Skip to main content

research: Sustainable agrifood systems

Agriculture for Peace: A call to action to avert a global food crisis

Norman Borlaug teaches a group of young trainees in the field in Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug teaches a group of young trainees in the field in Sonora, Mexico. (Photo: CIMMYT)

50 years ago, the late Norman Borlaug received the 1970 Nobel Peace Prize for averting famine by increasing wheat yield potential and delivering improved varieties to farmers in South Asia. He was the first Nobel laureate in food production and is widely known as “the man who saved one billion lives.”

In the following decades, Borlaug continued his work from the Mexico-based International Maize and Wheat Improvement Center (CIMMYT), a non-profit research-for-development organization funded by the Rockefeller Foundation and the governments of Mexico and the United States.

CIMMYT became a model for a future network of publicly-funded organizations with 14 research centers: CGIAR. Today, CGIAR is led by Marco Ferrroni, who describes it as a global research partnership that “continues to be about feeding the world sustainably with explicit emphasis on nutrition, the environment, resource conservation and regeneration, and equity and inclusion.”

Norman Borlaug’s fight against hunger has risen again to the global spotlight in the wake of the most severe health and food security crises of the 21st Century. “The Nobel Peace Prizes to Norman Borlaug and the World Food Programme are very much interlinked,” said Kjersti Flogstad, Executive Director of the Oslo-based Nobel Peace Center. “They are part of a long tradition of awarding [the prize] to humanitarian work, also in accordance with the purpose [Alfred] Nobel expressed in his last will: to promote fraternity among nations.”

During welcome remarks at the virtual 50-year commemoration of Norman Borlaug’s Nobel Peace Prize on December 8, 2020, Mexico’s Secretary of Agriculture and Rural Development Víctor Villalobos Arámbula, warned that “for the first time in many years since Borlaug defeated hunger in Southeast Asia, millions of people are at risk of starvation in several regions of Africa, Asia and Latin America.”

According to CIMMYT’s Director General Martin Kropff, celebrating Norman Borlaug’s legacy should also lead to renewed investments in the CGIAR system. “A report on the payoff of investing in CGIAR research published in October 2020 shows that CIMMYT’s return on investment (ROI) exceeds a benefit-cost ratio of 10 to 1, with median ROI rates for wheat research estimated at 19 and for maize research at 12.”

Mexico’s Foreign Affairs Department echoed the call to invest in Agriculture for Peace. “The Government of Mexico, together with the Nobel Peace Center and CIMMYT, issues a joint call to action to overcome the main challenges to human development in an international system under pressure from conflict, organized crime, forced migration and climate change,” said Martha Delgado, Mexico’s Under Secretary of Multilateral Affairs and Human Rights.

Norman Borlaug sits on a tractor next to field technicians in Sonora, Mexico. (Photo: CIMMYT)
Norman Borlaug sits on a tractor next to field technicians in Sonora, Mexico. (Photo: CIMMYT)

The event called for action against the looming food crises through the transformation of food systems, this time with an emphasis on nutrition, environment and equality. Speakers included experts from CGIAR, CIMMYT, Conservation International, Mexico’s Agriculture and Livestock Council, United Nations Food and Agriculture Organization (FAO), United States Agency for International Development (USAID) and the World Food Programme (WFP), among others. Participants discussed the five action tracks of the 2021 United Nations Food Systems Summit: (1) ensure access to safe and nutritious food for all; (2) shift to sustainable consumption patterns; (3) boost nature-positive production; (4) advance equitable livelihoods; and, (5) build resilience to vulnerabilities, shocks and stresses.

“This event underlines the need for international solidarity and multilateral cooperation in the situation the world is facing today,” said Norway’s Ambassador to Mexico, Rut Krüger, who applauded CIMMYT’s contribution of 170,000 maize and wheat seeds to the Global Seed Vault in Svalbard, Norway. “This number reflects the global leadership position of CIMMYT in the development of maize and wheat strains.”

Norman Borlaug’s famous words — “take it to the farmer” — advocated for swift agricultural innovation transfers to the field; Julie Borlaug, president of the Borlaug Foundation, said the Agriculture for Peace event should inspire us to also “take it to the public.”

“Agriculture cannot save the world alone,” she said. “We also need sound government policies, economic programs and infrastructure.”

CIMMYT’s Deputy Director General for Research and Partnerships, and Integrated Development Program Director Bram Govaerts, called on leaders, donors, relief and research partners to form a global coalition to transform food systems. “We must do a lot more to avert a hunger pandemic, and even more to put the world back on track to meet the Sustainable Development Goals of the 2030 Agenda.”

CIMMYT’s host country has already taken steps in this direction with the Crops for Mexico project, which aims to improve the productivity of several crops essential to Mexico’s food security, including maize and wheat. “This model is a unique partnership between the private, public and social sectors that focuses on six crops,” said Mexico’s Private Sector Liaison Officer Alfonso Romo. “We are very proud of its purpose, which is to benefit over one million smallholder households.”

The call stresses the need for sustainable and inclusive rural development. “It is hard to imagine the distress, frustration and fear that women feel when they have no seeds to plant, no grain to store and no income to buy basic foodstuffs to feed their children,” said Nicole Birrell, Chair of CIMMYT’s Board of Trustees. “We must make every effort to restore food production capacities and to transform agriculture into productive, profitable, sustainable and, above all, equitable food systems worldwide.”

Best of 2020: Editors’ picks

COVID-19 didn’t slow us down! In 2020, our editors continued to cover exciting news and events related to maize and wheat science around the world. Altogether, we published more than 250 stories.

It is impossible to capture all of the places and topics we reported on, but here are some highlights and our favorite stories of the year.

Thank you for being a loyal reader of CIMMYT’s news and features. We are already working on new stories and campaigns for 2021. Sign up for our newsletter and be the first to know!

The cereals imperative of future food systems

The 2019 EAT-Lancet Commission report defines specific actions to achieve a “planetary health diet” enhancing human nutrition and keeping resource use of food systems within planetary boundaries. With major cereals still supplying about one-third of calories required in the proposed diet, the way they are produced, processed, and consumed must be a central focus of global efforts to transform food systems. This article from our annual report argues three main reasons for this imperative.

Cereals matter. (Photo: Alfonso Cortés/CIMMYT)
Cereals matter. (Photo: Alfonso Cortés/CIMMYT)

Explainer: What is conservation agriculture?

Farmers are increasingly adopting conservation agriculture practices. This sustainable farming method is based on three principles: crop diversification, minimal soil movement and permanent soil cover.

Field worker Lain Ochoa Hernandez harvests a plot of maize grown with conservation agriculture techniques in Nuevo México, Chiapas, Mexico. (Photo: P. Lowe/CIMMYT)
Field worker Lain Ochoa Hernandez harvests a plot of maize grown with conservation agriculture techniques in Nuevo México, Chiapas, Mexico. (Photo: P. Lowe/CIMMYT)

Massive-scale genomic study reveals wheat diversity for crop improvement

A team of scientists has completed one of the largest genetic analyses ever done of any agricultural crop to find desirable traits in wheat’s extensive and unexplored diversity.

A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)
A new study analyzing the diversity of almost 80,000 wheat accessions reveals consequences and opportunities of selection footprints. (Photo: Eleusis Llanderal/CIMMYT)

Reaching women with improved maize and wheat

The new AGG project aims to respond to the climate emergency and gender nexus through gender-intentional product profiles for its improved seed varieties and gender-intentional seed delivery pathways.

Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)
Farmer Agnes Sendeza harvests maize cobs in Malawi. (Photo: Peter Lowe/CIMMYT)

Safeguarding biodiversity is essential to prevent the next COVID-19

Experts share their insights on the link between biodiversity loss and emerging infectious diseases.

Forests in the land of the Ese'eja Native Community of Infierno, in Peru's Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)
Forests in the land of the Ese’eja Native Community of Infierno, in Peru’s Madre de Dios department. (Photo: Yoly Gutierrez/CIFOR)

Seeing is believing

At demonstration farms, Kenyan farmers discover the stress-tolerant maize varieties they were looking for.

A seed company representative explains to farmers the merits of the variety on this plot. (Photo: Joshua Masinde/CIMMYT)
A seed company representative explains to farmers the merits of the variety on this plot. (Photo: Joshua Masinde/CIMMYT)

Battling devastating viral diseases, also in plants

Maize lethal necrosis (MLN) has taught us that intensive efforts to keep human and plant diseases at bay need to continue beyond the COVID-19 crisis. We interviewed B.M. Prasanna, director of the Global Maize Program at CIMMYT and the CGIAR Research Program on Maize (MAIZE), to discuss the MLN success story, the global COVID-19 crisis, and the similarities in the challenge to tackle plant and human viral diseases.

We had a similar conversation with Hans Braun, Director of the Global Wheat Program and the CGIAR Research Program on Wheat, who taled to us about the need for increased investment in crop disease research as the world risks a food security crisis related to COVID-19.

Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)
Maize Lethal Necrosis (MLN) sensitive and resistant hybrid demo plots in Naivasha’s quarantine & screening facility (Photo: KIPENZ/CIMMYT)

The many colors of maize, the material of life

The use of corn husk as veneer has helped a town to preserve maize biodiversity, protect the environment and reduce migration.

Denise Costich (center, pink hat) stands with members of the Totomoxtle project in Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)
Denise Costich (center, pink hat) stands with members of the Totomoxtle project in Tonahuixtla. (Photo: Provided by Denise Costich/CIMMYT)

COVID-19 induced economic loss and ensuring food security for vulnerable groups

Study quantifies the economic losses from Bangladesh’s COVID-19 lockdowns and outlines policy implications for the country.

CIMMYT also published a similar study gauging the impact of COVID-19 lockdowns in Nepal.

A rice farmer in central Bangladesh tends to his crop. (Photo: Scott Wallace/World Bank)
A rice farmer in central Bangladesh tends to his crop. (Photo: Scott Wallace/World Bank)

Small is beautiful

Seven ways to make small-scale mechanization work for African farmers.

Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)
Local female artisan, Hawassa, Ethiopia. (Photo: CIMMYT)

Cover photo: A member of a women farmers group serves a platter of mung bean dishes in Suklaphanta, Nepal. (Photo: Merit Maharajan/Amuse Communication)

Who benefits?

Maize post-harvest losses in smallholder farming systems in sub-Saharan Africa have been shown to result in significant costs at household and national level, making it difficult to move towards achievement of SDG2 – Zero Hunger.

Within smallholder farming systems, new grain storage technologies such as metal silos can help reduce these losses during storage. However, technologies are often introduced into systems with complex sets of relationships, which may differentially affect the ability of women and men to secure the expected benefits. This, in turn, can have a knock-on effect on adoption rates and expected outcomes.

A recent study by an international team of researchers investigated whether modern storage structures such as metal silos provide equal benefits to women and men farmers in sub-Saharan Africa, using a mixed methods approach to explore the relationships governing maize production and storage in Kenya, Malawi, Zambia and Zimbabwe, where 1717 metal silos have been introduced through the Effective Grain Storage Project (EGSP).

The authors used random sampling to carry out quantitative surveys on metal silo owners in Kenya (124 respondents) and Malawi (100 respondents). Qualitative surveys using purposive sampling were also conducted in all four countries covering 14 ethnic groups using focus group discussions (360 respondents), key informant interviews (62 respondents), and household case studies (62 respondents). “Our aim was to understand gendered post-harvest management and storage strategies in traditional systems and to map changes when metal silos were introduced,” explain the authors.

“We hypothesized that existing gender norms might differentially influence women’s ability to benefit from the introduction of metal silos and our findings seem to indicate that this is correct. In most instances when metal silos are introduced, ownership of the grain storage facility and any benefits attached to that ownership typically switch from women to men, or men’s existing control over stored maize is deepened.”

A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)
A farmer from Embu, Kenya, demonstrates how to load maize grain into a metal silo for storage. (Photo: CIMMYT)

Their findings highlight that roles and responsibilities regarding the ownership and management of storage structures are strongly gendered. Though there are differences between ethnic groups and countries, overall men benefit more than women from the introduction of metal silos. Ownership of a grain storage facility and the benefits attached to this ownership can switch from women to men, with women having less scope for bargaining over their rights to use the stores for their own needs and the benefit of all household members.

Many of the women interviewed suggested that this compromised their ability to access sufficient maize because men might insist on taking any grain set aside to meet their personal needs. “We did not measure how much grain is taken and whether food security is indeed negatively affected, but our research registers that women are concerned about this issue.”

The qualitative research explored whether ownership over the granary — and control over the maize stored within — changed when metal silos were purchased. In all four countries, cultural norms tend to result in men typically owning all large household assets such as land, water pumps, ox-ploughs and carts, etc. They generally make key decisions about how these assets are to be used as well. Furthermore, the income differential between women and men in male-headed households means that it is considerably more difficult for women than men to make a large purchase like a metal silo. “As a consequence of these factors, we found men were more likely to own metal silos in each country.”

There is some differentiation between ethnic groups. In Zimbabwe, for example, Zezuru women who had previously owned and managed a dura — a traditional granary — lost control over maize grain reserves when metal silos were introduced. But for Korekore women nothing changed: men had always controlled traditional storage technologies and the maize within, and they continued to do so when metal silos were introduced. These examples highlight the fact that despite the cultural differences between ethnic groups, Zimbabwean women lost out across the board when metal silos were introduced, either through losing control over storage structures, or because male ownership was not challenged.

In light of these findings, the authors argue that understanding social context is key to designing and disseminating post-harvest technologies that meet the needs and preferences of both men and women farmers in various cultural contexts.

Their results make a strong case for ensuring that agricultural policy-makers prioritize the provision of equal access to improved technologies, as this is crucial not only for supporting women to meet their individual production goals, but also for ensuring that household-level food security needs are met.

Read the full study “Do metal grain silos benefit women in Kenya, Malawi, Zambia and Zimbabwe?” in the Journal of Stored Products Research.

“Happy Seeder” saves farmers money over burning straw, new study in India shows

Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)
Direct sowing of wheat seed into a recently-harvested rice field using the “Happy Seeder” implement, a cost-effective and eco-friendly alternative to burning rice straw, in northern India. (Photo: BISA/Love Kumar Singh)

Compared to conventional tillage practices, sowing wheat directly into just-harvested rice fields without burning or removing straw or other residues will not only reduce pollution in New Delhi and other parts of northern India, but will save over $130 per hectare in farmer expenses, lessen irrigation needs by as much as 25%, and allow early planting of wheat to avoid yield-reducing heat stress, according to a new study published in the International Journal of Agricultural Sustainability.

The practice requires use of a tractor-mounted implement that opens grooves in the soil, drops in wheat seed and fertilizer, and covers the seeded row, all in one pass. This contrasts with the typical method for planting wheat after rice, which involves first burning rice residues, followed by multiple tractor passes to plow, harrow, plank, and sow, according to Harminder S. Sidhu, principal research engineer at the Borlaug Institute for South Asia (BISA) and a co-author of the study.

“There are already some 11,000 of these specialized no-till implements, known as the Happy Seeder, in operation across northern India,” said Sidhu, who with other researchers helped develop, test and refine the implement over 15 years. “In addition to sowing, the Happy Seeder shreds and clears rice residues from the seeder path and deposits them back onto the seeded row as a protective mulch.”

Covering some 13.5 million hectares, the Indo-Gangetic Plain stretches across Bangladesh, India, Nepal and Pakistan and constitutes South Asia’s breadbasket. In India, the northwestern state of Punjab alone produces nearly a third of the country’s rice and wheat.

Some 2.5 million farmers in northern India practice rice-wheat cropping and most burn their rice straw — an estimated 23 million tons of it — after rice harvest, to clear fields for sowing wheat. Straw removal and burning degrades soil fertility and creates a noxious cloud that affects the livelihoods and health of millions in cities and villages downwind. Air pollution is the second leading contributor to disease in India, and studies attribute some 66,000 deaths yearly to breathing in airborne nano-particles produced by agricultural burning.

The central and state governments in northwestern India, as well as universities and think-tanks, have put forth strategies to curtail burning that include conservation tillage technologies such as use of the Happy Seeder. Subsidies for no-burn farming, as well as state directives and fines for straw burning, are in place and extension agencies are promoting no-burn alternatives.

A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)
A farmer in India uses a tractor fitted with a Happy Seeder. (Photo: Dakshinamurthy Vedachalam/CIMMYT)

As an aid for policy makers and development practitioners, the present study applied econometrics to compare conventional and zero-tillage in terms of yield, input levels and implications for rice residue burning. The study also compared use of the Happy Seeder versus a simple zero-tillage drill with no straw shredder. Participants included more than 1,000 farm households in 52 villages, encompassing 561 users of conventional tillage, 226 users of simple zero-tillage seeding implements, and 234 Happy Seeder users.

They found that only the Happy Seeder was able to sow wheat directly into large amounts of rice residues, with significant savings for farmers and equal or slightly better wheat yields, over conventional tillage. The Happy Seeder also saves time and water.

“Given the benefits of sowing wheat using the Happy Seeder against the tremendous health and environmental costs of residue burning, the reduction or elimination of straw burning should be pushed forward immediately,” said P.P. Krishnapriya, research scientist at the Sanford School of Public Policy, Duke University, and a co-author of the article. “Investments in social marketing and policies that foster the use of the Happy Seeders, including significant subsidies to purchase these machines, must be accompanied by stricter enforcement of the existing ban on residue burning.”

The study also found that the information sources most widely-available to farmers are currently geared towards conventional agricultural practices, but farmers who use the internet for agricultural information are more likely to be aware of the Happy Seeder.

“Awareness raising campaigns should use both conventional and novel channels,” said Priya Shyamsundar, lead economist at the Nature Conservancy (TNC) and co-author of the article. “As with any innovation that differs significantly from current practices, social and behavioral levers such as frontline demonstrations, good champions, and peer-to-peer networking and training are critical.”

In addition, rather than having most individual farmers own a Happy Seeder — a highly-specialized implement whose cost of $1,900 may be prohibitive for many — researchers are instead promoting the idea of farmers hiring direct-sowing services from larger farmers or other people able to purchase a Happy Seeder and make a business of operating it, explained Alwin Keil, a senior agricultural economist with the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the new study.

“We are extremely grateful to the Indian Council of Agricultural Research (ICAR), the Nature Conservancy, and the CGIAR Research Program on Wheat Agri-Food Systems (WHEAT), who supported our research,” said Keil.

Best of 2020: Our favorite videos

The Multimedia team at the International Maize and Wheat Improvement Center (CIMMYT) and our producers around the world kept busy in 2020. They uploaded 50 videos to our YouTube channel and countless more to our social media, intranet and training platforms!

Here are some of our favorites. Subscribe to our YouTube channel to stay tuned!

Preserving the legacy of biodiversity

We shot much of this video on location in Svalbard, north of the Arctic Circle, where freezing temperatures put our cameras to the test — but the most challenging part of production was yet to come. After a global pandemic was declared, we had to shoot our first-ever socially distanced interviews, guide people to record themselves and coordinate editing remotely.

Travel with us to the Global Seed Vault, where maize and wheat seeds from CIMMYT’s genebank are are safely backed up.

Bringing landraces back home, 50 years later

Half a century ago, scientists collected and preserved samples of maize landraces in Morelos, Mexico. Now, descendants of those farmers were able to get back their ancestral maize seeds and, with them, a piece of their family history.

Jamal conquered his dreams through maize farming

It is not very often that we are able to use soap opera-style drama to convey science. In this video, actors dramatize the human stakes of the battle against fall armyworm.

At the end of the video, graphics and images show techniques developed by CIMMYT and partners to help real farmers beat this pest.

One-minute science: Carolina Rivera explains wheat physiology

Growing the right wheat varieties is necessary to nutritiously feed a growing population in the context of environmental stress.

How do I become a zero-till farmer?

An online training takes farmers and service providers though a visual journey on the use of conservation agriculture-based sustainable intensification methods.

A series of videos — available in Bengali, Hindi and English — demonstrates the process to become a zero-till farmer or service provider: from learning how to prepare a field for zero tillage to the safe use of herbicides.

The Cereal Serial: What are whole grains and why do they matter?

In the first installment of this video series for social media, CIMMYT’s maize and wheat quality experts Natalia Palacios and Itria Ibba explain what whole grains are and why they are an important part of healthy diets.

 

 

 

Digital groundwater monitoring

A farmer in Nepal operates a water pump for drip irrigation. (Photo: Sharad Maharjan/IMWI)
A farmer in Nepal operates a water pump for drip irrigation. (Photo: Sharad Maharjan/IWMI)

Taken together, digital monitoring and readily available data on the status of groundwater resources provide a critical foundation for sustainable irrigation development. While much is known about surface water resources and hydrological and meteorological linkages between the Terai, Mid-Hills and Himalaya regions of the country, Nepal currently lacks a comprehensive system for groundwater resource monitoring.

To respond to this crucial information gap, the International Maize and Wheat Improvement Center (CIMMYT) and International Water Management Institute (IWMI) are partnering with the Government of Nepal’s Groundwater Resources Development Board to conduct a pilot which will develop and test a potential groundwater monitoring system with the goal of identifying an approach which can be gradually scaled out after project completion.

To this end, the project team organized an Inception and Consultation Workshop, which took place virtually on October 14, 2020. This was the first in a series under the Cereal Systems Initiative for South Asia (CSISA) Nepal COVID-19 and Resilience project, funded by the United States Agency for International Development (USAID) Nepal, which supports farmers and rural economies in their response to COVID-19 and addresses, among others, various issues and ways forward for sustainable irrigation development.

The session aimed to introduce the digital groundwater monitoring pilot to local stakeholders, identify monitoring objectives and information needs, facilitate multi-stakeholder and inter-ministerial dialogue, and generate feedback and endorsement of the project plan. Participants were from a wide range of backgrounds and disciplines, and included members of local and national authorities, research centers and universities.

Participants meet virtually at the multi-stakeholder dialogue for Nepal’s Digital Groundwater Monitoring pilot (Photo: Tim Krupnik/CIMMYT)
Participants meet virtually at the multi-stakeholder dialogue for Nepal’s Digital Groundwater Monitoring pilot (Photo: Tim Krupnik/CIMMYT)

Madhukar Rajbhandari, director general of the Government of Nepal’s Department of Water Resources and Irrigation, opened the event and during his address highlighted the importance of groundwater irrigation for Nepal’s farming systems and livelihoods. He also captured the challenges which the country faces when developing groundwater irrigation, from polluted water resources through urbanization to lack of market access and the high maintenance costs of irrigation infrastructure. Rajbhandari noted that “agricultural and irrigation projects lack coordination” and expressed his hope that “through this pilot, the way is paved for a collaborative approach to develop practical groundwater solutions for farmers.”

The session introduced participants to the project and its background, leading breakout sessions for two groups: the first containing local, state and national government representatives; the second comprising farmers, researchers and members of industry. Each group was asked to identify the groundwater monitoring objectives and information needs that they would have as different types of users, and to provide feedback and recommendations to improve the project work plan.

The feedback showed that while government representatives are largely interested in developing a better understanding of the groundwater development potential, researchers and farmers are more concerned with possible discharge and water quality. Monitoring frequency was also identified as useful for daily to monthly timescales.

The group discussion revealed participants’ keen interest in consolidating and monitoring groundwater information, which highlights the importance of stakeholder engagement when developing pilots such as these, to ensure that when scaling is achieved, it caters to specific needs. Participants also expressed a strong interest in bringing the results of the project within the ambit of national policy, which would achieve the streamlining of data collection protocols for standardized, publicly accessible, data collection mechanisms.

“It is very encouraging to see such active participation and engagement from all the participants throughout the workshop,” noted Timothy Krupnik, project leader and a senior scientist at CIMMYT. “We look forward to maintaining this momentum, to support Nepal’s efforts in strengthening its capacity for sustainable irrigation.”

50-year anniversary of Norman Borlaug’s Nobel Peace Prize

In 1970, Norman Borlaug was awarded the Nobel Peace Prize for his important scientific work that saved millions of people from famine. Today, humanity faces an equally complex challenge which requires the commitment of all nations, leaders, investors and strategic partners: avoiding the next food crisis.

The Government of Mexico, the Nobel Peace Center and the International Maize and Wheat Improvement Center (CIMMYT) will celebrate the 50th anniversary of Borlaug’s Nobel Prize with a call to action to develop a transformational response of agriculture for peace, with an emphasis on nutrition, environment and equity.

Join us on December 8, 2020, from 9:00 to 10:30 a.m. (CST, GMT-6).

Please register in advance.

This special event is part of the run-up to the United Nations Summit of Agrifood Systems of 2021. It will feature international experts in each of the five action tracks of the summit: ensure access to safe and nutritious food for all; shift to sustainable consumption patterns; boost nature-positive production; advance equitable livelihoods; and build resilience to vulnerabilities, shocks and stress.

Guest speakers will include:

  • Marcelo Ebrard Casaubón – Mexico’s Secretary of Foreign Affairs
  • Kjersti Fløgstad – Executive Director, Nobel Peace Center
  • Victor Villalobos – Mexico’s Secretary of Agriculture and Rural Development
  • Martin Kropff – Director General, CIMMYT
  • Margaret Bath – Member of CIMMYT’s Board of Trustees
  • Alison Bentley – Director of CIMMYT’s Global Wheat Program
  • Robert Bertram – Chief Scientist, USAID’s Bureau for Resilience and Food Security
  • Nicole Birrell – Chair of CIMMYT’s Board of Trustees
  • Julie Borlaug – President of the Borlaug Foundation
  • Gina Casar – Assistant Secretary-General of the World Food Programme
  • Martha Delgado – Mexico’s Deputy Secretary for Multilateral Affairs and Human Rights
  • Marco Ferroni – Chair, CGIAR System Board
  • Federico González Celaya – President of Mexico’s Food Banks Association
  • Bram Govaerts – Deputy Director General for Research and Collaborations a.i. and Director of the Integrated Development Program, CIMMYT
  • Juana Hernández – Producer from the community of San Miguel, in Ocosingo, Chiapas, Mexico
  • Rut Krüger Giverin – Norwegian Ambassador to Mexico
  • Sylvanus Odjo – Postharvest Specialist, CIMMYT
  • Lina Pohl – FAO’s Mexico Representative
  • B.M. Prasanna – Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize
  • Tatiana Ramos – Executive Director, Conservation International Mexico
  • Alfonso Romo – Private Sector Liaison, Government of Mexico
  • Bosco de la Vega – President Mexico’s National Farmer’s Agricultural Council (CNA)

Too much or never enough

A young man uses a precision spreader to distribute fertilizer in a field. (Photo: Mahesh Maske/CIMMYT)
A young man uses a precision spreader to distribute fertilizer in a field in India. (Photo: Mahesh Maske/CIMMYT)

Although nitrogen has helped in contributing to human dietary needs, there are still large areas of the world  namely sub-Saharan Africa and parts of Asia  that remain short of the amounts they need to achieve food and nutritional security.  

Conversely, synthetic nitrogen has become increasingly crucial in today’s intensive agricultural systems, but nearly half of the fertilizer nitrogen applied on farms leaks into the surrounding environment. It is possible that we have now transgressed the sustainable planetary boundary for nitrogen, and this could have devasting consequences.  

Given this conflicting dual role this compound plays in agricultural systems and the environment  both positive and negative  the nitrogen challenge is highly relevant across most of the 17 Sustainable Development Goals (SDGs) established by the United Nations. 

Facing a global challenge 

The challenge of nitrogen management globally is to provide enough nitrogen to meet global food security while minimizing the flow of unused nitrogen to the environment. One of the key approaches to addressing this is to improve nitrogen use efficiency – which not only enhances crop productivity but also minimizes environmental losses through careful agronomic management – and measures to improve soil quality over time. 

Globally, average nitrogen use efficiency does not exceed 50%. Estimates show that a nitrogen use efficiency will need to reach 67% by 2050 if we are to meet global food demand while keeping surplus nitrogen within the limits for maintaining acceptable air and water qualities to meet the SDGs. 

This target may seem ambitious  especially given the biological limits to achieving a very high nitrogen use efficiency  but it is achievable.  

Earlier this year, J.K. Ladha and I co-authored a paper outlining the links between nitrogen fertilizer use in agricultural production systems and various SDGs. For instance, agricultural systems with suboptimal nitrogen application are characterized with low crop productivity, spiraling into the vicious cycle of poverty, malnutrition and poor economy, a case most common in the sub-Saharan Africa. These essentially relate to SDG 1 (no-poverty), 2 (zero-hunger), 3 (good health and well-being), 8 (decent work and economic growth) and 15 (life on land).  

On the other hand, excess or imbalanced fertilizer nitrogen in parts of China and India have led to serious environmental hazards, degradation of land and economic loss. Balancing the amount of N input in these regions will contribute in achieving the SDG 13 (climate action). Equally, meeting some of the additional SDGs (5, gender equality; 6, clean water and sanitation; 10: reduced inequalities; etc.) requires optimum nitrogen application, which will also ensure “responsible consumption and production” (SDG 12). 

A diagram shows the impact of fertilizer nitrogen use on the achievement of the Sustainable Development Goals. (Graphic: CIMMYT/Adapted from CCAFS)
A diagram shows the impact of fertilizer nitrogen use on the achievement of the Sustainable Development Goals. (Graphic: CIMMYT/Adapted from CCAFS)

So, how can we achieve this?  

Increased research quantifying the linkages between nitrogen management and the SDGs will be important, but the key to success lies with raising awareness among policy makers, stakeholders and farmers. 

Most agricultural soils have considerably depleted levels of soil organic matter. This is a central problem that results in agroecosystems losing their ability to retain and regulate the supply of nitrogen to crops. However, poor knowledge and heavy price subsidies are equally to blame for the excess or misuse of nitrogen.  

While numerous technologies for efficient nitrogen management have been developed, delivery mechanisms need to be strengthened, as does encouragement for spontaneous adaptation and adoption by farmers. Equally  or perhaps more importantly  there is a need to create awareness and educate senior officials, policy makers, extension personnel and farmers on the impact of appropriate soil management and intelligent use of nitrogen fertilizer, in conjunction with biologically integrated strategies for soil fertility maintenance.  

An effective and aggressive campaign against the misuse of nitrogen will be effective in areas where the compound is overused, while greater accessibility of nitrogen fertilizer and policies to move farmers towards soil quality improvement will be essential in regions where nitrogen use is currently sub-optimal. 

It is only through this combination of approaches to improved system management, agricultural policies and awareness raising campaigns that we can sufficiently improve nitrogen use efficiency  and meet the SDGs before it’s too late. 

Read the full study “Achieving the sustainable development goals in agriculture: the crucial role of nitrogen in cereal-based systems” in Advances in Agronomy. 

Nitrogen in agriculture

Nitrogen is the most essential nutrient in crop production but also one of the most challenging to work with. The compound is central to global crop production  particularly for major cereals  but while many parts of the world do not have enough to achieve food and nutrition security, in others excess nitrogen from fertilizer leaks into the environment with damaging consequences. 

What is nitrogen? 

Around 78% of the Earth’s atmosphere is made up of nitrogen gas or N2  a molecule made of two nitrogen atoms glued together by a stable, triple bond.  

Though it makes up a large portion of the air we breathe, most living organisms can’t access it in this form. Atmospheric nitrogen must go through a natural process called nitrogen fixation to transform before it can be used for plant nutrition 

Why do plants need nitrogen? 

In both plants and humans, nitrogen is used to make amino acids  which make the proteins that construct cells  and is one of the building blocks for DNA. It is also essential for plant growth because it is a major component of chlorophyll, the compound by which plants use sunlight energy to produce sugars from water and carbon dioxide (photosynthesis). 

The nitrogen cycle 

The nitrogen cycle is the process through which nitrogen moves from the atmosphere to earth, through soils and is released back into the atmosphere  converting in and out of its organic and inorganic forms. 

It begins with biological nitrogen fixation, which occurs when nitrogen-fixing bacteria that live in the root nodules of legumes convert organic matter into ammonium and then nitrate. Plants are able to absorb nitrate from the soil and break it down into the nitrogen they need, while denitrifying bacteria convert excess nitrate back into inorganic nitrogen which is released back into the atmosphere. 

The process can also begin with lightning, the heat from which ruptures the triple bonds of atmospheric nitrogen, freeing its atoms to combine with oxygen and create nitrous oxide gas, which dissolves in rain as nitric acid and is absorbed by the soil. 

Excess nitrate or that lost through leaching  in which key nutrients are dissolved due to rain or irrigation  can seep into and pollute groundwater streams. 

A diagram shows the process through which nitrogen moves from the atmosphere to earth, through soils and is released back into the atmosphere – converting in and out of its organic and inorganic forms. (Graphic: Nancy Valtierra/CIMMYT)
A diagram shows the process through which nitrogen moves from the atmosphere to earth, through soils and is released back into the atmosphere – converting in and out of its organic and inorganic forms. (Graphic: Nancy Valtierra/CIMMYT)

What about nitrogen fertilizer? 

For thousands of years, humans didn’t need to worry about nitrogen, but by the turn of the Twentieth Century it was evident that intensive farming was depleting nitrate in the soil, which raised concerns about the world’s rising population and a possible food crisis.  

In 1908, a German chemist named Fritz Haber devised a process for combining atmospheric nitrogen and hydrogen under extreme heat and pressure to create liquid ammonia  a synthetic nitrogen fertilizer. He later worked with chemist and engineer Carl Bosch to industrialize this process and make it commercially available for farmers.  

Once production was industrialized, synthetic nitrogen fertilizer  used in combination with new, high-yielding seed varieties  helped drive the Green Revolution and significantly boost global agricultural production from the late 1960s onwards. During this time Mexico became self-sufficient in wheat production, as did India and Pakistan, which were on the brink of famine.  

In today’s intensive agricultural systems, synthetic nitrogen fertilizer has become increasingly crucial. Worldwide, companies currently produce over 100 million metric tons of this product every year, and the Food and Agriculture Organization of the United Nations predicts that demand will continue to rise steadily, especially in Africa and South Asia. 

Is it sustainable? 

As demand continues to rise worldwide, the challenge of nitrogen management is to provide enough to meet global food security needs while minimizing the flow of unused nitrogen  which is 300 times more polluting than carbon dioxide  to the environment.  

While many regions remain short of available nitrogen to achieve food and nutrition security, in others nearly half of the fertilizer nitrogen applied in agriculture is leaked into the environment, with negative consequences including increased environmental hazards, irreparable land degradation and the contamination of aquatic resources. 

This challenge can be addressed by improving nitrogen use efficiency  a complex calculation which often involves a comparison between crop biomass (primarily economic yield) or nitrogen content/uptake (output) and the nitrogen applied (input) through any manure or synthetic fertilizer.  Improving this ratio not only enhances crop productivity but also minimizes environmental losses through careful agronomic management and helps improve soil quality over time.  

Currently, average global nitrogen use efficiency does not exceed 50%, which falls short of the estimated 67% needed to meet global food demand in 2050 while keeping surplus nitrogen within the limits for maintaining acceptable air and water qualities.  

Cutting-edge technological options for nitrogen management are on the horizon, though in the short-term nitrogen use efficiency can best be improved at farmer-level, by targeting fertilizer applicationuse of slow-release nitrogen fertilizers, using precision nitrogen application tools (Green Seeker) or fertigation using micro irrigation. 

A woman in India uses a precision spreader to apply fertilizer on her farm. (Photo: Wasim Iftikar)
A woman in India uses a precision spreader to apply fertilizer on her farm. (Photo: Wasim Iftikar)

Blue-sky technology 

Much progress has been made in developing technologies for an efficient nitrogen management, which along with good agronomy are proven to enhance crop nitrogen harvest and nitrogen use efficiency with lower surplus nitrogen. 

Scientists are investigating the merits of biological nitrification inhibition, a process through which a plant excretes material which influences the nitrogen cycle in the soil. Where this process occurs naturally  in some grasses and wheat wild relatives  it helps to significantly reduce nitrogen emissions. 

In 2007, scientists discovered biological nitrification traits in wheat relative and in 2018 they succeeded in transferring them into a Chinese spring wheat variety. The initial result showed low productivity and remains in the very early stages of development, but researchers are keen to assess whether this process could be applied to commercial wheat varieties in the future. If so, this technology could be a game changer for meeting global nitrogen use efficiency goals. 

Money-making machines

A new small-mechanization pilot initiative launched in July is equipping farmers with the business and technical skills they need to provide mechanization services to communities in six wards of Masvingo district, Zimbabwe.

With funding from the Swiss Agency for Development and Cooperation (SDC) managed by the United Nations World Food Program (WFP), the International Maize and Wheat Improvement Center (CIMMYT) is leading implementation of the pilot in collaboration with Kurima Machinery and the Zimbabwe Agriculture Development Trust (ZADT), who are supporting the technical training and financial management, respectively.

Anchored on a strong business model, 15 farmers have signed up to become service providers and invested an initial deposit of $500 to access the mechanization package comprising a two-wheel tractor and trailer, a direct planter and a maize cob sheller. Through a “lease-to-own” credit facility, eligible service providers will have 24 months to pay the remaining balance for the set of equipment.

“This approach addresses re-payment challenges in past interventions, where equipment was distributed without a firm commitment from the service providers and without putting in enough effort to establish a viable business,” says Christian Thierfelder, a cropping systems agronomist at CIMMYT. “An advantage of this new form of financial commitment by the service providers is that it guarantees full participation and a change in their perception towards farming as a business.

Since 2013, smallholder farmers in Zimbabwe have been exposed to the benefits of combining small-mechanization with conservation farming systems to improve productivity — land preparation, planting and harvesting to achieve higher yields while reducing production costs. Besides making farming tasks more efficient for individuals, this set of equipment can be used to provide critical services to other farmers in their wards.

The two-wheel tractor can have various implements attached to it for services such as planting, transportation and shelling. It can also be used to run other important implements such as water pumps, mills or threshers.

This mechanization pilot therefore presents an additional pathway out of poverty and into sustainable production and income generation at household level, while boosting the local economy and rural employment in Masvingo district.

Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Service providers, extension officers and CIMMYT staff pose for a group photo after completing a training course at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Training for local service provision

Eligible service providers were recently invited to attend a one-week specialized business and technical training course at Gwebi Agricultural College, just outside of Harare. The training package consisted of two main components: business management; and two-wheel tractor operation, maintenance and repair.

Elliot Zvovovo, a participating service provider, explains how the balanced training approach equipped him fully with all the knowledge and skills he needs to run his business. “I learned different ways of record keeping, managing income and treating my clients professionally,” he says.

“On the machinery side, I learned about of all the parts of a two-wheel tractor and practiced assembling the engine so that maintenance and repair will be easy for me.”

Julius Shava, another participating service provider, agrees, adding that knowing how to maintain the two-wheel tractor and troubleshooting will also minimize costs of hiring external mechanics to attend to faults. “I realized the importance of routine checks for oil and water levels, how to crank-start the tractor and hitch the planter all by myself.”

Supporting agricultural extension in line with service providers is critical to mainstreaming transformational change in rural areas. As such, seven local extension officers — key partners in the implementation of small-mechanization activities — were also invited to participate in the training.

“The training proved to be very effective, particularly the emphasis on mastering business principles and on the technical side, integrating service providers’ existing knowledge of conservation farming with small-mechanization,” says Canaan Zhakata, an extension officer for Ward 15.

Through the practical sessions, all service providers have now learned how to operate a two-wheel tractor, calibrate the direct planter for seed and fertilizer rates and use the sheller — giving them full technical skills and knowledge,” explains Dorcas Matangi, a research associate at CIMMYT.

The certification they have received will increase farmers’ confidence as they return to Masvingo to commence service delivery, with continued on-site support from their local extension officers. “Once we return to Masvingo, we can assist the new service providers by monitoring their service delivery to ensure full compliance with the technical requirements for operating the machinery,” says Tsvakai Dumbu, an extension officer for Ward 17.

A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
A service provider starts a two-wheel tractor while other participants look on at a training at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A profitable business for the local economy

This mechanization pilot is poised for success as it draws on existing positive results gained by the women and youth service providers in western Zimbabwe, who are running successful mechanized enterprises following the recently completed Farm Mechanization and Conservation Agriculture for Sustainable Intensification (FACASI) project.

“During a recent seed fair, we heard of a youth group in Makonde that is making up to $7,000 just from maize shelling services,” says Zvovovo. “Knowing that it takes just one day to shell up to three tons of maize with the sheller, I now know that reaching such an income is achievable.”

This pilot will prove that there is scope for small-mechanization to expand on productivity through the two-wheel tractor, trailer and sheller, as shown in other parts of eastern and southern Africa. It will explore leverages on the opportunities and demand for services in Masvingo.

Cover image: An extension officer from Masvingo district drives a two-wheel tractor during a training for service providers and extension officers at Gwebi Agricultural College, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Breaking Ground: Rahel Assefa thrives off witnessing impact

Ethiopia-born Rahel Assefa began her career as a software engineer in a children’s hospital in Washington DC, USA. Although she enjoyed this work for the first few years, she found that it was not as fulfilling as she had initially hoped.

Rahel slowly started shifting gears towards a new career, initially pursuing an MSc in Project Management. “I knew that I was meant to work in an area where I would have direct interaction and impact, so I really thrived in that environment,” she explains.

Her work was highly appreciated by senior managers and she quickly progressed in this new career path. “I was soon recruited to help build a project management office from scratch and that solidified my interest in the field.”

A return to Africa

Rahel remained in health care for the next few years, taking on roles in portfolio and business relationship management but ultimately, she knew her next step would be to return to Africa and work in a field that contributes to supporting people’s livelihoods. 

In 2015, Rahel learned of a job opening at the International Maize and Wheat Improvement Center (CIMMYT) which was suitable to her skillset and would also serve her desire of moving to Africa. She applied and joined the organization in February 2016, moving to Addis Ababa with her young family in tow. “We had always discussed returning to Africa, and preferably to Ethiopia, so this was a welcome move. But it was also a big leap into the unknown because both my husband and I had left Ethiopia during our formative years,” she says.

Rahel had also never worked in the agricultural sector before joining CIMMYT, so there was a steep learning curve to contend with, as well as the cultural shifts she had to make to adjust to her new work environment. “I remember spending my first few days on the job taking the time to just observe, listen actively and ask questions.” 

Rahel Assefa (center) meets colleagues at a CIMMYT event in Texcoco, Mexico. (Photo: Alfonso Cortés)
Rahel Assefa (center) meets colleagues at a CIMMYT event in Texcoco, Mexico. (Photo: Alfonso Cortés)

Witnessing impact first-hand

Rahel now works as a project manager and as the regional program manager for CIMMYT’s Sustainable Intensification Program in Africa. “Working at CIMMYT is interesting because I get to collaborate with such a diverse group of people, and we can see that our work has a direct impact on the day-to-day lives of farmers,” she says. “It’s always rewarding to see first-hand how the life of a farmer, woman or young person is transformed because of the work we do.”

“I also find working at CIMMYT’s Ethiopia office enjoyable simply because everyone gets along well,” she explains. Rahel particularly appreciates the Thursday morning coffee gatherings for staff hosted at the International Livestock Research Institute (ILRI) campus, and her frequent interactions with colleagues in Kenya and Zimbabwe, where she travels regularly. “I love having the opportunity to see the work colleagues do on the ground across Africa and I’m always in awe of their dedication to the work they do.”

When she’s not visiting projects in Nairobi or Harare, Rahel cherishes the time she spends with her family and young son, Adam, who seems to be developing a keen interest in agriculture himself. “He loves visiting ‘mommy’s office’ from time to time,” she explains, “and as a result he has recently even attempted to plant maize and wheat in our back garden.”

Rahel Assefa tests out farm machinery in Addis Ababa, Ethiopia. (Photo: Simret Yasabu/CIMMYT)
Rahel Assefa tests out farm machinery in Addis Ababa, Ethiopia. (Photo: Simret Yasabu/CIMMYT)

Rahel Assefa

Rahel Assefa works with CIMMYT’s Sustainable Agrifood Systems (SAS) program, serving as regional project manager for Africa and project manager for various projects across East and Southern Africa.

Rahel works closely with project leaders and head office units to develop operational plans, and manages budgets, contracts and subgrants. She supports donor reporting and proposal development, serves as a liaison with donors and implementing partners, and more.

Are solar powered irrigation systems scalable?

A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)
A solar powered irrigation pump in use, India. (Photo: Ayush Manik/CCAFS)

Climate change is a major challenge for India, which faces large-scale climate variability and is exposed to high risk. The country’s current development model reiterates the focus on sustainable growth and aims to exploit the benefits of addressing climate change alongside promoting economic growth.

The government has been heavily emphasizing the importance of solar power in India, and the Ministry of New and Renewable Energy (MNRE) recently launched an ambitious initiative to further this cause. The Pradhan Mantri-Kisan Urja Suraksha evam Utthaan Mahabhiyan (PM-KUSUM) scheme aims to support the installation of off-grid solar pumps in rural areas, and reduce dependence on the grid in grid-connected areas.

However, there has been a knowledge gap about the potential use of solar energy interventions in the context of climate change and their scalability. In an effort to bridge this gap, scientists from the CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS) have comprehensively synthesized existing pilot initiatives on the deployment of solar powered irrigation systems (SPIS) across different agro-climatic zones in India and tried to assess their scalability. This in turn has led to the identification of efficient and effective models for sustainable development in accordance with the region’s socioeconomic and geopolitical situation.

Solar powered irrigation systems in India

A compendium has been developed as part of the research carried out by CCAFS, in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the Borlaug Institute for South Asia (BISA), Deutsche Gesellschaft für Internationale Zusammenarbeit GmbH (GIZ) and the International Water Management Institute (IWMI).

The main objectives for bringing forth this compendium are: to qualitatively document various deployment models of SPIS and to understand the factors impacting the scalability of SPIS in India. The authors collected detailed information about the process of installing SPIS, their use and maintenance, and documented the different approaches in the form of case studies developed through primary and secondary research. They aimed to capture the key technical, social, institutional and financial attributes of the deployment approaches to enable comparative analysis and synthesis.

In total, 16 case studies from across India were documented — 1 case for centralized SPIS, 2 distributed SPIS and 13 examples for decentralized systems.  Though each of these was designed with unique objectives, detailed analysis reveals that all the cases revolve around the improvement of the three factors: accessibility, affordability and sustainability — the trinity against which all cases have been described. Grid-connected areas such as Gujarat and Maharashtra offer an immense scope of selling surplus energy being produced by SPIS, to energy-deficient electricity suppliers while areas such as Bihar and Jharkhand offer the potential for scaling the decentralized model of SPIS.

Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)
Two smallholders use a solar powered irrigation system to farm fish in Bihar, India. (Photo: Ayush Manik/CCAFS)

Assessing scalability

For inclusive and sustainable growth, it is important to consider the farm-level potential of solar energy use with multiple usages of energy. The compendium documents examples of the potential of solar irrigation systems in India for adaptation and mitigation benefits. It also assesses on the scalability of different deployment approaches such as solar pump fitted boats in Samastipur, Bihar, or the decentralized solar powered irrigation systems in Gujrat and West Bengal. Through the compendium, the authors study the five key stages of the scaling-up process to assess whether these initiatives are scalable and could reduce or replace fossil fuel dependence in agriculture.

While some of the documented cases are designed exclusively to address a very specific problem in a particular context, others are primarily designed as a proof-of-concept for wider applicability and policy implications — with or without suitable modifications at the time of scaling. In this compendium, both types of cases are included and assessed to understand their relevance and the potential contribution they can make in advancing the goal of solarizing irrigation and agriculture in a sustainable and effective way.

The authors conclude that all the cases have different technical, financial, and institutional aspects which complement each other, have been designed based on community needs and are in line with the larger objective of the intervention integrating three factors — accessibility, affordability and sustainability — to ensure secured availability of resources and to facilitate scalability.

Given that India is a diverse country with varied socioeconomic and geopolitical conditions, it is important to have set guidelines that lay out a plan for scaling while allowing agencies to adapt the SPIS model based on local context and realities in the field.

This article was originally published on the CCAFS website.

An instant seed market

How do you create the largest market for stress-tolerant seed away from a major business center and attract over 1000 smallholder farmers in two days? Organize a seed fair to strengthen knowledge and information sharing.

The availability, access and use of climate-resilient seed by smallholder farmers in Zimbabwe is often hampered by transport costs, the distance between farming areas and viable seed markets, lack of public transport to business centers, and the inflated prices of seed and inputs by local agro-dealers. As a result, resource-poor farmers who cannot afford to purchase inputs resort to exchanging local seed retained or recycled from informal markets. This has devastating effects on farmers’ productivity, food and nutrition security.

Under the Zambuko/R4 Rural Resilience Initiative, the International Maize and Wheat Improvement Center (CIMMYT) is promoting climate-smart technologies and appropriate seed varieties alongside conservation agriculture (CA) systems in Masvingo district, Zimbabwe. Since 2018, mother and baby trials have successfully yielded results for smallholders in Ward 17 and additional mother trials have been introduced in Ward 13.

To overcome the challenges of seed access, CIMMYT partnered with eight seed companies — including Agriseeds, Mukushi and SeedCo — to host two seed fairs in October, targeting farmers in Wards 13 and 17. The intervention sought to address seed insecurity while reducing the knowledge gap on available stress-tolerant seed varieties by smallholder farmers.

Groundwork preparations led by the Department of Agriculture and Extension Services (AGRITEX) mobilized farmers from the host wards as well as farmers from neighboring wards 15, 19 and 25. In light of the ongoing COVID-19 pandemic, regulations relating to social distancing, the use of masks and sanitization were adhered to throughout the events.

Climate-smart seed choices

A key message delivered to the more than 1000 farmers who attended the seed fairs was the importance of their preference when selecting the right seed for their field. “Farmers must be critical when selecting seed and ensure that their preferred seed will perform well under the prevailing climatic conditions to give a good harvest,” said CIMMYT seed systems specialist Peter Setimela.

Seed company representatives were offered a platform to market their varieties and explain the benefits of each product on the market while leaving it to the farmers to decide on the most suitable variety for their own needs. “Farmers came early for the seed fairs and showed interest in our products,” said Norman Chihumo, a regional agronomist at Syngenta Distributors. “We recorded fairly good sales of seed and chemicals through cash purchases and vouchers.”

Later in the day, farmers toured the seed company stands to see the diverse maize varieties and small grains on offer — including millet and sorghum, cowpeas and groundnuts — and heard testimonials from participants in the mother and baby trials. “Listening to a success story from a farmer I know gives me the confidence to follow suit and buy seed that works in this harsh climate of ours,” said Joice Magadza, a farmer from Ward 17.

Local farmer Happison Chitono agreed. “I never used to grow cowpeas on my plot,” he explained, “but after learning about the ability it has to fix nitrogen into my soil and possibility of rotating the legume with maize, I am now gladly adding it to my seed input package.”

Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Muza Vutete, a baby-trial farmer shares the advantages of adopting conservation farming principles at a seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

A seed fair is also a knowledge market

A key highlight of the seed fair was the learning platform promoting CIMMYT’s ongoing activities under the Zambuko/R4 Rural Resilience Initiative. Here, cropping systems agronomist Christian Thierfelder shared the objectives of this initiative with participating farmers.

“We know how good this seed is, but we also have to grow it in a sustainable way, so we make best use of the limited rainfall we receive in this area while we improve our soils,” he explained to farmers. “Cropping systems such as conservation agriculture combine no-tillage, mulching and crop rotation in a climate-smart agriculture way which enables farmers to harvest enough, even under heat and drought stress.”

Thierfelder also demonstrated the use of farm equipment promoted by CIMMYT in collaboration with Kurima Machinery, explaining how these can help reduce drudgery and save time on planting, transport and shelling.

Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)
Representatives from Kurima machinery conduct a demonstration of the two-wheel tractor during the seed fair in Masvingo, Zimbabwe. (Photo: Shiela Chikulo/CIMMYT)

Vouchers for transparent seed access

The seed fairs culminated in the distribution of seed and input vouchers. One hundred farmers were selected through a transparent raffle and redeemed their vouchers at their preferred seed company stands. They then also had the option to purchase additional seed, fertilizer and chemicals using their own cash.

Particularly high sales were recorded for Provitamin A orange maize, which sold out on both seed fair days. Stress-tolerant varieties such as ZM 309 and ZM 523 from Zimbabwe Super Seeds, ZM521 from Champion Seeds, and MRI 514 from Syngenta were also favorites among the farmers, while white sorghum and cowpea varieties such as CBC2 also sold well. Most of these varieties were already known to farmers as they had seen them growing for two years in CIMMYT’s mother trials of Ward 17.

The seed fairs ended on a high note with a total of 1.2 tons of seed sold to farmers on both days and agro-dealers hailed the fairs as a timely business venture for creating linkages and bringing seed suppliers on-site to assess their shops. A post-seed fair monitoring exercise will soon follow up on farmers’ use of the seed and the performance of demo packs and purchased varieties.

The Zambuko/R4 Rural Resilience Initiative supported by the United States Agency for International Aid (USAID), Swiss Agency for Development and Cooperation (SDC) and the World Food Programme (WFP) aims to increase farmer resilience and capacity to withstand climatic shocks and stresses in rural communities of Masvingo, Mwenezi and Rushinga in Zimbabwe.

Scientific opportunities and challenges

Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)
Maize and wheat fields at the El Batán experimental station. (Photo: CIMMYT/Alfonso Cortés)

The first meetings of the Accelerating Genetic Gains in Maize and Wheat for Improved Livelihoods (AGG) wheat and maize science and technical steering committees — WSC and MSC, respectively — took place virtually on 25th and 28th September.

Researchers from the International Maize and Wheat Improvement Center (CIMMYT) sit on both committees. In the WSC they are joined by wheat experts from national agricultural research systems (NARS) in Bangladesh, Ethiopia, Kenya, India, and Nepal; and from Angus Wheat Consultants, the Foreign, Commonwealth & Development Office (FCDO), HarvestPlusKansas State University and the Roslin Institute.

Similarly, the MSC includes maize experts from NARS in Ethiopia, Ghana, Kenya and Zambia; and from Corteva, the Foundation for Food and Agriculture Research (FFAR), the International Institute for Tropical Agriculture (IITA), SeedCo, Syngenta, the University of Queensland, and the US Agency for International Development (USAID).

During the meetings, attendees discussed scientific challenges and opportunities for AGG, and developed specific recommendations pertaining to key topics including breeding and testing scheme optimization, effective engagement with partners and capacity development in the time of COVID-19, and seed systems and gender intentionality.

Discussion groups noted, for example, the need to address family structure in yield trials, to strengthen collaboration with national partners, and to develop effective regional on-farm testing strategies. Interestingly, most of the recommendations are applicable and valuable for both crop teams, and this is a clear example of the synergies we expect from combining maize and wheat within the AGG project.

All the recommendations will be further analyzed by the AGG teams during coming months, and project activities will be adjusted or implemented as appropriate. A brief report will be submitted to the respective STSCs prior to the second meetings of these committees, likely in late March 2021.