Skip to main content

research: Sustainable agrifood systems

Md. Shariful Islam

Md. Shariful Islam is a Machinery Development officer in the Sustainable Agrifood Systems (SAS) program in Bangladesh.

He has a bachelor’s degree in mechanical engineering from the IUBAT-International University of Business Agriculture and Technology and more than ten years of experience as a mechanical engineer across different industries in Bangladesh. Islam has worked as a senior assistance manager at PEB Steel Alliance Ltd. (PEBSAL) as a mechanical engineer at Quazi Enterprises Limited (QEL) and at Dhaka Tobacco Industries.

Md Fazlul Karim

Md. Fazlul Karim is a machinery development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) Program in Bangladesh. He completed an undergraduate and masters degree at Bangladesh Agricultural University in agricultural engineering and technology, with a major in farm power and machinery.

After that, Karim worked as an agricultural engineer under the Government of Bangladesh Enhancement of Crop Production through Improved On-Farm Water Management Technologies project, working in the Department of Agricultural Extension.

In addition, Karim has experience in conducting training for farmers at the Farmers Field School, organizing field days for machinery (including combine harvesters, reapers, rice transplanters and bed planters), supervising and monitoring project works, and providing technical support to beneficiaries.

Md. Rokonnuzzaman Rokon

Md. Rokonnuzzaman Rokon is a machinery development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He graduated from Hajee Mohammad Danesh Science and Technology University in 2014 with a degree in agricultural engineering, before completing a masters in irrigation and water management at Bangladesh Agricultural University.

After finishing his masters, Rokon joined Solargao Ltd as an assistant engineer to a solar irrigation project, before becoming a lecturer at the Government Shahid Akbar Ali Science and Technology College. He joined CIMMYT in 2022.

CGIAR Initiative: Sustainable Intensification of Mixed Farming Systems (SI-MFS)

Most agricultural production in the Global South takes place in mixed farming systems, which allow farmers to diversify risk from single crop production, use labor efficiently, access cash and add value to products. Key drivers — climate change, population pressure, urbanization, water scarcity, changing diets, volatile food prices — mean that flexible and accelerated changes in mixed farming systems will be needed to achieve global targets such as the Sustainable Development Goals. Sustainable intensification, or the production of more food on the same piece of land while reducing the negative environmental impact, is a viable avenue.

Two types of hurdles must be overcome to adequately meet the challenge at farming systems level. One hurdle is to ensure efficient coordination, integration and transfer of innovations, information, tools and standardized methodologies. A second hurdle is to integrate multiple biophysical and socio-economic thematic-level outputs and identify strategies that minimize trade-offs and maximize synergies, resulting in multiple impacts at scale.

Objective

This Initiative aims to provide equitable, transformative pathways for improved livelihoods of actors in mixed farming systems through sustainable intensification within target agro-ecologies and socio-economic settings.

Activities

This objective will be achieved through:

  • Analyzing status, trends and future dynamics of mixed farming systems to identify entry points for equitable sustainable intensification, to mitigate negative impacts of change and seize emerging opportunities for livelihoods.
  • Building methods and tools for sustainable intensification of mixed farming systems to support decisions on what kind of sustainable intensification might work where, and for whom, in specific contexts.
  • Participatory co-design of mixed farming systems with evidence-based, validated sustainable intensification innovation packages that are responsive to improving efficiency, equity and resilience, in regions where mixed farming systems dominate the landscape.
  • Advancing and supporting scaling of innovations, through strategic partnerships and building the capacity of relevant actors in scaling approaches — a gender-transformative approach will be central to all innovation and scaling design to enhance equity.
  • Capacity-building for mixed farming system design and analyses, to support long-term impact on university and college students, scientists, extension agents, farmers, private sector, policy makers and development actors.

Outcomes

Proposed 3-year outcomes include:

  1. Smallholder farmers use resource-efficient and climate-smart technologies and practices to enhance their livelihoods, environmental health and biodiversity.
  2. Research and scaling organizations enhance their capabilities to develop and disseminate innovations.
  3. Smallholder farmers implement new practices that mitigate risks associated with extreme climate change and environmental conditions and achieve more resilient livelihoods.
  4. Women are youth are empowered to be more active in decision-making in food, land and water systems.
  5. National and local governments utilize enhanced capacity to assess and apply research evidence and data in policymaking processes.

Why co-creation is vital for sustainable agriculture

Agricultural mechanization engineer Subash Adhikari adjusts a maize shelling machine on a farmerÂŽs verandah in Rambasti, Kanchanpur, Nepal. (Credit: P. Lowe/CIMMYT)

The adoption of climate-smart agricultural production processes and technologies is a vital strategy in attempts to mitigate the global impacts of climate change without compromising on food security. However, supporting farmers to permanently implement new technologies and approaches requires a deep understanding of their needs, robust training, and effective transfer of knowledge.

At the International Maize and Wheat Improvement Center (CIMMYT), projects across the Global South aim to embed agrifood systems that are sustainable for all.

To share how CIMMYT empowers farmers and develops new technologies, Director General Bram Govaerts attended a panel event hosted by the Business Council for International Understanding (BICU) on September 19. For an audience of foreign government officials, multilaterals, and private sector executives, panelists introduced new perspectives to support global food security efforts and inspire greater collaboration.

Partnership approach

Panelists were asked to explain the technologies that can be unlocked by agricultural financial mechanisms, referencing how research and development is keeping pace with the quick adaptations needed by farmers to address climate change.

Examples from CIMMYT’s participation in the AgriLAC Resiliente CGIAR Initiative, a project for sustainable agricultural development in Latin America and the Caribbean, highlighted the innovative partnerships that are pushing forward research and development in the sector, enabling food systems and actors to act quickly to meet food security needs, mitigate climate hazards, stabilize communities and reduce forced migration.

Scientists are conscious of ensuring that solutions to one challenge are not the cause of new problems elsewhere; co-development is essential to this, ensuring the views of all actors are represented. Using the Integrated Agri-food System Initiative (IASI) methodology, created by CIMMYT in partnership with the Alliance of Bioversity International and the International Center for Tropical Agriculture (CIAT), projects can develop strategies and actions with a significant likelihood of supportive public and private investment that will transform food systems.

Expertise from farmers

Even the best agricultural technology in the world is only effective if it is used. When discussing barriers to the implementation of technology, Govaerts emphasized CIMMYT’s mechanization prototyping, co-creation, and experimentation work that bridges the gap between farmers and scientists and encourages adoption of new methods and tools.

Having farming influencers onboard has proved priceless, as these people co-create prototypes and experiments that demonstrate results and offer assured testimony to reluctant stakeholders.

Innovations can transform livelihoods, giving farmers a way to increase income and provide stability and better opportunities for their families – which is the most appealing reason for adoption.

Training programs are also fundamental, ensuring skills and knowledge around new technologies are freely available to farmers, technicians, and researchers. CIMMYT projects such as MasAgro in Mexico, has trained more than 3,000 producers and 400 technicians in sustainable agriculture, with more than 70,000 producers participating in educational events during the pandemic.

Hunger and climate change – a dual problem?

Conversation also centered on whether the development of new technologies is aiming to confront world hunger and climate change as separate issues, or whether solutions can be suitable for both challenges.

Essential actions to mitigate the food crisis require a global perspective, acknowledging that unexpected crises will always arise. For example, Russia and Ukraine account for 28% of the world’s wheat exports, so high prices are linked to supply chain disruption. More than 2.5 billion people worldwide consume wheat-based products, so the effects of these disruptions could mean significant hunger and potential civil unrest. Nations already in crisis, such as Yemen, Sudan and Ethiopia, may be worse hit, but other countries with high dependency on imports like Egypt are also affected.

Govaerts highlighted the inextricable links between the causes of food insecurity and climate change. He underscored CIMMYT’s holistic approach to overcoming widespread impacts on the global food system, such as the concurrent challenges of COVID-19, climate change and the Ukraine crisis, by co-developing lasting solutions incorporating these three elements:

  • Extensive research on climate change adaptation and mitigation in maize and wheat-based production systems across Africa, Asia, and Latin America.
  • Climate focused research aims to help smallholder farmers adapt to climate shocks and to raise and maintain yields profitably and sustainably by reducing greenhouse gas emissions.
  • Capacity building for stakeholders in the development and application of new technologies.

Many other deep disruptions are on their way. It is time to invest in science, research, innovation, technologies, and start practicing teamwork to allow those investments to translate into a better future for the planet, and for us.

About BICU:

BICU is a leading business-supported non-profit education initiative, established by President Eisenhower of the United States in 1955 for the purpose of facilitating public-private partnerships and high-level business to government dialogue.

Tracking improved crop varieties

Participants of the IMAGE National Advisory Committee launch event in Ethiopia. (Credit: EIAR)

Coordinating the development and deployment of improved seed varieties is a complex task involving many stakeholders, including government agencies, public and private seed sector organizations, and ultimately, farmers and farmer groups. Cooperation among these groups is vital to assess and measure the impact of improved varieties and to guide decision making for future crop breeding efforts.

The Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) project, funded by the Bill & Melinda Gates Foundation and managed by Context Global Development, is a five-year program operating in Nigeria, Tanzania, and Ethiopia designed to increase the efficacy of variety deployment by establishing, institutionalizing, and scaling up routine monitoring of improved variety adoption and turnover using genotyping technologies, focusing on wheat, maize, teff, and the common bean.

The International Center for Maize and Wheat Improvement (CIMMYT), in collaboration with the Ethiopian Institute of Agricultural Research (EIAR), launched Ethiopia’s IMAGE National Advisory Committee (NAC) February 25, 2022, in Addis Ababa.

Feto Esemo, the Director General of the Ethiopian Institute of Agricultural Research (EIAR) officially opened the workshop.

Esemo underscored in his opening remarks the NAC’s mission to promote the application of DNA fingerprinting for an accurate assessment and understanding of the adoption of improved maize and wheat varieties by small-holder farmers in Ethiopia and resolve data discrepancy among researchers.

The NAC is the highest advisory body for IMAGE’s implementation in Ethiopia and comprises seven institutions: Ministry of Agriculture (MoA), Ministry of Planning and Development (MPD), Agricultural Transformation Institute (ATI), EIAR, Central Statistical Agency (CSA), Ethiopian Biodiversity Institute (BI), and the Ethiopian Biotechnology Institute (EBI).

Kindie Tesfaye, CIMMYT senior scientist, emphasized the application of DNA fingerprint data on maize and wheat in Ethiopia and summarized the IMAGE Project.

“IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization,” said Tesfaye.

He added the IMAGE Project provides the opportunity to leverage past monitoring pilots and cross-country lessons while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years.

National maize and wheat genotyping studies in Ethiopia proved the feasibility of using DNA fingerprinting for variety monitoring at scale and CIMMYT and EIAR presented the findings to seed system and policy stakeholders with an emphasis on demonstrating how varietal identity based on genotyping compares with farmers’ elicitation, the area-weighted average age of varieties, germplasm attribution, and varietal performance.

Chilot Yirga, Deputy Director-General, Capacity Building and Administration of EIAR, emphasized the functional and structural roles of the National Advisory Committee (NAC), Country Team (CT), and Technical Working Group (TWG) of the project in the country.

EIAR, the Holetta National Agricultural Biotechnology Research Center, CSA, and CIMMYT comprise the Country Team.

Yirga also briefed the participants on the details of the Committee’s mandate and indicated the roles of all stakeholders and policymakers, specifically in DNA fingerprinting.

The workshop concluded by electing a chairperson and vice-chairperson of the committee among its members and co-project leaders from CIMMYT and EIAR.

Mohammad Shahidul Islam

Mohammad Shahidul Islam is an agricultural development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh.

After graduating in agricultural science, Islam completed a masters in agronomy. He started his professional life with the Palli Karma Sahayak Foundation (PKSF) as a technical officer focusing on poverty reduction, rural service market development, and capacity development.

Islam has been with CIMMYT since 2014 and has a decade worth of experience in agricultural research and development, providing technical and/or management to support the design and implementation of project strategies considering agriculture mechanization, livelihoods, food security, and the empowerment of women. In addition, he has expertise in knowledge management, capacity building, integrated development communications and advocacy to develop and scale-up innovations, using people-centered and community-based development approaches to sustain against climate change penalties that develop their socio-economic condition.

Kaniz Tamanna

Kaniz Tamanna is a machinery development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. She works on the Cereal Systems Initiative for South Asia – Mechanization and Extension Activity (CSISA-MEA) project, with responsibility to provide technical support to the agriculture based light engineering workshops. At CIMMYT, she is excited to have the opportunity to research different locally demanded agricultural machines such as jute decorticator machines, fodder chopper machines, onion and garlic planters, onion seed separators, and others.

Tamanna is a proud agricultural engineer, who graduated from Bangladesh Agricultural University in the department of Farm Power and Machinery. She has three publications in national level journals on rice reaper machines, rice transplanter machines and ice crusher machines for raw fish storage.

Tamanna also worked as a technical officer under a project funded by the United Nations High Commissioner for Refugees (UNHCR) at Cox’s Bazaar, Bangladesh.

A. N. M. Arifur Rahman

A. N. M. Arifur Rahman is a machinery development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He is currently working within the agricultural machinery and light engineering sector and is proud to be a member of the CIMMYT family.

Before joining CIMMYT, Rahman worked with Rangpur Dinajpur Rural Service (RDRS) Bangladesh under European Union funded projects and with ACI Motors on agricultural machinery, research and development, extension, scaling up mechanization, value chains and market systems.

Rahman is a proud agricultural engineer, graduated from the Bangladesh Agricultural University with a major in farm power and machinery. He has three national publications on agricultural machinery and additional experience in training, climate smart mechanization, people with disabilities, gender, and emergency responses on floods or natural disasters.

K.M. Zasim Uddin

K.M. Zasim Uddin is an agricultural development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He has a masters in agronomy from Rajshahi University

He is part of projects including the Cereal Systems Initiative for South Asia (CSISA), Fall Armyworm R4D and Management (FAW), Big data analytics for climate-smart agricultural practices in South Asia (Big DataÂČ CSA), and Climate Services for Resilient Development in South Asia (CSRD). His main responsibilities are research and development on agricultural mechanization for the CSISA Mechanization and Extension Activity (CSISA-MEA). He has participated in versatile training, workshops and conference programs across Asia.

Uddin has worked in different national and international non-government organizations and companies for more than 13 years, including in research and development at Syngenta Bangladesh Limited and on the Borga Chasi Unnayan Program at BRAC. He also worked as an agriculture officer under the Char Livelihood Program, funded by the United Kingdom Department for International Development.

Md. Abdul Mabud

Md. Abdul Mabud is a plant pathologist (mycology) working as an agricultural development officer with CIMMYT’s Sustainable Agrifood Systems (SAS) program in Bangladesh. He carries out research and extension work within maize and wheat-based cropping systems with a focus on different innovative crop management practices and technologies, such as agricultural mechanization, better bet agronomy, and conservation agriculture techniques.

He started his professional life in livelihood development projects and directly worked for organizations supporting children, adolescent women, new mothers, and marginal farmers in rural communities in agricultural development to improve their livelihoods. Mabud also worked on the Food Security for Sustainable Household Livelihood (FoSHoL) project implemented by Action Aid, the Livelihoods Empowerment & Agroforestry (LEAF) project implemented by Intercooperation, the Social & Economic Empowerment of Ultra Poor (SEEUP) project implemented by NETZ & BMZ, and the Sustainable Household Ability to Respond to Development Opportunities (SHOUHARDO) project implemented by CARE.

Galvanizing food systems transformation in South Asia

Solar Powered Irrigation System in Bihar, India. (Credit: Ayush Manik)

In the race to make food production and consumption more sustainable, South Asia is key.

Home to one quarter of humanity — one-fifth of whom are youth — the region has the world’s largest concentration of poverty and malnutrition. While South Asia produces one quarter of the world’s consumed food, its agrifood systems today face formidable poverty reduction, climate change adaptation and mitigation, environmental health, and biodiversity challenges. Significant hurdles remain to secure an adequate and affordable supply of diverse foods necessary for sustainable and healthy diets.

South Asia’s predominantly rice-based farming systems are crucial to food security and political and economic stability, but parts of this region are threatened by unsustainable groundwater withdrawal — the region extracts one-quarter of global groundwater — due to food and energy policy distortions. South Asia’s farmers are both contributors to and victims of climate change and extreme weather that disproportionately affect resource-poor and women farmers.

The region needs food systems that generate profits and incentivize farmers to produce nutritious foods, while also reducing prices for consumers purchasing healthy products by shortening and reducing inefficiencies within value chains. A new CGIAR Research Initiative, Transforming Agrifood Systems in South Asia (TAFSSA), aims to address challenges.

Read the full article: Galvanizing Food Systems Transformation in South Asia

Stephanie Cheesman

Stephanie Cheesman is an agronomist whose current research falls under the Innovation Science for Agroecosystems and Food Systems in Asia research theme in CIMMYT’s Sustainable Agrifood Systems (SAS) program. She is contributing to the field research activities, both on-farm and on-station, of three CGIAR Initiatives: Transforming Agrifood Systems in South Asia (TAFSSA), Sustainable Intensification of Mixed Farming Systems (SI-MFS), and Securing the Food Systems of Asian Mega-Deltas (AMD) for Climate and Livelihood Resilience.

Azahar Ali Miah

Azahar Ali Miah is a senior monitoring, evaluation and learning officer with CIMMYT’s Sustainable Agrifood Systems (SAS) project in Bangladesh.

Before joining CIMMYT in 2009, he worked with different development organizations, including projects funded by the World Bank, the Norwegian Agency for Development Cooperation (NORAD), the United Kingdom Department for International Development, the Bill & Melinda Gates Foundation and the United States Agency for International Development (USAID). He also has six years’ experience in the Bangladesh Army.

Miah has a strong ability to identify community strengths and weaknesses from field data collections. He is an excellent team builder and motivator with honed communication and analytical thinking skills. He has seven publications in national and international journals, and is an agricultural economist with an MBA.

Singh recognized for wheat crop improvement

Ravi Singh delivers a lecture during the 61st All India Wheat and Barley Research Workers’ Meet celebrating the fruitful partnership of CIMMYT and ICAR. (Credit: SAWBAR)

Ravi Singh, head of wheat improvement and rust research at the International Maize and Wheat Improvement Center (CIMMYT), received the Sh. VS Mathur Memorial Award 2022 for outstanding contribution in the field of wheat crop improvement from the Society for Advancement of Wheat and Barley Research (SAWBAR).

Singh received the award from T. R. Sharma, Deputy Director General of the Indian Council of Agricultural Research (ICAR) and G. P. Singh, Director of the Indian Institute for Wheat and Barley Research (IIWBR) at ICAR.

As recipient of the award, Singh delivered a lecture during the 61st All India Wheat and Barley Research Workers’ Meet in Gwalior, India, on August 29. He highlighted and praised the partnership between India and CIMMYT as essential for accelerating gains in wheat yield despite the stresses of climate change thanks to improved resilience in new varieties and earlier sowing.

“The ICAR-CIMMYT wheat improvement partnership remains crucial for delivering new varieties with higher rates of genetic gain in farmers’ fields to enhance productivity, climate resilience, disease resistance and nutrition while meeting market needs,” he said.

Successes of the partnership include integrated breeding with a common agenda, commercialized varieties that are adapted to flexible sowing dates including early sowing, diverse and durable resistance to rust diseases, adoption of wheat blast resistant varieties in large areas, biofortified and high-quality varieties, and the move towards mainstreaming of zinc (Zn) biofortification.

Singh also paid homage to the award’s namesake, as VS Mathur’s “wheat varieties once occupied fields of many millions of farmers and provided food and nutrition to many more millions throughout India and beyond”.

Singh, a CIMMYT scientist, receives the Sh. VS Mathur Memorial Award for his outstanding contribution in the field of wheat crop improvement. (Credit: SAWBAR)

About SAWBAR:

SAWBAR was founded in 2007 and is housed at ICAR-Indian Institute of Wheat and Barley Research Karnal (Haryana) India. The Society presently has 300 life members and more than 320 annual and student members. SAWBAR is playing a significant role in bringing wheat and barley researchers on one platform for the exchange of innovative research and dissemination of knowledge related to the latest research happenings in the area of wheat and barley improvement. Annually, SAWBAR gives awards to pioneer cereal workers in various award categories. 

About the Sh. VS Mathur Mathur Memorial Award:

The Sh. VS Mathur Memorial Award was constituted in year 2018 in the memory of eminent wheat worker Sh. VS Mathur. Mathur was one of the pioneer wheat workers who worked tirelessly with MS Swaminathan and HK Jain and developed a large number of high-yielding wheat varieties viz. Heera, Moti, Janak (HD 1982), Arjun (HD 2009), HD 2177, HD 2182, HD 2204, HD 2236, HD 2278, HD 2281, HD 2285, HD 2329, HD 2307 and HD 2327 for various regions of India.