The importance of agroecological methods is starting to be a necessity across the Congo Basin. CIMMYT researcher, Prasanna Boddupalli, emphasises the importance of agroecological methods for biodiversity-smart agricultural development.
Written by mcallejas on . Posted in Uncategorized.
Moben Ignatius is the Agriculture Research Associate in the SAS program at CIMMYT. His role revolves around fostering sustainable agricultural practices and innovative technologies and methods that cater to Rice-Wheat cropping systems.
His previous work role extended to forging alliances with diverse organizations and governmental bodies to advocate for the expansion of these beneficial agricultural techniques. Employing meticulous monitoring, evaluation, and data-driven surveys, ensuring the successful execution and scalability of projects.
Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.
Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.
“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,â explained Lopez-Ridaura. âFull-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.â
Conserving crop residues favors production systems and provides various benefits. (Photo: Simon Fonteyne/CIMMYT)
Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.
They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.
âUsing a modeling framework from Australiaâs Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmersâ adoption, in riskier settings.â
Advancing more sustainable farming in Mexico
Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.
CIMMYT’s multi-crop, multi-use zero tillage seeder at work on a long-term conservation agriculture (CA) trial plot, left, at the center’s headquarters at El BatĂĄn, Mexico. (Photo credit: CIMMYT)
CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.
Looking to lower his farm costs without losing output, wheat and oil crop farmer Alfonso Romo of Valle de Mayo, state of Sonora, began practicing CA in 2010. âWe’ve learned a lot and this year (2022) we obtained the same yields as we used to get through conventional practices but, following more sustainable farming methods, with a 30 and even 40% savings in fertilizer.”
With CA practices he adopted in 2018 through MasAgro, maize farmer Rafael Jacobo of Salvatierra, state of Guanajuato, obtained a good crop despite the late dispersal of irrigation water. Seeing his success and that of other nearby farmers, neighbor Jorge Luis Rosillo began using CA techniques and has noticed yearly improvements in his soil and yields. “I did everything the technicians recommended: keeping the residues on the soil and renewing only the sowing line on soil bedsâŠ. There are lots of advantages but above all the (cost) savings in land preparation.”
The Milpa Sustentable project in the Yucatan Peninsula is recognized by the UN as a world example of sustainable development. (Photo: CIMMYT)
Farmers in the Milpa Sustentable project in the YucatĂĄn Peninsula have improved maize yields using locally adapted CA methods, in collaboration with the Autonomous University of YucatĂĄn. Former project participant Viridiana Sei said she particularly liked the respectful knowledge sharing between farmers and project technicians.
CA practices have allowed more than 320 women farmers in the Mixteca Region of the state of Oaxaca to provide more and better forage for the farm animals they depend on, despite drought conditions, through the Crop and Livestock Conservation Agriculture (CLCA) project supported by the International Fund for Agricultural Development (IFAD). According to farmer MarĂa MartĂnez Cruz, “… it hasn’t rained much and everything’s dry, but our verdant oat crop is allowing us to keep our farm animals fed.”
With CLCA support and facing Mexico’s increasingly fickle rainy season, farmer Mario GuzmĂĄn Manuel of San Francisco ChindĂșa village in Oaxaca began using CA and says he’ll never go back to the old practices. “We used to do as many as two harrow plowings to break up the soil, but if we leave the residues from the previous crop, they hold in the soil moisture more effectively. People hang onto the old ways, preferring to burn crop residues, but we should understand that this practice only deprives the soil of its capacity to produce.”
Written by mcallejas on . Posted in Uncategorized.
Dashaa is an Agricultural and Development Economist based in Kenya. She joined CIMMYT in April 2023.
Before joining CIMMYT, Dashaa worked at the Asian Development Bank Institute (ADBI) and Japan International Research Center for Agricultural Sciences (JIRCAS) as a Research Associate, as a Consultant for the Food and Agriculture Organization (FAO) in Mongolia, and the Ministry of Food and Agriculture of Mongolia as an economist/policy specialist.
Dashaa has a PhD in Agricultural Economics from the University of Tokyo.
Written by mcallejas on . Posted in Uncategorized.
Dr. Bhavani P is the Geospatial Analyst in the Sustainable Agrifood Systems program at CIMMYT. She obtained a Ph.D. degree from the University of Hyderabad, Hyderabad on the research topic âSpatio-temporal Assessment of Agricultural Performance and its Drought Vulnerability using Long-term Satellite and Climate Dataâ.
Dr. Bhavani P. provides solutions to farmers (at various scales â farmers to policy level) using remote sensing and geoprocessing. She acquired contemporary professional knowledge, climate data processing, machine learning techniques for image processing, R, and Google Earth Engine (GEE) with programming proficiency in JavaScript, and Python.
Written by mcallejas on . Posted in Uncategorized.
Dr. Aravindakshan is a Scientist in CIMMYT’s Sustainable Agrifood Systems program, specializing in adoption, scaling, and innovation systems.
He contributes to the TAFSSA initiative, focusing on scaling, extension, adoption, and monitoring of agrifood systems innovations. With a Ph.D. from Wageningen University in the Netherlands and MSc degrees from the University of Copenhagen, Denmark, and TU Dresden, Germany, he brings over two decades of interdisciplinary expertise in Innovation Systems and Natural Resource Economics. Dr. Aravindakshan has collaborated with governments, NGOs, and organizations like FAO, JICA, and WWF across South Asia, the Middle East, and Europe, contributing to multi-country projects funded by the EU, USAID, and the Bill & Melinda Gates Foundation.
Moreover, he has published high-impact journal articles aimed at guiding policy formulation in the global south.
Written by mcallejas on . Posted in Uncategorized.
Kabita Kunwar is the ICT and Data Analyst in the Sustainable Agrifood Systems program at CIMMYT. She specializes in data collection app administration, digital advisories, fintech, and facilitating digital finance for agribusinesses. Kabita is driving the adoption of proven technologies and advisories to benefit smallholder farmers and agribusinesses in Nepal.
Written by mcallejas on . Posted in Uncategorized.
Anurag Kumar is a senior research associate in CIMMYT under the Cereal System Initiative for South Asia (CSISA) project in India.
He is involved in Coordinating trials and demonstrations of the rice-wheat cropping system in Bihar. Other than coordinating trials and demonstrations, he is effectively strengthening partnerships with national and private partners. The extension of proven technologies is the core of the project so synergizing the effort of each partner for better spread.
Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexicoâs Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known as âMasAgroâ has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.
As a result of MasAgro research hubs operating across Mexicoâs multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems â including improved varieties and resource-conserving, climate-smart practices â yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.
The MasAgro biodiversity component gathered and analyzed one of the worldâs largest-ever samplings of maize and wheat genetic diversity, including CIMMYTâs own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the projectâs online repository.
MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.
State-level partners sign on to MasAgro
Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El BajĂo region, one of Mexicoâs most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects â challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.
MasAgro generated more sustainable production and irrigation systems in Guanajuato, Mexico. (Photo: ACCIMMYT)
CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.
An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.
Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kelloggâs, and Heineken, among other profitable and responsible public-private arrangements.
Acclaim and interest abroad for MasAgro
MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:
Dignitaries applaud MasAgro launch at CIMMYT. (Photo: Xochiquetzal Fonseca/CIMMYT)
The Inter-American Development Bank (IDB) mentioned the program as an example of successful extension.
The Organization for Economic Cooperation and Development (OECD) cited MasAgro for promoting productive and sustainable agriculture.
The United Nations Development Program (UNDP) lauded MasAgro for promoting climate-resilient agriculture.
During the 2018 G20 summit in Argentina, MasAgro was considered a model for coordinating agricultural research, development, innovation, technology transfer, and public-private partnerships.
Bram Govaerts, now Director General of CIMMYT, received the 2014 Norman Borlaug Field Award for his work at the time as leader of MasAgroâs farmer outreach component.
MasAgro research hubs were recently used as a guide by USAID for efforts in Sudan and Eastern Africa. They have also been replicated in Guatemala and Honduras.
Moving out and beyond
In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.
Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.
Farmer Marilu Meza Morales harvests her maize in ComitĂĄn, Mexico. (Photo: Peter Lowe/CIMMYT)
As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.
âCIMMYTâs integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,â said Govaerts.
The 2021 Global Agricultural Productivity (GAP) report âStrengthening the Climate for Sustainable Agricultural Growthâ endorsed IASI, saying it ââŠis designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.â
Written by mcallejas on . Posted in Uncategorized.
Deepak is a consultant in the Sustainable Agrifood Systems program at CIMMYT. His area of expertise encompasses conservation agriculture, mechanization, precision agriculture, resource management and systems research.
The Coalition on Sustainable Productivity Growth for Food Security and Resource Conservation (SPG Coalition) brings together researchers, non-governmental organizations, and private sector partners to advance a world with greater access to nutritious food and affordable diets. The Coalition recognizes that increasing the productivity of natural resources through climate adaptation and mitigation is instrumental to reaching this goal.
In a recent report, the SPG Coalition provides a path forward for NGOs, research institutions, and government agencies to strengthen agrifood and climate policies. The report contains real-life, evidence-based examples to further the sustainable production and conservation of natural resources, detailing the potential impacts on social, economic, and environmental conditions.
CIMMYT features prominently in the report as a leading organization focused on 4 main areas: climate-smart agriculture, nutrient-use efficiency (NUE), and pest and fertilizer management.
Nutrient-use efficiency and fertilizer management
While chemical fertilizers increase crop yields, excessive or improper use of fertilizers contributes to greenhouse gas emissions (GHG) and increases labor costs for smallholders. Efficient NUE is central to nutrient management and climate change mitigation and adaptation.
Women using spreader for fertilizer application. (Photo: Wasim Iftikar/CSISA)
In India, CIMMYT, along with the Borlaug Institute for South Asia (BISA), CGIAR Research Centers, and regional partners, tested digital tools like the Nutrient Expert (NE) decision support tool which measures proper fertilizer use for optimized yields and provides nutrient recommendations based on local soil conditions.
The majority of smallholders who applied the NE tool reported higher yields while emitting less GHG emissions by 12-20% in wheat and by around 2.5% in rice as compared with conventional fertilization practices. Farmers also recorded double economic gains: increased yields and reduced fertilizer costs. Wider government scaling of NE could enhance regional food security and mitigate GHG emissions.
The Feed the Future Nepal Seed and Fertilizer (NSAF) project, led by CIMMYT and USAID, advocates for climate-smart agriculture by linking smallholders with improved seed, providing capacity-building programs, and promoting efficient fertilizer use. With a vast network established with the support from the Government of Nepal, NSAF successfully provides smallholders with expanded market access and nutritious and climate-resilient crop varieties.
Climate-smart maize breedingÂ
Since its arrival to sub-Saharan Africa (SSA) in 2016, fall armyworm (FAW) has devastated maize harvests for countless smallholders on the continent. Economic uncertainty caused by unstable yields and climate stressors like drought coupled with this endemic pest risk aggravating food insecurity.
Fall armyworm. (Photo: Jennifer Johnson/CIMMYT)
CIMMYT and NARES Partner Institutions in Eastern and Southern Africa are spearheading a robust pest management project to develop, screen, and introduce genetically resistant elite maize hybrids across SSA. South Sudan, Zambia, Kenya, and Malawi have already deployed resistant maize varieties, and eight other countries in the region are projected to release their own in 2023. These countries are also conducting National Performance Trials (NPTs) to increase awareness of host plant resistance for the sustainable control of FAW and to sensitize policymakers on accelerating the delivery of FAW-tolerant maize varieties.
The establishment of FAW screening facilities in Africa permits more rapid detection and breeding of maize varieties with native genetic resistance to FAW, facilitating increased deployment of these varieties across Africa. The sustainable control of FAW demands a rapid-response effort, overseen by research organizations and governments, to further develop and validate genetic resistance to fall armyworms. Achieving greater impact for maize smallholders is critical to ensuring improved income and food security in Africa. It is also paramount for biodiversity conservation and removing labor burden on farmers applying additional synthetic pesticides to prevent further losses by the pest.
âThe SPG Coalition report emphasizes the power of partnership to enhance financial and food security for smallholder communities in the Global South. This is fully in line with the recently launched CIMMYT 2030 strategy. Itâs also an important reminder to assess our strong points and where more investment and collaboration is needed,â said Bram Govaerts, CIMMYT director general.
We are all aware the immense challenges countries face due to climate change, particularly its impacts on vital sectors like agriculture, forestry and livestock. The agriculture industry is profoundly affected by unpredictable weather patterns and frequent incidences of extreme events such as floods, droughts and landslides. Consequently, finding effective solutions to address these issues becomes of paramount importance. Climate-resilient agriculture necessitates the adoption of sustainable crop and land management technologies.
(Photo: Karen Conniff/IWMI)
In the context of South Asia, Sri Lanka stands out as one of the most severely affected countries by the impacts of climate change. The nation contends with a multitude of hazards, ranging from floods and landslides in the western and southwestern regions, drought and pest outbreaks in the northern region and coastal erosion along the coastal belts. These examples underscore the growing complexity and challenges associated with managing climate risks and patterns, especially when multiple hazards occur simultaneously.
In response, Sri Lanka has implemented climate-smart agricultural interventions, including the development and introduction of stress-tolerant crop varieties, rainwater harvesting, the introduction of energy-efficient irrigation systems, implementation of soil and water conservation programs and crop diversification. However, the agricultural sector still faces formidable challenges. There is a lack of up-to-date information on climate change and its impacts, a fragmented institutional setup, overlapping mandates and limited capacity for information sharing. To address these issues, we require zone-based planning and institutional collaboration. Integrating spatial considerations into rehabilitation and development interventions is the main consensus among stakeholders. All ongoing and planned programs need vulnerability information, and there is a consensus among stakeholders on the need to integrate spatial considerations into rehabilitation and development interventions.
This is where the Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project becomes an invaluable asset in expediting Sri Lanka’s journey towards climate-smart agriculture. Recent evidence highlights the need for a comprehensive assessment of location-specific climate actions to bridge knowledge gaps within the country. Through the Atlas, we will quantify localized climatic risks today and, in the future, assess their likely impacts on agriculture and identify key adaptation options to mitigate these risks. This knowledge will strengthen Sri Lanka’s food security and reduce its vulnerability to climate-related hazards. By complementing traditional methods of risk characterization with novel approaches like intensity and frequency analysis of hazards and historical crop yields, our efforts will gain added efficacy.
ACASA, therefore, offers us a unique opportunity to foster collaboration, share knowledge and develop evidence-based innovative solutions to confront the challenges posed by climate change in Sri Lanka. It serves as a platform to connect hazards, practices, tools and adaptation options. By intertwining various aspects of climate change and gaining a deeper understanding of its spatial and temporal dimensions through the Atlas, Sri Lanka is steadfast in its commitment to building resilience and creating a sustainable future for generations to come.
Bram Govaerts, CIMMYT director general, participates in the World Food Prize and Borlaug Dialogue. (Photo: CIMMYT)
The award honors the legacy of Robert Glenn Anderson (1924-81), eminent Canadian agricultural scientist and former CIMMYT wheat research director who helped ignite in India the âgreen revolution,â a rapid modernization of agriculture during the 1960s-70s and by which that nation went from grain shortages and hunger to becoming a leading grain exporter.
A bioscience engineer and soil scientist who is a PhD graduate from Belgiumâs Katholieke Universiteit Leuven and has worked in Africa, Asia, and Latin America, Govaerts will give the keynote address âAgrifood system for a food and nutrition secure world: From efficiency to resilience,â describing in part the relevance of CIMMYT and its partnersâ work.
âEarly warning and surveillance systems are key to building resilience in food insecure communities and regions,â said Govaerts. âSupporting this, in concert with national agricultural research systems and private partners, CIMMYT crop breeding programs yearly disseminate dozens of disease resistant, climate resilient varieties of maize, wheat, and dryland cereals, where they are most needed.â
âThe Centerâs science and partnerships have helped prevent the spread of deadly crop pests and diseases in sub-Saharan Africa and South Asia,â he added, âand we have new âGlenn Andersonsâ who are doing exactly what is needed to strengthen global food security, with plant health innovations and systemic thinking.â
Borlaugâs wish: Take it to the farmer
Working with scientists, training specialists, extension agents, farmers, and communications and technology experts, a CIMMYT program led by Govaerts for over a decade in Mexico applied the admonition of Norman E. Borlaug, Nobel laureate and colleague of Anderson, to âtake it to the farmer,â combining the right seed with the right conservation agriculture production practices embedded in integrated markets, while recognizing and incorporating farmer knowledge.
âOngoing efforts of the Center and national and local partners are promoting the adoption of conservation agriculture-based sustainable intensification to transform food systems throughout the Global Southâ Govaerts explained. âThe training offered, and the advisory systems supported by CIMMYTâs work aim to empower women and disadvantaged social groups, while offering opportunities for fulfilling livelihoods to a new generation of farmers who will grow nutritious food for all.â
A CIMMYT scientist since 2007 as a Post-doctoral Fellow, Maize and Wheat based Cropping Systems Management, and current director general, in 2014 Govaerts received the World Food Prizeâs âNorman Borlaug Award for Field Research and Application from the World Food Prizeâ for the development and spread of sustainable agricultural systems. He is A.D. White Professor-at-Large at Cornell University and, in 2020, was elected a Fellow of the American Society of Agronomy (ASA) for outstanding contributions to the field of agronomy.
The Robert Glenn Anderson lecture series on the security of the world food supply was first given at joint meetings of the Canadian Phytopathological Society (CPS) and American Phytopathological Society (APS) in 1986 and an endowment fund was then established by the CPS. More recently, the Lecture has been given at the International Congresses of Plant Pathology (ICPP1998 to 2018).
As a Robert Glenn Anderson lecturer, Govaerts enters the hallowed company of other distinguished scientists who have been invited to give the address, including Norman E. Borlaug (1992); Per Pinstrup-Andersen, Emeritus Professor of Cornell University (2000), South African researcher Jennifer A. Thomson (2015); and late World Food Prize laureate and CIMMYT wheat director, Sanjaya Rajaram (2019).
For more information or interviews:
Ricardo Curiel Communications manager to the director general
CIMMYT r.curiel@cgiar.org
Nepal, like other South Asian nations, faces significant environmental challenges, including climate change and air pollution. The impacts of climate change in Nepal are profound, with species moving to higher elevations, glaciers melting and an increase in extreme precipitation events. Despite only contributing a fraction of global greenhouse gas emissions, Nepal ranks fourth on the Global Climate Risk Index. This vulnerability is attributed to the country’s unique geographical features, characterized by remarkable topographical variation spanning from 60 to 8,848 meters within just 190 kilometers from North to South. In addition to economic challenges and micro-climates, Nepal is highly susceptible to the consequences of climate change, particularly in the mid-and far-western hills and mountains.
Photo: (Neil Palmer/CIAT and CCFAS)
To tackle these challenges, Nepal has taken proactive measures by implementing various adaptation strategies. Key initiatives include the National Adaptation Program of Action (NAPA), National Adaptation Plan (NAP 2021-2050), Agriculture Development Strategy (ADS-2015-2035) and the Green, Resilient, & Inclusive Development (GRID) plan. These initiatives have played vital roles in building resilience. Nepal has also launched the Climate-Smart Village program at the local level in all seven provinces, offering grassroots training on carbon and energy efficiency, biodiversity conservation and water management practices. Another notable achievement is the ‘The Himalayan Climate and Water Atlas,’ which utilizes data from five major river basins and historical climate records to project future climate hazards and extreme events.
Furthermore, Nepal developed the National Climate Change Policy (NCCP) in 2019, prioritizing eight thematic areas including agricultural and food security. The Vulnerability and Risk Assessment Report by the Ministry of Environment (2021) has also examined vulnerability and risks in eight thematic areas and one cross-cutting area for the preparation and implementation of the National Adaptation Plan. This report not only assesses the various dimensions (exposure, sensitivity, adaptive capacity, and risk) of climate change impacts across multiple sectors but also offers a range of adaptation options to address the adverse effects.
To successfully implement and translate the NCCP into action, it is crucial to identify where and how to invest. By aligning with the Atlas of Climate Adaptation in South Asian Agriculture (ACASA), Nepal reaffirms its commitment to addressing the intersection of agriculture and the environment. By leveraging the Atlas, Nepal will expedite its efforts to mitigate the impacts of climate change on agriculture, with a comprehensive understanding of various dimensions of risks and vulnerability. The Atlas will provide a detailed breakdown of risks specific to different commodities, enabling the development of effective mitigation and adaptation solutions.
By complementing ongoing efforts to manage risks and enhance adaptation strategies, the Atlas will serve as a testament to Nepal’s determination to strengthen its capacity to cope with climate change. It will make an invaluable contribution to climate change adaptation technologies, assisting government entities at all levels in formulating effective policy guidelines. By integrating research findings, indigenous knowledge, and cutting-edge technologies, the Nepal Agricultural Research Council (NARC) firmly believes that the Atlas represents another crucial step towards implementing a holistic approach to mitigate and adapt to the negative impacts of climate change on agriculture.
Piece by Dhruba Raj Bhattarai, executive director, Nepal Agricultural Research Council (NARC), Nepal
Bangladesh is one of the most climate-vulnerable countries in the world. The climate risks are negatively impacting the country’s agricultural sector, which constitutes nearly 12% of the countryâs GDP. Additionally, 40% of the countryâs workforce rely on agriculture for a major portion of their income (BBS, 2021-22).
Despite these challenges, Bangladesh has demonstrated remarkable economic growth by strategically investing in climate resilience and disaster preparedness over the years. The country has gained global recognition as a leader in these areas, driving its overall development. However, escalating climate risks continue to pose threats to Bangladesh’s progress, particularly impacting the most vulnerable segments of society and jeopardizing the nation’s growth trajectory.
Photo: (Harikhali in Paigachha/CCAFS)
In response to these challenges, Bangladesh has made concerted efforts to develop climate adaptation strategies. A significant milestone was the launch of the GCA Global Hub on locally led adaptation by the Honorable Prime Minister Sheikh Hasina in 2022. This groundbreaking initiative aims to support one million climate-vulnerable migrants in Bangladesh. The government has also formulated policies, plans and programs to combat the impacts of climate change. The Bangladesh Climate Change Strategy and Action Plan (BCCSAP), formulated in 2009 and updated in 2022, focuses on six thematic areas, with five and six emphasizing adaptation and mitigation, respectively. Another important initiative is the Bangladesh Delta Plan 2100, prepared in 2017, which categorizes the entire country into six hotspots. To safeguard the agricultural sector from climate change, Bangladesh has also developed vulnerability Atlases such as the ‘Bangladesh Climate and Disaster Risk Atlas: Volume 1 & 2’ and the ‘Climate Adaptation Services Bangladesh (Haor region).’
While significant progress has been made in risk mapping, there is room for improvement. For instance, the current Atlases operate at the district level, and there is immense potential to downscale them to the upazila (sub-district) level to achieve enhanced granularity. Additionally, transforming the Atlases from report format to a more interactive and user-friendly online one would be beneficial.
The Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project aligns with the goals of BCCSAP, focusing on location-specific climate change adaptation and mitigation strategies in agricultural production. The Atlas will play a crucial role in quantifying localized climatic risks, assessing their impacts on agriculture today and in the future, and identifying key adaptation options to mitigate these risks. This knowledge will strengthen Bangladesh’s food security and reduce its vulnerability to climatic risks.
The Bangladesh Agricultural Research Council (BARC) will actively utilize the Atlas, leveraging agro-geospatial data to expedite decision-making processes. BARC will further leverage its expertise in geospatial tools, crop zoning information systems, GIS-based mobile apps, climate information databases and drought monitoring systems, further combined with the knowledge base of Atlas to ensure informed and evidence-based actions. Moreover, collaborating with ACASA to develop an advanced and interactive online Atlas expands the country’s scope and fosters stakeholder participation, enabling informed decision-making and refined risk characterization at a granular level.
Piece by Shaikh Mohammad Bokhtiar, Executive Chairman, Bangladesh Agricultural Research Council (BARC), Bangladesh