Skip to main content

research: Sustainable agrifood systems

Launching the AgriFoodTrust platform

A new testing and learning platform for digital trust and transparency technologies — such as blockchain — in agri-food systems was launched at the Strike Two Summit in late February. 

AgriFoodTrust debuted at the summit which brought together key agri-food system players to discuss how blockchain and related technologies can contribute to food safety, quality and sustainability, said Gideon Kruseman, an economist with the International Maize and Wheat Improvement Center (CIMMYT), who co-founded the platform. 

“Blockchain is often associated with the digital security that led to cryptocurrencies. However, growing research is providing evidence on its unique potential to bring greater efficiency, transparency and traceability to the exchange of value and information in the agriculture sector,” said Kruseman. 

“Many of the wicked problems and seemingly insuperable challenges facing dynamic, complex agri-food system value chains, especially in low and middle-income countries, boil down to a lack of trust, transparency and reliable governance structures,” said the researcher who also leads the Socio-Economic Data Community of Practice of the CGIAR Platform for Big Data in Agriculture 

Future Food panelist speak at the Strike Two Summit in Amsterdam, the Netherlands. (Photo: The New Fork)
Future Food panelist speak at the Strike Two Summit in Amsterdam, the Netherlands. (Photo: The New Fork)

A blockchain is a ledger that is almost impossible to forge. It can be described as a data structure that holds transactional records and ensures security, transparency and decentralization. Technology may be at the foundation of the solutions, but technology is the easy part; solving the softer side has proven to be a seemingly insuperable challenge over the past decades, Kruseman explained. 

Digital trust and transparency technologies can be used to improve governance structures and limit corruption in agri-food systems in low and middle income countries, said Marieke de Ruyter de Wildt, co-founder of AgriFoodTrust. 

“This new generation of decentralized technologies is, in essence, improving governance structures. People often think it is about technology, but it’s not. It is about people and how we organize things.”  

“These technologies are neutral, immutable and censorship resistant. You can mimic this if you think about rules without a ruler. Just imagine what opportunities arise when a system is incorruptible,” said de Ruyter de Wildt.  

It is hoped, accessible via QR codes, for example, that the technology can be used to tackle challenges, such as preventing the sale of counterfeit seeds to smallholder farmers, ensuring the nutritional value of biofortified crop varieties and promoting the uptake of sustainable agricultural principles whilst improving the implementation and monitoring of international agreements related to agriculture. 

“This is where the platform comes in as a knowledge base. The AgriFoodTrust platform sees researchers from CGIAR Centers and academia, such as Wageningen University, experiment with these technologies on top of other solutions, business models and partnerships to determine what works, how, when and for whom, in order to share that information,” Kruseman added. 

Findings on the new platform will be used to build capacity on all aspects of the technologies and their application to ensure this technology is inclusive and usable. 

Along with KrusemanAgriFoodTrust co-founders include digital agriculture experts de Ruyter de Wildt, the Founder and CEO of The New Fork, and Chris Addison, Senior Coordinator of Data for Agriculture at CTA. Seed funding for the platform has been raised through CTA, the CGIAR Platform for Big Data in Agriculture and the CGIAR Programs on MAIZE and WHEAT. 

“AgriFoodTrust sets out to accelerate understanding about these technologies and fundamentally make food systems more integer and resilient,” explained de Ruyter de Wildt. 

By 2050, farmers will need to grow enough diverse and nutritious food to feed 10 billion people on less land using less resources while faced with the challenges of a changing climate. This has led researchers to push for agricultural technologies that engender more inclusive, sustainable food systems. It is hoped that increased trust and transparency technologies can help overcome counterproductive incentives, poor governance structures, prevailing institutional arrangements and market failures. 

For more information, subscribe to the Socio-Economic Data Community of Practice newsletter.

New publications: Gender differentiated small-scale farm mechanization in Nepal hills

The use of small-scale mechanization in smallholder farming systems in South Asia has increased significantly in recent years. This development is a positive step towards agricultural transformation in the region. Small-scale mechanization is now seen as a viable option to address labor scarcity and offset the impact of male outmigration in rural areas, as well as other shortages that undermine agricultural productivity.

However, most existing farm mechanization technologies are either gender blind or gender neutral. This is often to the detriment of women farmers, who are increasingly taking on additional agricultural work in the absence of male laborers. Minimizing this gender disparity among smallholders has been a key concern for policymakers, but there is little empirical literature available on gender and farm mechanization.

A new study by researchers at the International Maize and Wheat Improvement Center (CIMMYT) addresses this gap, using data from six districts in the highlands of Nepal to assess the impact of the gender of household heads on the adoption of mini-tillers — small machinery used to prepare and cultivate land before planting.

Their findings reveal that, when it comes to mini-tiller adoption, there is a significant gender gap. Compared to male-headed households, explain the authors, the rate of adoption is significantly lower among female-headed households. Moreover, they add, when male- and female-headed households have similar observed attributes, the mini-tiller adoption rate among the food insecure female-headed households is higher than in the food secure group.

The authors argue that this gender-differentiated mini-tiller adoption rate can be minimized in the first instance by increasing market access. Their findings suggest that farm mechanization policies and programs targeted specifically to female-headed households can also help reduce this adoption gap in Nepal and similar hill production agroecologies in South Asia, which will enhance the farm yield and profitability throughout the region.

Read the full article in Technology in Society:
Gender differentiated small-scale farm mechanization in Nepal hills: An application of exogenous switching treatment regression.

Women farmers test a mini tiller on farmland in Ramghat, Nepal. (Photo: CIMMYT)

See more recent publications from CIMMYT researchers:

  1. Effect of missing values on variance component estimates in multienvironment trials. 2019. Aguate, F.M., Crossa, J., Balzarini, M. In: Crop Science v. 59, no. 2, p. 508-517.
  2. The relative efficiency of two multistage linear phenotypic selection indices to predict the net genetic merit. 2019. Ceron Rojas, J.J., Toledo, F.H., Crossa, J. In: Crop Science v. 59, no. 3, p. 1037-1051.
  3. High-density mapping of triple rust resistance in barley using DArT-Seq markers. 2019. Dracatos, P.M., Haghdoust, R., Singh, R.P., Huerta-Espino, J., Barnes, C.W., Forrest, K.L., Hayden, M., Niks, R.E., Park, R.F., Singh, D. In: Frontiers in Plant Science v. 10, art. 467.
  4. Modernising breeding for orphan crops: tools, methodologies, and beyond. 2019. Ribaut, J.M., Ragot, M. In: Planta v. 250, no. 3, p. 971-977.
  5. An update of recent use of Aegilops species in wheat breeding. 2019. Kishii, M. In: Frontiers in Plant Science v. 1., art. 585.
  6. Genetics of greenbug resistance in synthetic hexaploid wheat derived germplasm. 2019. Crespo-Herrera, L.A., Singh, R.P., Reynolds, M.P., Huerta-Espino, J. In: Frontiers in Plant Science v. 10, art. 782.
  7. Genetics for low correlation between Fusarium head blight disease and deoxynivalenol (DON) content in a bread wheat mapping population. 2019. Xinyao He, Dreisigacker, S., Singh, R.P., Singh, P.K. In: Theoretical and Applied Genetics v. 132, no. 8, 2401-2411.
  8. Studying selection criteria and genetic variability for improvement of indigenous maize in Pakistan. 2019. Maqbool, M.A., Aslam, M., Issa, A.B., Khan, M. S., Saeed, M.T. In: Pakistan Journal of Agricultural Sciences v. 56, no. 4. 819-827.
  9. Genome wide association study of karnal bunt resistance in a wheat germplasm collection from Afghanistan. 2019. Gupta, V., Xinyao He, Kumar, N., Fuentes Dávila, G., Sharma, R.K., Dreisigacker, S., Juliana, P., Ataei, N., Singh, P.K. In: International Journal of Molecular Sciences v. 20, no. 13, art. 3124.
  10. Does caste determine farmer access to quality information? 2019. Krishna, V.V., Aravalath, L., Vikraman, S. In: PLoS One v. 14, no. 1, art. e0210721.
  11. Estimation of physiological genomic estimated breeding values (PGEBV) combining full hyperspectral and marker data across environments for grain yield under combined heat and drought stress in tropical maize (Zea mays L.). 2019. Trachsel, S., Dhliwayo, T., Gonzalez-Perez, L., Mendoza Lugo, J.A., Trachsel, M. In: PLoS One v. 14, no. 3, art. e0212200.
  12. Genetic diversity and linkage disequilibrium using SNP (KASP) and AFLP markers in a worldwide durum wheat (Triticum turgidum L. var durum) collection. 2019. Roncallo, P.F., Beaufort, V., Larsen, A.O., Dreisigacker, S., Echenique, V. In: PLoS One v. 14, no. 6, art. e0218562.
  13. The abandonment of maize landraces over the last 50 years in Morelos, Mexico: a tracing study using a multi-level perspective. 2019. McLean R., F.D., Camacho Villa, T.C., Almekinders, C., Pè, M.E., Dell’Acqua, M., Costich, D.E. In: Agriculture and Human Values v. 36, no. 4, 651-668.
  14. Molecular screening of Zymoseptoria tritici resistance genes in wheat (Triticum aestivum L.) using tightly linked simple sequence repeat markers. 2019. Mekonnen, T., Haileselassie, T., Kaul, T., Sharma, M., Abeyo Bekele Geleta, Kassahun, T. In: European Journal of Plant Pathology v. 155, no. 2, p. 593-614.
  15. Bacterial diversity based on a 16S rRNA gene amplicon data set from a high-altitude crater lake and glacial samples of the Iztaccihuatl volcanic complex (Mexico). 2019. Calvillo-Medina, R.P., Reyes‐Grajeda, J.P., Moreno-Andrade, V.D., Barba‐Escoto, L., Bautista‐de Lucio, V.M., Jones, G.H., Campos‐Guillen, J. In: Microbiology Resource Announcements v. 8, no. 12, art. e01636-18art. e01636-18art. e01636-18art. e01636-18art. e01636-18art. e01636-18.
  16. Mitigating the twin problems of malnutrition and wheat blast by one wheat variety, ‘BARI Gom 33’, in Bangladesh. 2019. Hossain, A., Mottaleb, K.A., Farhad, M., Barma, N.C.D. In: Acta Agrobotanica v. 72, no. 2, art. 1775.
  17. Sun-induced chlorophyll fluorescence III: benchmarking retrieval methods and sensor characteristics for proximal sensing. 2019. Cendrero-Mateo, M.P., Wieneke, S., Damm, A., Alonso, L., Pinto Espinosa, F., Moreno, J., Guanter, L., Celesti, M., Rossini, M., Sabater, N., Cogliati, S., Julitta, T., Rascher, U., Goulas, Y., Aasen, H., Pacheco-Labrador, J., Mac Arthur, A. In: Remote Sensing v. 11, no. 8, art. 962.
  18. Yield gains and associated changes in an early yellow bi-parental maize population following genomic selection for Striga resistance and drought tolerance. 2019. Badu-Apraku, B., Talabi, O., Fakorede, M. A. B., Fasanmade, Y., Gedil, M., Magorokosho, C., Asiedu, R. In: BMC Plant Biology v. 9, art. 129.
  19. Understanding factors associated with agricultural mechanization: a Bangladesh case. 2019. Aryal, J.P., Rahut, D.B., Maharjan, S., Erenstein, O. In: World Development Perspectives v. 13, p. 1-9.
  20. Wealth, education and cooking-fuel choices among rural households in Pakistan. 2019. Rahut, D.B., Ali, A., Mottaleb, K.A., Aryal, J.P. In: Energy Strategy Reviews v. 24, p. 236-243.
  21. Genome-wide association study and genomic prediction analyses of drought stress tolerance in China in a collection of off-PVP maize inbred lines. 2019. Nan Wang, Bojuan Liu, Xiaoling Liang, Yueheng Zhou, Song, J., Jie Yang, Hongjun Yong, Jianfeng Weng, Degui Zhang, Mingshun Li, Nair, S.K., San Vicente, F.M., Zhuanfang Hao, Zhang, X, Xinhai Li. In: Molecular Breeding v. 39, no. 8, art. 113.
  22. Wildlife trade and consumer preference for species rarity: an examination of caged-bird markets in Sumatra. 2019. Krishna, V.V., Darras, K., Grass, I., Mulyani, Y.A., Prawiradilaga, D.M., Tscharntke, T., Qaim, M. In: Environment and Development Economics v. 24, no. 4, p. 339-360.
  23. Correction to: high-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. 2019. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant methods v. 15, art. 52.
  24. Tradeoffs between groundwater conservation and air pollution from agricultural fires in northwest India. 2019. Singh, B., McDonald, A., Srivastava, A., Gerard, B. In: Nature Sustainability v. 2 no. 7, p. 580-583.

Asia Regional Resilience to a Changing Climate (ARRCC)

The Asia Regional Resilience to a Changing Climate (ARRCC) program is managed by the UK Met Office, supported by the World Bank and the UK’s Department for International Development (DFID). The four-year program, which started in 2018, aims to strengthen weather forecasting systems across Asia. The program will deliver new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

Since 2019, as part of ARRCC, CIMMYT has been working with the Met Office and Cambridge University to pilot an early warning system to deliver wheat rust and blast disease predictions directly to farmers’ phones in Bangladesh and Nepal.

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

Phase I: 12-Month Pilot Phase

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories in the first 12 months as part of a proof-of-concept modeling and pilot advisory extension phase focused on three critical diseases:

  • Wheat stripe rust in Nepal: extend and test the modelling framework developed in Ethiopia to smallholder farmers in Nepal as proof-of concept;
  • Wheat stem rust in Bangladesh and Nepal: while stem rust is currently not widely established in South Asia, models indicate that devastating incursion from neighboring regions is likely. This work will prepare for potential incursions of new rust strains in both countries;
  • Wheat blast in Bangladesh: this disease is now established in Bangladesh. This work will establish the feasibility of adapting the dispersal modelling framework to improve wheat blast predictability and deploy timely preventative management advisories to farmers.

Phase II: Scaling-out wheat rust early warning advisories, introducing wheat blast forecasting and refinement model refinement

Subject to funding approval the second year of the project will lead to validation of the wheat rust early warnings, in which researchers compare predictions with on-the-ground survey results, increasingly supplemented with farmer response on the usefulness of the warnings facilitated by national research and extension partners. Researchers shall continue to introduce and scale-out improved early warning systems for wheat blast. Concomitantly, increasing the reach of the advice to progressively larger numbers of farmers while refining the models in the light of results. We anticipate that with sufficient funding, Phase II activities could reach up to 300,000 more farmers in Nepal and Bangladesh.

Phase III: Demonstrating that climate services can increase farmers’ resilience to crop diseases

As experience is gained and more data is accumulated from validation and scaling-out, researchers will refine and improve the precision of model predictions. They will also place emphasis on efforts to train partners and operationalize efficient communication and advisory dissemination channels using information communication technologies (ICTs) for extension agents and smallholders. Experience from Ethiopia indicates that these activities are essential in achieving ongoing sustainability of early warning systems at scale. Where sufficient investment can be garnered to support the third phase of activities, it is expected that an additional 350,000 farmers will receive disease management warnings and advisories in Nepal and Bangladesh, totaling 1 million farmers over a three-year period.

Objectives

  • Review the feasibility of building resilience to wheat rust through meteorologically informed early warning systems.
  • Adapt and implement epidemiological forecasting protocols for wheat blast in South Asia.
  • Implement processes to institutionalize disease early warning systems in Nepal and Bangladesh.

In the best possible taste

The pursuit for higher and more stable yields, alongside better stress tolerance, has dominated maize breeding in Africa for a long time. Such attributes have been, and still are, essential in safeguarding the food security and livelihoods of smallholder farmers. However, other essential traits have not been the main priority of breeding strategies: how a variety tastes when cooked, its smell, its texture or its appearance.

They are now gradually coming into the mainstream of maize breeding. Researchers are exploring the sensory characteristics consumers prefer and identifying the varieties under development which have the desired qualities. Breeders may then choose to incorporate specific traits that farmers or consumers value in future breeding work. This research is also helping to accelerate varietal turnover in the last mile, as farmers have additional reasons to adopt newer varieties.

In the last five years, the International Maize and Wheat Improvement Center (CIMMYT) has been conducting participatory variety evaluations across East Africa. First, researchers invited farmers and purchasers of improved seed in specific agro-ecologies to visit demonstration plots and share their preferences for plant traits they would like to grow in their own farms.

In 2019 and 2020, researchers also started to facilitate evaluations of the sensory aspects of varieties.

Fresh samples of green maize, from early- to late-maturing maize varieties, were boiled and roasted. Then, people assessed their taste and other qualities. The first evaluations of this kind were conducted in Kenya and Uganda in August and September 2019, and another exercise in Kenya’s Machakos County took place in January 2020.

Similar evaluations have looked at the sensory qualities of maize flour. In March 2020, up to 300 farmers in Kenya’s Kakamega County participated in an evaluation of ugali, or maize flour porridge. Participants assessed a wider range of factors, including the aroma, appearance, taste, texture on the hand, texture in the mouth and overall impression. After tasting each variety, they indicated how likely they would be to buy it.

Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the texture of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants were asked to rate the smell of different maize varieties, cooked as ugali, at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Participants taste ugali at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Cooks prepare ugali, or maize flour porridge, with different maize varieties at a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
At a sensory evaluation in Kakamega County, Kenya, different types of ugali were cooked using maize flour from several varieties. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)
Ugali made with different maize varieties is served to participants of a sensory evaluation in Kakamega County, Kenya. (Photo: Joshua Masinde/CIMMYT)

Tastes differ

“Farmers not only consume maize in various forms but also sell the maize either at green or dry grain markets. What we initially found is green maize consumers prefer varieties that are sweet when roasted. We also noted that seed companies were including the sensory characteristics in the maize varieties’ product profiles,” explained Bernard Munyua, Research Associate with the Socioeconomics program at CIMMYT. “As breeders and socioeconomists engage more and more with farmers, consumers or end-users, it is apparent that varietal profiles for both plant and sensory aspects have become more significant than ever before, and have a role to play in the successful turnover of new varieties.”

For researchers, this is very useful information, to help determine if it is viable to bring a certain variety to market. The varieties shared in these evaluations include those that have passed through CIMMYT’s breeding pipeline and are allocated to partners for potential release after national performance trials, as well as CIMMYT varieties marketed by various seed companies. Popular commercial varieties regions were also included in the evaluations, for comparison.

A total of 819 people participated in the evaluation exercises in Kenya and Uganda, 54% of them female.

“Currently, there is increasing demand by breeders, donors, and other agricultural scientists to understand the modalities of trait preferences of crops by women and men farmers,” said Rahma Adam, Gender and Development Specialist at CIMMYT.

Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)
Bags of seeds with a diversity of maize varieties are displayed before being cooked at a sensory sensory evaluation in Kakamega County, Kenya. (Photo: Bernard Munyua/CIMMYT)

That’s the way I like it

For Gentrix Ligare, from Kakamega County, maize has always been a staple food in her family. They eat ugali almost daily. The one-acre farm that she and her husband own was one of the sites used to plant the varieties ahead of the evaluation exercise. Just like her husband, Fred Ligare, she prefers ugali that is soft but absorbs more water during preparation. “I also prefer ugali that is neither very sticky nor very sweet. Such ugali would be appropriate to eat with any type of vegetable or sauce,” she said.

Fernandes Ambani prefers ugali that emits a distinct aroma while being cooked and should neither be very sweet nor plain tasting. For him, ugali should not be too soft or too hard. While it should not be very sticky, it should also not have dark spots in it. “When I like the taste, smell, texture and appearance of a particular variety when cooked, I would definitely purchase it if I found it on the market,” he said.

While the task of incorporating all the desired or multiple traits in the breeding pipeline could prove complex and costly, giving consumers what they like is one of the essential steps in enhancing a variety’s commercial success in the market, argues Ludovicus Okitoi, Director of Kenya Agricultural and Livestock Organization’s (KALRO) Kakamega Center.

“Despite continuously breeding and releasing varieties every year, some farmers still buy some older varieties, possibly because they have a preference for a particular taste in some of the varieties they keep buying,” Okitoi said. “It is a good thing that socioeconomists and breeders are talking more and more with the farmers.”

Advancements in breeding techniques may help accelerate the integration of multiple traits, which could eventually contribute to quicker varietal turnover.

“Previously, we did not conduct this type of varietal evaluations at the consumer level. A breeder would, for instance, just breed on-station and conduct national performance trials at specific sites. The relevant authorities would then grant their approval and a variety would be released. Things are different now, as you have to go back to the farmer as an essential part of incorporating end-user feedback in a variety’s breeding process,” explained Hugo de Groote, Agricultural Economist at CIMMYT.

Biofortified Maize for Improved Human Nutrition

The Biofortified Maize for Improved Human Nutrition project conducts field research both at CIMMYT and with partners on breeding for increased pro-vitamin A and Zinc content in both Africa and Latin America. The project grant is renewed annually and has been in operation since 2004.

Key activities include supporting early and mid-late product development, evaluation and release in Mexico and target countries in southern Africa, food science and retention studies. Molecular breeding and biochemical analysis are key components for successful breeding, and the project also involves technical backstopping for partners in both regions.

Objectives

  • Conduct field research on breeding for increased pro-vitamin A for target countries in Africa
  • Conduct field research on breeding for increased Zinc for product evaluation and release
  • Conduct essential research to deploy analytical tools and marker assisted selection or genomic selection methods in micronutrient breeding work
  • Facilitate the dissemination, promotion and consumption of biofortified crops

CIMMYT and Pakistan: 60 years of collaboration

A new fact sheet captures the impact of CIMMYT after six decades of maize and wheat research in Pakistan.

Dating back to the 1960s, the research partnership between Pakistan and CIMMYT has played a vital role in improving food security for Pakistanis and for the global spread of improved crop varieties and farming practices.

Norman Borlaug, Nobel Peace Prize laureate and first director of CIMMYT wheat research, kept a close relationship with the nation’s researchers and policymakers. CIMMYT’s first training course participant from Pakistan, Manzoor A. Bajwa, introduced the high-yielding wheat variety “Mexi-Pak” from CIMMYT to help address the national food security crisis. Pakistan imported 50 tons of Mexi-Pak seed in 1966, the largest seed purchase of its time, and two years later became the first Asian country to achieve self-sufficiency in wheat, with a national production of 6.7 million tons.

CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)
CIMMYT researchers in Pakistan examine maize cobs. (Photo: CIMMYT)

In 2019 Pakistan harvested 26 million tons of wheat, which roughly matches its annual consumption of the crop.

In line with Pakistan’s National Food Security Policy and with national partners, CIMMYT contributes to Pakistan’s efforts to intensify maize- and wheat-based cropping in ways that improve food security, raise farmers’ income, and reduce environmental impacts. This has helped Pakistani farmers to figure among South Asia’s leaders in adopting improved maize and wheat varieties, zero tillage for sowing wheat, precision land leveling, and other innovations.

With funding from USAID, since 2013 CIMMYT has coordinated the work of a broad network of partners, both public and private, to boost the productivity and climate resilience of agri-food systems for wheat, maize, and rice, as well as livestock, vegetable, and fruit production.

Download the fact sheet:
CIMMYT and Pakistan: 60 years of collaboration

Cover photo: A wheat field in Pakistan, ready for harvest. (Photo: Kashif Syed/CIMMYT)

Gerald Blasch

Gerald Blasch is a Crop Disease Geo-Spatial Data Scientist whose work focuses on research for development (R4D) of remote sensing and geospatial solutions for crop disease early warning systems. He holds a PhD in Agricultural Remote Sensing from Technical University Berlin, Germany, and an MSc in Physical Geography from University Regensburg, Germany.

Blasch has 13 years of research and consultancy experience on both international and national projects in the agriculture and development sectors of several countries (e.g. Australia, China, Germany, Mexico, and the UK). As researcher, he developed remote sensing and GIS tools for precision and conservation agriculture, digital soil mapping, and environmental monitoring during his Post-Doc (Newcastle University, UK) and PhD studies (GFZ Potsdam, Germany), and consultancy activities (CIMMYT, Mexico). As a GIS expert (GIZ, Germany; SEMARNAT, Mexico) he built and managed a GIS for waste management, including capacity building and knowledge transfer.

KULIMA Promoting Farming in Malawi

KULIMA stands for ‘Kutukula Ulimi m’Malawi’, which means ‘promoting farming in Malawi’ in the country’s main local language, Chichewa. KULIMA aims to sustainably increase agricultural productivity and diversification of smallholder farmers based on market demand, while increasing income generation by farm enterprises and creating jobs through developing local value addition of raw agricultural products. It also seeks to stimulate better information supply on agricultural policy, investments and their outcomes to both government actors and the general public.

Within KULIMA Action, CGIAR Centers are working to make their expertise and technologies more easily available to more people. In coordination with GIZ and FAO, they provide guidance on the suitability of technologies and inputs in different agroecological zones in Malawi, successful agricultural practices, and the application of relevant innovations and technologies to address the issues affecting agricultural production systems in a holistic manner.

CIMMYT’s role within the project is to contribute towards increasing agricultural productivity and diversification through upscaling climate-smart agriculture technologies. To achieve this, CIMMYT supports production and utilization of drought tolerant and nutritious maize along with sustainable intensification practices that protect the soil and enhance soil fertility, commonly referred to as conservation agriculture. The focus is on creating demand for these technologies among smallholders by increasing awareness through farmer training, extension messaging and demonstrating the yield benefits of using drought tolerant versus unimproved non-drought tolerant varieties, and sustainable intensification practices versus conventional ones. CIMMYT is working in collaboration with NGOs and community-based organizations to train lead farmers and extension agents to reach out to smallholder farmers.

The project is financed under the 11th European Development Fund and is being implemented in ten districts of Chitipa, Chiradzulu, Karonga, Kasungu, Mzimba, Mulanje, Nkhata Bay, Nkhotakota, Salima and Thyolo.

Objectives

  • Increase agricultural productivity and diversify production in a participatory, sustainable and climate-change resilient manner
  • Establish agricultural value chains and create related income and employment opportunities
  • Strengthen agricultural sector governance

Training, surveillance, and monitoring to mitigate the threat of wheat blast disease in Bangladesh and beyond

Wheat blast (Magnaporthe oryzae pathotype Triticum, or MoT) was first discovered in Brazil in 1985. Since then, it has spread across central and southern Brazil, parts of Bolivia, Paraguay, and Argentina. Grain sterility caused by the disease can significantly reduce wheat yield, with reductions as high as 32% in some parts of Brazil, even with up to two fungicide applications.

The disease appeared in Bangladesh unexpectedly in 2016 and re-emerged in 2017. Wheat area consequently dropped from 62,763 hectares in 2016 to just 14,238 hectares a year later. Suitable climatic conditions in South Asia warn that wheat blast will be a long-term problem.

Some 300 million people in South Asia consume over 100 million tons of wheat annually. Wheat blast therefore presents a significant threat to food security. Compounding these problems, climate change and the evolution of wheat blast – increasing virulence, fungicide resistance and sexual recombination – present further threats.

This project responds to these problems by working to mitigate the effect of wheat blast in South Asia and South America and limit the risk of further spread of this threat, with an emphasis on training, surveillance and monitoring to mitigate the threat of wheat blast disease in Bangladesh and beyond.

Objectives

  • Improve upon a preliminary modeling framework to manage data requirements for automated time- and spatially-explicit wheat blast outbreak early warning systems (EWS)
  • Improve flowering predictability to more accurately gauge disease risk
  • Demonstrate the performance of wheat blast resistant and zinc biofortified variety BARI Gom 33 in farmers’ fields.

Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA)

Heterogeneity in soils, hydrology, climate, and rapid changes in rural economies including fluctuating prices, aging and declining labor forces, agricultural feminization, and uneven market access are among the many factors that constrain climate-smart agriculture (CSA) in South Asia’s cereal-based farming systems.

Most previous research on CSA has employed manipulative experiments analyzing agronomic variables, or survey data from project-driven initiatives. However, this can obscure the identification of relevant factors limiting CSA, leading to inappropriate extension, policy, and inadequate institutional alignments to address and overcome limitations. Alternative big data approaches utilizing heterogeneous datasets remain insufficiently explored, though they can represent a powerful alternative source of technology and management practice performance information.

In partnership with national research systems and the private sector in Bangladesh, India and Nepal, Big data analytics for climate-smart agricultural practices in South Asia (Big Data2 CSA) is developing digital data collection systems to crowdsource, data-mine and interpret a wide variety of primary agronomic management and socioeconomic data from tens of thousands of smallholder rice and wheat farmers.

The project team analyzes these data by stacking them with spatially-explicit secondary environmental, climatic and remotely sensed data products, after which data mining and machine learning techniques are used to identify key factors contributing to patterns in yield, profitability, greenhouse gas emissions intensity and resilience.

These approaches however must be practical in order for them to be useful in agricultural development and policy. As such, the project’s analytical results will be represented through interactive web-based dashboards, with gender-appropriate crop management advisories deployed through interactive voice recognition technologies to farmers in Bangladesh, India and Nepal at a large-scale. Big Data2 CSA is supported by the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) Flagship 2 on Climate-Smart Technologies and Practices.

Objectives

  • Develop ICT tools enabling digital collection of crop management data and a cloud-based database that can be managed by next-users
  • Support advanced degree-level students to engage in field and data science research
  • Create a digital data collection platform enabling crowd sourcing of crop management information to evaluate contributions to CSA
  • Create interactive and customizable web-based dashboards presenting post-season research results and providing CSA management recommendations
  • Organize CSA and big data policy briefings on mainstreaming processes and policy workshops

Fighting back against fall armyworm in Bangladesh

Fall armyworm is an invasive Lepidopteran pest that favors maize and is native to the Americas. It was identified in Bangladesh for the first time in late 2018 following migration from Africa and southern India.

Supported by the University of Michigan and USAID, this project cooperates with national research and extension partners, CABI and the FAO to strengthen efforts to mitigate impact of the pest on farmers’ income, food security and health.

Objectives

  • Develop educational materials to help reach audiences with information to improve understanding and management of fall armyworm
  • Assist the Department of Agricultural Extension (DAE) in deploying awareness raising and training campaigns
  • Institutional change to improve crop protection and integrated pest management
  • Prepare the private sector for appropriate fall armyworm response
  • Support the standing multi-threat pest emergency taskforce
  • Generate data and evidence to guide integrated fall armyworm management

Climate- and market-smart mung bean advisories (CAMASMA)

Focusing on highly profitable but weather-risk prone mung bean production in coastal Bangladesh, the Climate and market-smart mung bean advisories (CAMASMA) project develops farmer friendly and demand-driven climate- and market-smart mung bean advisory dissemination systems.

Heavy rainfall events can cause significant damage to mung bean production, causing large yield and income losses for farmers in coastal Bangladesh. By integrating and disseminating weather-forecast information, climate-smart advisories for when and how to harvest mung bean help farmers to mitigate some of the climate risks associated with crop production.

Both mung bean farmers and traders can also benefit from real-time market price data. In addition to market intelligence on where large blocks of farmers have quality mung bean for sale, CAMASMA improves information flow to lower trading firms’ transactions costs while speeding farm-gate purchase and income generation from farmers.

CAMASMA is a pilot project that demonstrates the power of climate services, agricultural advisories, and use of social network analysis and ICTs to speed information delivery and increase farmers’ resilience to extreme climatic events.

Objectives

  • Customize heavy and extreme rainfall event forecasts for coastal Bangladesh
  • Analyze social networks to assist extension agents in rapid deployment of crop management advice in remote and hard to reach areas
  • Set up interpretive algorithms and interactive voice response (IVR) mobile call systems for weather, mung bean management and market advisories appropriate to men and women smallholder farmers
  • Release and promote a smartphone app providing customized weather forecasts, mung bean agronomic advice, early warnings for potential crop damaging extreme weather events, and market information
  • Establish business models and strategies for sustaining the use of IVR and smartphone apps after project closure

Blast and rust forecast

An early warning system set to deliver wheat disease predictions directly to farmers’ phones is being piloted in Bangladesh and Nepal by interdisciplinary researchers.

Experts in crop disease, meteorology and computer science are crunching data from multiple countries to formulate models that anticipate the spread of the wheat rust and blast diseases in order to warn farmers of likely outbreaks, providing time for pre-emptive measures, said Dave Hodson, a principal scientist with the International Maize and Wheat Improvement Center (CIMMYT) coordinating the pilot project.

Around 50,000 smallholder farmers are expected to receive improved disease warnings and appropriate management advisories through the one-year proof-of-concept project, as part of the UK Aid-funded Asia Regional Resilience to a Changing Climate (ARRCC) program.

Early action is critical to prevent crop diseases becoming endemic. The speed at which wind-dispersed fungal wheat diseases are spreading through Asia poses a constant threat to sustainable wheat production of the 130 million tons produced in the region each year.

“Wheat rust and blast are caused by fungal pathogens, and like many fungi, they spread from plant to plant — and field to field — in tiny particles called spores,” said Hodson. “Disease strain mutations can overcome resistant varieties, leaving farmers few choices but to rely on expensive and environmentally-damaging fungicides to prevent crop loss.”

“The early warning system combines climate data and epidemiology models to predict how spores will spread through the air and identifies environmental conditions where healthy crops are at risk of infection. This allows for more targeted and optimal use of fungicides.”

The system was first developed in Ethiopia. It uses weather information from the Met Office, the UK’s national meteorological service, along with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge, to construct and deploy a near real-time early warning system.

CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)
CIMMYT consultant Madan Bhatta conducts field surveys using Open Data Kit (ODK) in the mid-hills of Nepal. (Photo: D. Hodson/CIMMYT)

Initial efforts focused on adapting the wheat stripe and stem rust model from Ethiopia to Bangladesh and Nepal have been successful, with field surveillance data appearing to align with the weather-driven disease early warnings, but further analysis is ongoing, said Hodson.

“In the current wheat season we are in the process of comparing our disease forecasting models with on-the-ground survey results in both countries,” the wheat expert said.

“Next season, after getting validation from national partners, we will pilot getting our predictions to farmers through text-based messaging systems.”

CIMMYT’s strong partnerships with governmental extension systems and farmer associations across South Asia are being utilized to develop efficient pathways to get disease predictions to farmers, said Tim Krupnik, a CIMMYT Senior Scientist based in Bangladesh.

“Partnerships are essential. Working with our colleagues, we can validate and test the deployment of model-derived advisories in real-world extension settings,” Krupnik said. “The forecasting and early warning systems are designed to reduce unnecessary fungicide use, advising it only in the case where outbreaks are expected.”

Local partners are also key for data collection to support and develop future epidemiological modelling, the development of advisory graphics and the dissemination of information, he explained.

The second stage of the project concerns the adaptation of the framework and protocols for wheat blast disease to improve existing wheat blast early warning systems already pioneered in Bangladesh.

Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)
Example of weekly stripe rust spore deposition forecast in Nepal. Darker colors represent higher predicted number of spores deposited. The early warning system combines weather information from the Met Office with field and mobile phone surveillance data and disease spread modeling from the University of Cambridge. (Graphic: University of Cambridge and Met Office)

Strong scientific partnership champions diversity to achieve common goals

The meteorological-driven wheat disease warning system is an example of effective international scientific partnership contributing to the UN Sustainable Development Goals, said Sarah Millington, a scientific manager at Atmospheric Dispersion and Air Quality Group with the Met Office.

“Diverse expertise from the Met Office, the University of Cambridge and CIMMYT shows how combined fundamental research in epidemiology and meteorology modelling with field-based disease observation can produce a system that boosts smallholder farmers’ resilience to major agricultural challenges,” she said.

The atmospheric dispersion modeling was originally developed in response to the Chernobyl disaster and since then has evolved to be able to model the dispersion and deposition of a range of particles and gases, including biological particles such as wheat rust spores.

“The framework together with the underpinning technologies are transferable to forecast fungal disease in other regions and can be readily adapted for other wind-dispersed pests and disease of major agricultural crops,” said Christopher Gilligan, head of the Epidemiology and Modelling Group at the University of Cambridge.

Fungal wheat diseases are an increasing threat to farmer livelihoods in Asia

Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)
Wheat leaf rust can be spotted on a wheat plant of a highly susceptible variety in Nepal. The symptoms of wheat rust are dusty, reddish-orange to reddish-brown fruiting bodies that appear on the leaf surface. These lesions produce numerous spores, which are spread by wind and splashing water. (Photo: D Hodson/CIMMYT)

While there has been a history of wheat rust disease epidemics in South Asia, new emerging strains and changes to climate pose an increased threat to farmers’ livelihoods. The pathogens that cause rust diseases are continually evolving and changing over time, making them difficult to control.

Stripe rust threatens farmers in Afghanistan, India, Nepal and Pakistan, typically in two out of five seasons, with an estimated 43 million hectares of wheat vulnerable. When weather conditions are conducive and susceptible cultivars are grown, farmers can experience losses exceeding 70%.

Populations of stem rust are building at alarming rates and previously unseen scales in neighboring regions. Stem rust spores can spread across regions on the wind; this also amplifies the threat of incursion into South Asia and the ARRCC program’s target countries, underscoring the very real risk that the disease could reemerge within the subcontinent.

The devastating wheat blast disease, originating in the Americas, suddenly appeared in Bangladesh in 2016, causing wheat crop losses as high as 30% on a large area, and continues to threaten South Asia’s vast wheat lands.

In both cases, quick international responses through CIMMYT, the CGIAR research program on Wheat (WHEAT) and the Borlaug Global Rust Initiative have been able to monitor and characterize the diseases and, especially, to develop and deploy resistant wheat varieties.

The UK aid-funded ARRCC program is led by the Met Office and the World Bank and aims to strengthen weather forecasting systems across Asia. The program is delivering new technologies and innovative approaches to help vulnerable communities use weather warnings and forecasts to better prepare for climate-related shocks.

The early warning system uses data gathered from the online Rust Tracker tool, with additional fieldwork support from the Cereal Systems Initiative for South Asia (CSISA), funded by USAID and the Bill & Melinda Gates Foundation, both coordinated by CIMMYT.

Coronavirus lockdown diets look the same the world over: Bread, beans, and comfort food

Of the 6,000 plant species that have been cultivated by humans, just nine of them account for 66% of cultivated crops, according to the FAO’s 2019 report from the Commission on Genetic Resources for Food and Agriculture. Of the 7,774 local breeds of livestock worldwide, 26% are in danger of becoming extinct.

That poses dangers for the robustness of the environment, the safety of our food supply chain, and even our potential exposure to pandemics, due to diseases that jump from animals to humans. It also makes our food less nutritious, less interesting—and less unique.

The COVID-19 crisis could offer a chance to reassess the way we eat—to revamp the diversity of our diets and our food systems, revisiting local and forgotten foods, particularly when it comes to fruits and vegetables.

Read more here: https://fortune.com/2020/04/18/coronavirus-cooking-comfort-food-beans-bread-lockdown-diet-menu-yeast-covid-19/ 

Conservation agriculture key to better income, environment protection: Study

Resorting to conservation agriculture would not only increase crop yield, income and reduce the use of natural resources, but would also confer climate change benefits, according to a study by Indian agricultural scientists and others published in an international journal on Thursday.

The study, published in the journal Nature Sustainability, also showed that conservation agriculture was key to meeting many of the UN’s Sustainable Development Goals (SDGs) such as no poverty, zero hunger, good health and well-being, climate action and clean water. Conservation agriculture can offer positive contributions to several SDGs, said M. L. Jat, a Principal Scientist at the International Maize and Wheat Improvement Center (CIMMYT) and first author of the study.

Read more here: https://www.thehindubusinessline.com/economy/agri-business/conservation-agriculture-key-to-better-income-environment-protection-study/article31364196.ece#