Dilshad Gani
Dilshad Gani is the Financial Analyst in the Sustainable Agrifood Systems (SAS) program at CIMMYT in Patna, India.
Dilshad Gani is the Financial Analyst in the Sustainable Agrifood Systems (SAS) program at CIMMYT in Patna, India.
Harshit Rajan is the GIS Specialist in the SAS program at CIMMYT. His role revolves around geospatial activities, primarily centered around his roles within CSISA and SIS. Within the confines of CIMMYT, his professional pursuits are firmly directed toward two critical areas: Drainage class mapping and Digital Soil Mapping, both of which are augmented by cutting-edge machine-learning techniques.
The inaugural Rwanda National Seed Congress, which took place in Kigali on July 31 and August 1, 2023, marked a significant milestone for the country’s seed industry. Themed “Private Sector Strategic Roadmap for the Seed Industry 2030”, the event brought together key stakeholders from the government, public, and private sectors to address challenges and opportunities in the national seed value chain.
Discussions centered around pertinent issues concerning the seed sector in general, with a particular focus on the Rwandan National Seed Strategic Roadmap. This document, which was developed through consultations with various stakeholders, provides a comprehensive plan to steer the industry towards success and sustainable growth.
“Enhancing and managing the seed system is a complex endeavor that requires the collaboration of various stakeholders,” said Chris Ojiewo, CGIAR Seed Equal Initiative lead. “This is where public-private partnerships come in as a valuable tool for nurturing the growth and expansion of the seed industry.”
During a presentation entitled Public-private Partnership: A Tool for Development and Strengthening of the Seed Sector, Ojiewo highlighted the growing importance of collaboration and partnerships in the current seed system. He emphasized that the processes and elements that shape the seed sector are complex and extensive, making it too much for any one organization—whether public or private—to handle alone.
The way forward
During the congress, several key recommendations were proposed to increase the potential of the seed industry. The government was encouraged to seek accreditation with major seed industry quality organizations, such as the International Seed Testing Association (ISTA) and Organization for Economic Co-operation and Development (OECD) certification schemes, while adopting International Union for the Protection of New Varieties of Plants (UPOV) to establish an improved regulatory environment conducive to industry growth.
The empowerment of the National Seed Association of Rwanda (NSAR) as an advocate and facilitator for the seed industry was also highlighted as an essential measure. The government’s support in enabling the seed association to become increasingly self-regulatory is seen as crucial to the industry’s growth over the next seven years, with private seed industry players developing internal systems to ensure compliance with rules and regulations.
Another key recommendation for increasing sustainable improved seed use in Rwanda was the use of Public-Private Partnerships (PPPs), which will play a critical role in promoting the country as a seed production and trade investment destination.
Ojiewo emphasized the importance of such partnerships, noting that “PPPs have the potential to transform the seed industry by leveraging the strengths of different organizations.” He further highlighted that in addressing the challenges of global food security and sustainable development, the way forward becomes clear through collaboration, innovation, and a shared commitment to advancing agricultural progress through collaborative efforts.
The congress also focused on attracting affordable financing to scale up investments throughout the seed value chain. It was considered essential to involve industry financial players in the development of optimal financing structures to support the expansion of the industry.
As a result of the successful event, plans have already been made for the second National Seed Congress in 2024. Scheduled to take place in Kigali on July 29 and 30, 2024, the next event aims to build on the achievements of the first congress and further drive the growth of Rwanda’s seed industry.
CGIAR’s Seed Equal Initiative helps farmers by providing them with better seeds that are nutritious, preferred in the market, and that can withstand climate change. These varieties have been carefully developed to exhibit significant genetic advancements, ultimately benefiting farmers. It also makes sure that women and other marginalized groups have fair access to these seeds.
Scientists from CIMMYT, founded in Mexico in 1966, have pursued decades of participatory research with Mexico’s smallholder maize farmers to improve their local varieties for traits like yield and insect resistance, while preserving their special grain quality, as well as testing and promoting zero-tillage and other resource-conserving farming practices.
Smallholder farm operations account for more than 80% of all farms worldwide and produce roughly 35% of the world’s food, according to FAO census data and follow-up studies.
An estimated two-thirds of the Mexico’s farmers are smallholders, typically working challenging agroecologies scattered across the country’s mountainous terrain and applying generations-old subsistence practices to grow low-yielding local maize varieties.
Ancient milpa multicropping systems can lift up the present and future
The milpa intercrop — in which maize is grown together with beans, squash, or other vegetable crops — has a millennial history in the Americas and can furnish a vital supply of food and nutrients for marginalized, resource-poor communities.
One hectare of a milpa comprising maize, common beans, and potatoes can provide the annual carbohydrate needs of more than 13 adults, enough protein for nearly 10 adults, and adequate supplies of many vitamins and minerals, according to a CIMMYT-led study in the western highlands of Guatemala, an isolated and impoverished region, reported in Nature Scientific Reports in 2021.
But milpas are typically grown on much smaller areas than a hectare, so households cannot depend on this intercrop alone to satisfy their needs. A solution? Customized milpas that merge farmers’ age-old wisdom and practices with science-based innovation.
An example is planting fruit trees — guava, avocado, mango, peaches, or lime among others — among milpa crops in lines perpendicular to hill slopes. The practice was tested and promoted in the Los Tuxtlas region of the state of Veracruz by Mexico’s National Institute of Forestry, Agriculture, and Livestock Research (INIFAP) and the Colegio de Postgraduados (ColPos) and has been refined by farmers in other areas through CIMMYT-led innovation networks.
In Los Tuxtlas the practice provided added income and nutrition, dramatically reduced erosion, improved land and water-use efficiency by around 50%, and boosted soil health and fertility.
In the state of Puebla and other parts of South and southwestern Mexico, milpa-fruit tree intercrops have worked well on steep hillsides. In the state of Oaxaca, for example, versions of the practice have notably improved farming by indigenous communities in the Mixe and Mazateca regions, supported by outreach of the Mexican Agency for the Sustainable Development of Hillsides (AMDSL), a partner in a CIMMYT research hub in the region.
Research by AMDSL and CIMMYT on smallholder plots in two Oaxaca municipalities where farmers have been combining milpas with peach and avocado production and conservation agriculture practices for more than a decade found that cropping diversification, together with use of zero tillage and keeping crop residues on the soil rather than removing or burning them, raised total yearly crop outputs by as much as 1.7 tons per hectare and reduced farmers’ risk of catastrophic crop losses due to droughts or other climate extremes.
Blue maize pleases diners and delivers profits
Farmers’ local maize varieties yield less than hybrids but are still grown because they provide ideal grain quality for traditional foods, as well as marketable stalks and leaves to feed farm animals and maize husks for wrapping tamales, to name a few products.
Building on longstanding partnerships with INIFAP and the Autonomous University of Chapingo (UACh) to improve local varieties and preserve maize genetic diversity in Mexico, CIMMYT breeders have recently developed improved blue maize hybrids and open-pollinated varieties.
Sought by restauranteurs worldwide for its flavor and beauty, blue maize grain normally comes from native varieties grown by smallholder farmers on small plots with low yields and variable quality.
The new CIMMYT varieties are derived from traditional Guatemalan, Mexican, and Peruvian landraces and feature higher yields, more consistent grain quality, and enhanced resistance to common maize diseases, offering smallholders and other Mexican farmers a profitable product for the country’s booming restaurant industry and for export chains.
Parental inbred lines of the new hybrids have been distributed to private and public partners, who are developing their own hybrids and OPVs in Mexico. CIMMYT continues to test the new hybrids under various farming systems to ensure they produce stable yields when grown in farmers’ fields.
Data driven extension
Using cutting-edge data systems, CIMMYT has leveraged information from nearly 200,000 plots representing more than 26,000 hectares across diverse agroecologies to offer Mexican farmers — including smallholders — site-specific recommendations that make their farming systems more productive, resilient, and sustainable. The initiative was supported by MasAgro, an integrated development partnership of Mexico and CIMMYT during 2010-21 and funded by Mexico’s Secretariat of Agriculture and Rural Development (SADER).
Ravi Nandi joined the International Maize and Wheat Improvement Center (CIMMYT), Dhaka, Bangladesh, in 2023 as an Innovation Systems Scientist. He is an accomplished agricultural economist with over 12 years of experience in interdisciplinary research focusing on the markets, food environment, agrifood value chains, and socioeconomics.
His expertise lies in analyzing and improving different aspects of agri-food value chains, and farmer collectives, linking farmers to the market with a particular focus on governance, sustainability, innovations, and scaling. He explores institutional innovations that connect production and market-based interventions, and intricate interplay between agriculture, markets, and nutrition to address crucial issues such as poverty reduction, food security, nutrition, sustainable rural livelihoods, and resilience outcomes.
Ravi has published over 50 peer-reviewed papers, policy briefs, chapters, books and blogs.
The importance of agroecological methods is starting to be a necessity across the Congo Basin. CIMMYT researcher, Prasanna Boddupalli, emphasises the importance of agroecological methods for biodiversity-smart agricultural development.
Read the full story.
Moben Ignatius is the Agriculture Research Associate in the SAS program at CIMMYT. His role revolves around fostering sustainable agricultural practices and innovative technologies and methods that cater to Rice-Wheat cropping systems.
His previous work role extended to forging alliances with diverse organizations and governmental bodies to advocate for the expansion of these beneficial agricultural techniques. Employing meticulous monitoring, evaluation, and data-driven surveys, ensuring the successful execution and scalability of projects.
Small-scale farmers in Mexico often adopt conservation agriculture innovations gradually and piecemeal, to fit their diverse agroecological and socioeconomic contexts and risk appetites, according to studies and the on-farm experience of CIMMYT.
Research and extension efforts need to consider this in work with smallholders, said Santiago Lopez-Ridaura, a CIMMYT specialist in agricultural systems and climate change adaptation.
“Farmer practices typically involve heavy tillage before seeding, growing maize as a monocrop, and removing crop residues after harvest for use as forage,” explained Lopez-Ridaura. “Full-on conservation agriculture (CA) is a radical shift, requiring farmers to reduce or eliminate tillage, keep a permanent cover of crop residues on the soil, and diversify the crops they grow. It can support more intense yet environmentally friendly farming, reducing erosion, improving soil fertility and water filtration, boosting crop yields, and saving farmers money. However, it also requires purchasing or contracting specialized sowing implements and fencing fields or agreeing with neighbors to keep livestock from eating all the residues, to name just a few changes.”
Lopez-Ridaura and colleagues published a 2021 analysis involving farmers who grew maize and sorghum and keep a few livestock on small landholdings (less than 4 hectares), with limited mechanization and irrigation, in the state of Guanajuato, Central Mexico.
They found that scenarios involving hybrid maize plus a legume crop with zero-tillage or keeping a residue mulch on the soil provided an average net profit of some US $1,600 (MXP 29,000) per year, in addition to ecological benefits, added forage, and more stable output under climate stress.
“Using a modeling framework from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) that combines bioeconomic simulation, risk analysis, adoption theory, and impact assessment, we not only confirmed the worth of conservation agriculture but found that disaggregating CA into smaller component packages and including a more productive crop and variety were likely to increase farmers’ adoption, in riskier settings.”
Advancing more sustainable farming in Mexico
Conservation agriculture can generate substantial economic and environmental benefits under marginal conditions, particularly by enhancing climate change resilience, increasing soil organic matter, and retaining soil moisture. In Central Mexico dryland maize yields rose by 38-48%, after 10 years of implementing CA.
CIMMYT has studied and promoted zero-tillage for maize and other resource-conserving practices in Mexico for more than three decades, but efforts to spread sustainable farming and use of improved maize and wheat varieties redoubled thanks to MasAgro, a research initiative led by the Center and supported by the government of Mexico during 2010-21. Testimonials such abound of Mexican smallholder farmers who have adopted and benefited from CA practices through CIMMYT and national partners’ efforts in MasAgro and other initiatives.
Dashaa is an Agricultural and Development Economist based in Kenya. She joined CIMMYT in April 2023.
Before joining CIMMYT, Dashaa worked at the Asian Development Bank Institute (ADBI) and Japan International Research Center for Agricultural Sciences (JIRCAS) as a Research Associate, as a Consultant for the Food and Agriculture Organization (FAO) in Mongolia, and the Ministry of Food and Agriculture of Mongolia as an economist/policy specialist.
Dashaa has a PhD in Agricultural Economics from the University of Tokyo.
Dr. Bhavani P is the Geospatial Analyst in the Sustainable Agrifood Systems program at CIMMYT. She obtained a Ph.D. degree from the University of Hyderabad, Hyderabad on the research topic “Spatio-temporal Assessment of Agricultural Performance and its Drought Vulnerability using Long-term Satellite and Climate Data”.
Dr. Bhavani P. provides solutions to farmers (at various scales – farmers to policy level) using remote sensing and geoprocessing. She acquired contemporary professional knowledge, climate data processing, machine learning techniques for image processing, R, and Google Earth Engine (GEE) with programming proficiency in JavaScript, and Python.
Narendra is the Market System Coordinator in the Sustainable Agrifood Systems program at CIMMYT. Narendra develops business models for post-harvest enterprises, including appropriate finance schemes and leads the implementation of technical training on PHEs in all seven districts, including regular follow-up.
Dr. Aravindakshan is a Scientist in CIMMYT’s Sustainable Agrifood Systems program, specializing in adoption, scaling, and innovation systems.
He contributes to the TAFSSA initiative, focusing on scaling, extension, adoption, and monitoring of agrifood systems innovations. With a Ph.D. from Wageningen University in the Netherlands and MSc degrees from the University of Copenhagen, Denmark, and TU Dresden, Germany, he brings over two decades of interdisciplinary expertise in Innovation Systems and Natural Resource Economics. Dr. Aravindakshan has collaborated with governments, NGOs, and organizations like FAO, JICA, and WWF across South Asia, the Middle East, and Europe, contributing to multi-country projects funded by the EU, USAID, and the Bill & Melinda Gates Foundation.
Moreover, he has published high-impact journal articles aimed at guiding policy formulation in the global south.
Kabita Kunwar is the ICT and Data Analyst in the Sustainable Agrifood Systems program at CIMMYT. She specializes in data collection app administration, digital advisories, fintech, and facilitating digital finance for agribusinesses. Kabita is driving the adoption of proven technologies and advisories to benefit smallholder farmers and agribusinesses in Nepal.
Anurag Kumar is a senior research associate in CIMMYT under the Cereal System Initiative for South Asia (CSISA) project in India.
He is involved in Coordinating trials and demonstrations of the rice-wheat cropping system in Bihar. Other than coordinating trials and demonstrations, he is effectively strengthening partnerships with national and private partners. The extension of proven technologies is the core of the project so synergizing the effort of each partner for better spread.
Leveraging the leadership, science, and partnerships of the Mexico-based CIMMYT and the funding and research capacity of Mexico’s Secretariat of Agriculture and Rural Development (SADER) during 2010-21, the program known as “MasAgro” has helped up to 500,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.
As a result of MasAgro research hubs operating across Mexico’s multiple and diverse agroecologies to promote the sustainable intensification of maize and wheat farming systems — including improved varieties and resource-conserving, climate-smart practices — yields of project participants for maize were 20% higher and for wheat 3% higher than local averages. Similarly, average net incomes for participating maize farmers were 23% greater and 4% greater for wheat farmers, compared to local averages.
The MasAgro biodiversity component gathered and analyzed one of the world’s largest-ever samplings of maize and wheat genetic diversity, including CIMMYT’s own vast seed bank collections, to help identify and characterize new genes of interest for breeding. As one result, more than 2 billion genetic data points and over 870,000 data entries from associated field trials are freely available to the scientific community, via the project’s online repository.
MasAgro has involved national and local research organizations, universities, companies, and non-government organizations working through more than 40 research platforms and 1,000 demonstration modules, while building the capacity of thousands of farmers and hundreds of technical and extension experts who serve them.
State-level partners sign on to MasAgro
Through MasAgro, CIMMYT entered into research and development partnerships with 12 Mexican states. An example is the mountainous, central Mexican state of Guanajuato, home to the El Bajío region, one of Mexico’s most productive farm areas but which also suffers from soil degradation, water scarcity, and climate change effects — challenges faced by farmers throughout Mexico. The governor of Guanajuato visited CIMMYT headquarters in Mexico in June 2023 to review progress and agree on follow-up activities.
CIMMYT has worked with Guanajuato state and local experts and farmers themselves to test and promote innovations through 7 research platforms reaching nearly 150,000 hectares. As of 2020, new crop varieties and resource-conserving, climate-smart management practices had helped underpin increases of 14% in irrigated wheat production and, under rainfed farming systems, improved outputs of 28% for beans, 150% for local maize varieties and 190% for hybrid maize, over state averages.
An integral soil fertility initiative has included the analysis and mapping of more than 100,000 hectares of farmland, helping Guanajuato farmers to cut costs, use fertilizer more effectively, and reduce the burning of crop residues and associated air pollution.
Service centers for the rental and repair of conservation agriculture machinery are helping to spread practices such as zero tillage and residue mulches. Supported by CIMMYT advisors, Guanajuato farmers are entering into equitable and ecologically friendly production agreements with companies such as Nestle, Kellogg’s, and Heineken, among other profitable and responsible public-private arrangements.
Acclaim and interest abroad for MasAgro
MasAgro has received numerous awards and mentions as a model for sustainable agricultural development. A few examples:
Moving out and beyond
In Central America and Mexico, the inter-connected crises of weak agri-food systems, climate change, conflict, and migration have worsened, while small-scale farmers and marginalized sectors remain mired in poverty.
Capitalizing on its experience in MasAgro, CIMMYT is a major partner in the recently launched CGIAR initiative, AgriLAC Resiliente, which aims to build the resilience, sustainability, and competitiveness of agrifood systems and actors in Latin America and the Caribbean, helping them to meet urgent food security needs, mitigate climate hazards, stabilize vulnerable communities, and reduce forced migration. The effort will focus on farmers in Colombia, El Salvador, Honduras, Mexico, Nicaragua, and Peru.
As described in a 2021 science journal article, CIMMYT also helped create the integrated agri-food system initiative (IASI), a methodology that was developed and validated through case studies in Mexico and Colombia, and leverages situation analysis, model predictions, and scenarios to synchronize public and private action toward sustainable, equitable, and inclusive agri-food systems.
“CIMMYT’s integrated development approach to maize system transformation in Mexico and Colombia laid the foundations for the IASI methodology by overcoming government transitions, annual budget constraints, and win-or-lose rivalries between stakeholders, in favor of equity, profitability, resilience and sustainability,” said Govaerts.
The 2021 Global Agricultural Productivity (GAP) report “Strengthening the Climate for Sustainable Agricultural Growth” endorsed IASI, saying it “…is designed to generate strategies, actions and quantitative, Sustainable-Development-Goals-aligned targets that have a significant likelihood of supportive public and private investment.”