for a group photo outside the offices of East African Seed. (Photo: Jerome Bossuet/CIMMYT)

East African Seed, a family-owned seed business established in Nairobi in the 1970s, sells over 300 products, from maize and vegetable seeds to phytosanitary solutions. The company works through a large network of stockists and distributors across Burundi, the Democratic Republic of Congo, Kenya, Rwanda, South Sudan, Tanzania and Uganda.

Rogers Mugambi, chief business manager of East African Seed, underlined the successful partnership with CIMMYT, getting access to high-yielding disease-resistant germplasm and receiving technical support for the company’s breeding team. Mugambi highlighted CIMMYT’s contribution to contain the devastating maize lethal necrosis (MLN) outbreak since 2011. Most commercial varieties on the market fared badly against this new viral disease, but in 2020 East African Seed will launch two new MLN-tolerant varieties on the market thanks to CIMMYT’s breeding work.

Dryland Seed, another partner seed company, was established in 2005 in Kenya’s Machakos County. It commercializes the drought-tolerant SAWA maize hybrid, based on CIMMYT lines. Featured recently on Bill Gates’s blog, this hybrid is a success among farmers, thanks to earliness, nitrogen use efficiency and good yield potential in water-stressed regions. Dryland Seed’s production grew from 25 to 500 tons of seed per year, reaching out 42,000 farmers a year.

General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)
General view of the East African Seed warehouse. (Photo: Jerome Bossuet/CIMMYT)

Keeping seeds in business

When asked about the uniqueness of East African Seed, Mugambi highlighted trust and consistency in quality. They nurture their agrodealer network by investing in extension services and organizing evening meetings with stockists to discuss how to farm and be profitable. “Knowing and supporting the agrodealers selling your products is crucial, to make sure the stockists sell the right seeds and inputs, and store them well,” Mugambi explained.

Marianne Banziger (right), CIMMYT's deputy director for research and partnership, listens to a Dryland Seed sales manager during a visit to a farm supplies shop in Machakos, Kenya. (Photo: Jerome Bossuet/CIMMYT)
Marianne Banziger (right), CIMMYT’s deputy director for research and partnership, listens to a Dryland Seed sales manager during a visit to a farm supplies shop in Machakos, Kenya. (Photo: Jerome Bossuet/CIMMYT)

“Many seed companies could learn from you. Quality control is crucial for any seed business as you sell genetics and any crop failure at farm level will jeopardize farmers’ trust in the company’ seeds,” said Bill Angus, CIMMYT Board member.

Ngila Kimotho, managing director of Dryland Seed, pointed out the financial challenges for a small local seed company to grow in this risky but important agribusiness. The company has to pay out-growers, sometimes face default payment by some agrodealers, while low-interest credit offers are scarce as “banks and microfinance institutions target short-term reliable businesses, not climate-risky rainfed farming,” Kimotho explained. Combining drought-tolerant crops with insurance products could lower business risks for banks.

Bringing top-notch research to farmers

“I am worried about the mutating stem rust which seems to break down the resistance of some popular wheat varieties,” stressed Joseph Nalang’u, a farmer in Narok with 600 acres dedicated to wheat and 100 to maize. “The unpredictable weather is another major concern. When I started farming, we knew exactly when the planting season would start, and this helped us in our planning. That is no longer the case.”

African farmers need agricultural research. A research that is responsive to develop rapidly scalable and affordable solutions against numerous emerging pests and diseases like wheat rusts, MLN or fall armyworm. They need advice on how to adapt to unpredictable climate.

While visiting the MLN Quarantine and Screening Facility in Naivasha, CIMMYT’s Board members discussed research priorities and delivery pathways with farmers, seed and input companies, and representatives of Kenya Agricultural and Livestock Research Organization (KALRO), Kenya Plant Health Inspectorate Service (KEPHIS) and the Ministry of Agriculture.

CIMMYT board members, staff, partners and farmers listen to a researcher at the MLN Screening Facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT board members, staff, partners and farmers listen to a researcher at the MLN Screening Facility in Naivasha, Kenya. (Photo: Joshua Masinde/CIMMYT)

“When you visit Naivasha MLN research facility or Njoro wheat rust phenotyping platform, both co-managed by CIMMYT and KALRO, you see a partnership that works very well,” said Zachary Kinyua, the assistant director for crop health research at KALRO. “These facilities are open to public-private collaboration, they generate important public goods for farmers, large and small.”

“If we develop or co-develop wonderful technologies but they don’t reach the farmers, that would be a fun and wonderful experience but with no impact,” said Kevin Pixley, CIMMYT’s director of the Genetic Resources program. “We depend on partners in the national agricultural research systems, seed companies and other private and public partners to realize the desired impact.”

“It is always so inspiring to see on the ground the results of years of research, to hear some of our partners talking about the real impact this research makes. The multiplier effect of what we do never ceases to amaze me,” expressed Nicole Birell, chair of CIMMYT’s Board of Trustees.

Cover image: CIMMYT board members and staff visited Riziki Farm Supplies, one of the agrodealers in Machakos which sells SAWA hybrid maize. (Photo: Jerome Bossuet/CIMMYT)

It’s time to change the system, not just the technology

Society faces enormous challenges in the transition to sustainable rural development. We are unlikely to make this transition unless we move away from the 20th-century paradigm that sees the world as a logical, linear system focused on “scaling up” the use of technologies to reach hundreds of millions of smallholders.

In a new article published this week on NextBillion, Lennart Woltering of CIMMYT contends that “farming communities are unlikely to continue using a new practice or technology if the surrounding system remains unchanged, since it is this very system that shaped their conventional way of farming.”

Woltering calls on the research for development community to work towards producing deeper system change and offers some key considerations for moving in the right direction.


Read the full article:
‘Pilots Never Fail, Pilots Never Scale’: Why the Global Development Community Needs a More Realistic Approach to Reaching Billions

Download the infographic:
Sustainable systems change at scale: Not “scaling up” but getting “down to earth”

Mexico’s agriculture secretary calls for an integrated approach to reach the Sustainable Development Goals

“CIMMYT is the center with the most effective maize and wheat breeding programs in the world,” said Víctor Villalobos, Mexico’s Agriculture and Rural Development secretary, during his keynote address at the Borlaug Dialogue. (Photo: Mary Donovan/CIMMYT)
“CIMMYT is the center with the most effective maize and wheat breeding programs in the world,” said Víctor Villalobos, Mexico’s Agriculture and Rural Development secretary, during his keynote address at the Borlaug Dialogue. (Photo: Mary Donovan/CIMMYT)

Víctor Villalobos, Mexico’s Agriculture and Rural Development secretary, delivered a keynote speech about the inextricable links between agriculture, forced migration and peace at the Borlaug Dialogue hosted in Des Moines, Iowa, by the World Food Prize Foundation.

Villalobos argued for adopting an integrated development approach to improve food production systems in the developing world, particularly in the Northern Triangle of Central America, with an aim to offer development opportunities to subsistence farmers and help halt forced migration.

“Any lasting answer to environmental degradation, violence, famine and forced migration demands our best collective effort, which is not the fight of one generation but the lasting legacy of Norman Borlaug, and of anybody who has ever engaged in this Borlaug Dialogue,” he said.

According to Villalobos, who is also honorary chair of the Board of Trustees of the International Maize and Wheat Improvement Center (CIMMYT), Mexico is committed to investing in innovation, science and research to make whole grains farming more sustainable and profitable. Among other initiatives, Mexico is scaling out a sustainable research and development project between Mexico and CIMMYT called MasAgro.

“We believe that MasAgro’s innovation hubs, integrated crop production systems and design thinking approach to sustainably increasing the productivity of traditional farming methods can really help to deliver the Sustainable Development Goals that all countries are committed to achieve by 2030,” said Villalobos.

In 2014, the World Food Prize Foundation acknowledged the achievements of the MasAgro project by granting Bram Govaerts — currently CIMMYT’s Integrated Development Program director and representative for the Americas — the Norman Borlaug Award for Field Research and Application, endowed by the Rockefeller Foundation.

MasAgro’s model has since earned recognition from several international development organizations, funding agencies and governments, including the Food and Agriculture Organization of the United Nations, the World Economic Forum, the G20, and the Bill & Melinda Gates Foundation.

The theme of the 2019 Borlaug Dialogue was “Peace through Agriculture,” and the winner of the 2019 World Food Prize was Simon Groot, founder of the East-West Seed Company, which commercializes improved vegetable seeds in more than 60 countries of Asia, Africa and Latin America at affordable prices for the benefit of subsistence and small farmers.

The World Food Prize has a long association with CIMMYT. Sanjaya Rajaram was awarded the 2014 World Food Prize for his work that led to a prodigious increase in world wheat production. Evangelina Villegas and Surinder Vasal were awarded the 2000 World Food Prize for their work on productivity and nutritional content of maize. As an institution, CIMMYT received the Norman Borlaug Field Medallion in 2014.