Skip to main content

research: Sustainable agrifood systems

Researchers gather to reflect on and lead CIMMYT’s Gender Equity and Social Inclusion (GESI) efforts with renewed commitment and partnership

SAS Program Director Sieg Snapp and GESI researchers gather in New Delhi from across CIMMYT – Asia, Africa, and Latin America. (Photo: Adeeth Cariappa/CIMMYT)

“As we look towards 2030, CIMMYT is focused on building inclusive value chains, advancing mechanization, and confronting seed system challenges. We are championing demand-driven technologies and improved agricultural needs,” said Sieglinde Snapp, program director of CIMMYT’s Sustainable Agrifood Systems (SAS) program, highlighting during the discussions the importance of integrating gender perspectives in research. “We are committed to integrating gender perspectives in all these initiatives, recognizing the vital role of women in agriculture and ensuring equitable access to resources and opportunities for all genders,” she added.

Farah Deba Keya presents her study analyzing constraints for women farmers’ active participation in mixed farming systems in Bangladesh. (Photo: CIMMYT)

The one-day meeting on October 13, 2023, in New Delhi, India, hosted under CIMMYT’s SAS program, brought together diverse groups of participants—totaling over ten senior gender researchers working in Africa, Asia, and Latin America, namely Sieg Snapp, Vijesh Krishna, Moti Jaleta, Michael Euler, Angela Meentzen, Monica Fisher—along with a cadre of junior and senior researchers and students collaborating with CIMMYT on gender research. The coming together of these GESI researchers provided a valuable opportunity for collaboration, sharing insights, and strategizing enhanced gender and socially inclusive research-for-development approaches within CIMMYT’s programs.

Monica Fisher, a senior researcher working in Africa, emphasized CIMMYT’s dedication to making gender equality and social inclusion more visible and relevant in agriculture globally. She said, “The significance of GESI research, particularly in bridging the gap between the Global South and the Global North, cannot be overstated. Our objective is to deepen our engagement in these areas.”

The day-long meeting covered various topics, including the dynamics of technology adoption, gender roles in agriculture, and the feminization of Indian agriculture. Discussions underscored the need for increased financial support for GESI research, the importance of addressing disparities in research focus, and the crucial role of intersectionality in agricultural contexts.

A notable segment of the meeting was dedicated to presentations by students on their ongoing research in gender-related topics. These young researchers brought fresh perspectives and innovative ideas, highlighting the evolving nature of gender roles in agriculture and the impact of technology on gender dynamics in various regions. Their contributions underscored the importance of fostering a new generation of researchers committed to gender equity and social inclusion in agricultural development. Hari Krishnan K. S., a student working with CIMMYT opined, “My study, supervised by CIMMYT’s gender researchers, revealed that the concept of masculinities transcends gender, focusing instead on effective farming practices. It highlighted the diverse influences on agricultural decision-making and the varied reactions to technology adoption in Punjab’s agriculture. This reflects the critical role of CIMMYT’s gender-focused research in shaping my approach and understanding as a student in this field.”

Contributing his perspective, Vijesh Krishna, lead researcher working in India, highlighted the need for innovation in research approach. According to him, “To revolutionize GESI research, a shift towards longitudinal data analysis and cross-country data utilization is needed. Building evidence and documenting changes in gender dynamics due to policy and social transformations are essential.” He further encouraged the fostering of in-house capacities to mainstream gender considerations across disciplines, enhancing collaboration, and developing skills for the effective communication of research findings to stakeholders.

Snapp believes that the meeting was not just a gathering of minds but a milestone in CIMMYT’s ongoing journey towards agrifood systems development. “It reaffirms the organization’s commitment to impactful research that acknowledges and addresses the nuances of gender and social dynamics in agriculture, paving the way for a more inclusive and sustainable future in the sector.”

Sieglinde Snapp explains initiatives to support urgent and relevant GESI research and efforts within CIMMYT’s programs (Photo: CIMMYT)

As the meeting concluded, Snapp spoke of the resolve to make GESI efforts urgent and relevant. She proposed three initiatives: firstly, renaming the SAS gender team the “Paula Kantor Gender and Development Centre” to reflect a broader scope and purpose; secondly, establishing a mentorship program to offer career guidance, networking opportunities, and professional development support; and finally, the introduction of a prestigious “Research Excellence in the Field” award in Paula Kantor’s honor.

“These initiatives aim to enhance the impact and recognition of the organization’s gender-focused efforts, promote professional growth, and honor excellence in the field, embodying CIMMYT’s commitment to gender-focused efforts,” she explained.

The meeting minutes are available here.

Zambuko Livelihoods Initiative

Persistent vulnerability to frequent climate-related shocks, exacerbated by the effects of climate change poses a continual threat to the capacity of communities to secure an adequate and nutritious food supply throughout the year. The R4 Rural Resilience Initiative, led by the World Food Programme (WFP), aims to enable vulnerable, smallholder farmers to increase their food security, income, and resilience by managing climate-related risks. Expanding on the success of R4, WFP launched the Zambuko Livelihoods Initiative, a comprehensive program supported by United States Agency for International Development (USAID). This initiative strategically concentrates on fostering social cohesion within communities, advancing crop and livestock production, and facilitating improved access to financial resources.

In a collaborative endeavor, CIMMYT is leading the implementation of the climate-smart agriculture and mechanization components of the Zambuko program, with a specific focus on Masvingo Rural (Ward 15) and Mwenezi (Ward 6) in Zimbabwe. Focused on mitigating the impact of climatic shocks and stresses, the initiative aims to empower local farmers, improve agricultural practices, and foster sustainable livelihoods. This collaborative effort represents a crucial step towards building resilience in the face of climate challenges, offering a holistic approach to enhancing the adaptive capacity of vulnerable communities.

Key objectives

The overall objective is to diversify and strengthen climate-resilient livelihoods, while mitigating household vulnerability to recurring shocks, such as droughts and floods.

CIMMYT oversees interlinked goals which are –

  1. Viable conservation agriculture (CA) and mechanization options are tested and expanded in rural farming communities.
  2. Seed and fodder options are tested and available for wider use by smallholders.
  3. Increased smallholder farmer knowledge and capacity to implement climate-smart agriculture interventions to build resilience.

Soybean rust threatens soybean production in Malawi and Zambia

Healthy soybean fields. (Photo: Peter Setimela/CIMMYT)

Soybeans are a significant source of oil and protein, and soybean demand has been increasing over the last decade in Malawi and Zambia. Soybean contributes to human nutrition, is used in producing animal feed, and fetches a higher price per unit than maize, thus serving as a cash crop for smallholder farmers. These are among the main factors contributing to the growing adoption of soybean among smallholder producers. In addition, soybean is a vital soil-fertility improvement crop used in crop rotations because of its ability to fix atmospheric nitrogen. To a large extent, soybean demand outweighs supply, with the deficit covered by imports.

Soybean production in sub-Saharan Africa is expected to grow by over 2% per annum to meet the increasing demand. However, as production increases, significant challenges caused by diseases, pests, declining soil fertility, and other abiotic factors remain. According to official government statistics, Zambia produces about 450,000 tonnes of soybean per annum, with an estimated annual growth of 14%. According to FAOSTAT, this makes Zambia the second largest soybean producer in the southern African region. Although soybean was traditionally grown by large commercial farmers in Zambia, smallholders now account for over 60% of the total annual soybean production.

Production trends show that smallholder soybean production increased rapidly in the 2015–2016 season, a period that coincided with increased demand from local processing facilities. As smallholder production continued to increase, in 2020, total output by smallholder farmers outpaced that of large-scale farmers for the first time and has remained dominant over the last two seasons (Fig 1). However, soybean yields among smallholder farmers have remained low at around 1 MT/HA.

Figure 1. Soybean production trends by smallholders and large-scale farmers. (Photo: Hambulo Ngoma/Zambia Ministry of Agriculture, Crop Forecast Survey)

Soybean production in the region is threatened by soybean rust caused by the fungus Phakopsora pachyrhizi. The rust became prevalent in Africa in 1996; it was first confirmed in Uganda on experimental plots and subsequently on farmers’ fields throughout the country. Monitoring efforts in the U.S. have saved the soybean industry millions of dollars in fungicide costs due to the availability of accurate disease forecasting based on pathogen surveillance and environmental data.

Soybean rust disease is spread rapidly and easily by wind, and most available varieties grown by farmers are susceptible. The above-normal rainfall during the 2022–2023 season was conducive to the spread of the fungus. A recent survey of over 1,000 farm households shows that 55% and 39% of farmers in Zambia and Malawi, respectively, were affected by soybean rust during the 2022–2023 season. The lack of rust-tolerant varieties makes production expensive for smallholder farmers who cannot afford to purchase fungicides to control the pathogens. It is estimated that soybean rust can cause large yield losses of up to 90%, depending on crop stage and disease severity. Symptoms due to soybean rust infection may be observed at any developmental stage of the plant, but losses are mostly associated with infection from the flowering stage to the pod-filling stage.

Soybean plants affected by soy rust. (Photo: Peter Setimela)

Mitigation measures using resistant or tolerant varieties have been challenging because the fungus mutates very rapidly, creating genetic variability. Although a variety of fungicides effective against soybean rust are available, the use of such fungicides is limited due to the high cost of the product and its application, as well as to environmental concerns. Due to this restricted use of fungicide, an early monitoring system for detecting rust threats for steering fungicide might only be relevant for large-scale producers in eastern and southern Africa. With the massive increase in the area under soybean production, soybean rust is an important disease that cannot be ignored. Host-plant resistance provides a cheaper, more environmentally friendly, and much more sustainable approach for managing soybean rust in smallholder agriculture that characterizes the agricultural landscape of eastern and southern Africa.

To advance the use of rust-tolerant varieties, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is presently concluding surveys to assess farmers’ demand and willingness to pay for rust-tolerant varieties in Malawi and Zambia. The results from this assessment will be valuable to seed companies and last-mile delivery partners to gain a better understanding of what farmers need and to better serve the farmers.  This coming season AID-I will include rust tolerant varieties in the mega-demonstrations to create awareness about new varieties that show some tolerance to rust.

Livestock Production Systems in Zimbabwe (LIPS-Zim)

The livestock sub-sector is one of the most important arms of the agricultural sector, contributing to the livelihoods of 70% of Zimbabwe’s rural population. Sustainable livestock production depends on the maintenance of healthy and productive animals which requires paying particular attention to the problems of both endemic and introduced animal diseases and zoonotic. Climate relevant livestock production practices such as fodder management and conservation, water harvesting, and manure management have been identified as solutions to increasing livestock productivity.

The Livestock Production Systems in Zimbabwe (LIPS-Zim) project, funded by the European Union (EU) focuses on increasing agricultural productivity in Zimbabwe’s semi-arid, agro-ecological regions IV and V. Led by the International Livestock Research Institute (ILRI) and in partnership with CIMMYT, the French Agricultural Research Center for International Development (Cirad) and the University of Zimbabwe (UZ), LIPS-Zim is working in 10 districts of Zimbabwe, i.e. Matabeleland South Province (Beitbridge and Gwanda districts), the parched Matabeleland North Province (Binga, Hwange and Nkayi districts), Midlands (Gokwe North district), Masvingo (Chiredzi and Zaka districts), Manicaland (Buhera district) and Mashonaland East (Mutoko district). LIPS-Zim is conducting research that seeks to increase livestock feed productivity and well as reducing diseases and mortality of livestock.

Main objectives

Core to the project is to increase the adoption of climate-relevant innovations (e.g feeding) in livestock-based production systems and improve the surveillance and control of livestock diseases. CIMMYT’s main thrust in this project is based on the recognition that at least 50% of the arable land area in semi-arid region IV and V of Zimbabwe is still put to maize despite extension recommendations for farmers to grow the more resilient small grains in those regions. Given the above, and to address their food and feed needs, farmers in those regions need drought-tolerant and nutritious maize varieties that are resilient in those dry environments. CIMMYT’s work is thus focusing on testing the feed value of these nutritious and drought tolerant maize varieties when intercropped with various legumes such as mucuna, cowpea, lab-lab and pigeonpea. CIMMYT is also testing the later, along with climate smart production techniques such as conservation agriculture and water harvesting practices.

Tackling fall armyworm with sustainable control practices

Typically looking like a small caterpillar growing up to 5 cms in length, the fall armyworm (FAW, Spodoptera frugiperda) is usually green or brown in color with an inverted “Y” marking on the head and a series of black dots along the backs. Thriving in warm and humid conditions, it feeds on a wide range of crops including maize, posing a significant challenge to food security, if left unmanaged. The fall armyworm is an invasive crop pest that continues to wreak havoc in most farming communities across Africa.

A CIMMYT researcher surveys damaged maize plants while holding a fall armyworm, the culprit. (Photo: Jennifer Johnson/CIMMYT)

The first FAW attack in Zimbabwe was recorded around 2016. With a high preference for maize, yield losses for Zimbabwe smallholder farmers are estimated at US$32 million. It has triggered widespread concern among farmers and the global food system as it destroyed large tracts of land with maize crops, which is a key staple and source of farmer livelihood in southern Africa. The speed and extent of the infestation caught farmers and authorities unprepared, leading to significant crop losses and food insecurity.

Exploring the destructive FAW life cycle

It undergoes complete metamorphosis, progressing through four main stages including egg, larva, pupa, and adult. Reproducing rapidly in temperatures ranging from 20 to 38°C, moist soil conditions facilitate the egg-laying process, while mild winters enable its survival in some regions. The larval stage is the most destructive phase, feeding voraciously on plant leaves and can cause severe defoliation. They can migrate in large numbers, devouring entire fields within a short period if left unchecked.

Working towards effective FAW management

A farmer and CIMMYT researcher examine maize plants. (Photo: CIMMYT)

Efficient monitoring, early detection, and appropriate management strategies are crucial for mitigating the impact of FAW infestations and protecting agricultural crops. To combat the menace of this destructive pest, CIMMYT, with support from the United States Agency for International Development (USAID), has been implementing research and extension on cultural control practices in Zimbabwe. One such initiative is the “Evaluating Agro-ecological Management Options for Fall Armyworm in Zimbabwe”. Since 2018, this project strives to address research gaps on FAW management and cultural control within sustainable agriculture systems. The focus of the research has been to explore climate-adapted push-pull systems and low-cost control options for smallholder farmers in Zimbabwe who are unable to access and use expensive chemical products.

Environment friendly practices are proving effective to combat FAW risks

To reduce the devastating effects of FAW, the project in Zimbabwe is exploring the integration of legumes into maize-based strip cropping systems as a first line of defense in the Manicaland and Mashonaland east provinces. By planting maize with different, leguminous crops such as cowpea, lablab and mucuna, farmers can disrupt the pests’ feeding patterns and reduce its population. Legumes release volatile compounds that repel FAW, reducing the risk of infestation. Strip cropping also enhances biodiversity, improves soil health and contributes to sustainable agricultural practices. Overall results show that FAW can be effectively managed in such systems and implemented by smallholder farmers. Research results also discovered that natural enemies such as ants are attracted by the legumes further contributing to the biological control of FAW.

Spraying infested maize crop with Fawligen in Nyanyadzi. (Photo: CIMMYT)

Recently, the use of biopesticides such as Fawligen has gained traction as an alternative to fight against fall armyworm. Fawligen is a biocontrol agent that specifically targets the FAW larvae. Its application requires delicate attention – from proper storage to precise mixing and accurate application. Following recommended guidelines is essential to maximize its effectiveness and minimize potential risks to human health and the environment.

Impact in numbers

Since the inception of the project, close to 9,000 farmers participated in trainings and exposure activities and more than 4,007 farmers have adopted the practices on their own field with 1,453 hectares under improved management. Working along with extension officers from the Ministry of Lands, Agriculture, Water, Fisheries & Rural Resettlement, the project has established 15 farmer field schools as hubs of knowledge sharing, promoting several farming interventions including conservation agriculture practices (mulching, minimum tillage through ripping), timely planting, use of improved varieties, maintaining optimum plant population, and use of recommended fertilizers among others.

Addressing FAW requires a multi-faceted approach. The FAW project in Zimbabwe is proactive in tackling infestation by integrating intercropping trials with legumes, harnessing the application of biopesticides, and collaborative research. By adopting sustainable agricultural practices, sharing valuable knowledge, and providing farmers with effective tools and techniques, it is possible to mitigate the impact of FAW and protect agrifood systems.

Using social network analysis to assess collaborative networks: a case study from the genebank platform evaluation

Social Network Analysis (SNA) provides CIMMYT with strategic insights by mapping collaborations and communication within agricultural research networks. It highlights the importance of strong ties with research partners and the potential of non-CGIAR collaborations to extend CIMMYT’s impact on global agriculture, emphasizing network-driven strategies for innovation and food security enhancement.

Read the full story.

Examining how insects spread toxic fungi

Maize grain heavily damaged by the larger grain borer and maize weevil. (Photo: Jessica GonzĂĄlez/CIMMYT)

According to the World Health Organization (WHO), 10% of the global population suffers from food poisoning each year. Aflatoxins, the main contributor to food poisoning around the world, contaminate cereals and nuts and humans, especially vulnerable groups like the young, elderly, or immune-compromised, and animals are susceptible to their toxic and potentially carcinogenic effects.

Fungi contamination occurs all along the production cycle, during and after harvest, so the mitigation of the mycotoxins challenge requires the use of an integrated approach, including the selection of farmer-preferred tolerant varieties, implementing good agricultural practices such as crop rotation or nitrogen management, reducing crop stress, managing pests and diseases, biological control of mycotoxigenic strains, and good post-harvest practices.

Monitoring of mycotoxins in food crops is important to identify places and sources of infestations as well as implementing effective agricultural practices and other corrective measures that can prevent outbreaks.

A bug problem

Insects can directly or indirectly contribute to the spread of fungi and the subsequent production of mycotoxins. Many insects associated with maize plants before and after harvest act as a vector by carrying fungal spores from one location to another.

International collaboration is key to managing the risks associated with the spread of invasive pests and preventing crop damage caused by the newly introduced pests. CIMMYT, through CGIAR’s Plant Health initiative, partners with the Center for Grain and Animal Health Research of the US Department of Agriculture (USDA) and Kansas State University are investigating the microbes associated with the maize weevil and the larger grain borer.

The experiment consisted of trapping insects in three different habitats, a prairie near CIMMYT facilities in El Batán, Texcoco, Mexico, a maize field, and a maize store at CIMMYT’s experimental station at El Batán, using Lindgren funnel traps and pheromones lures.

Hanging of the Lindgren funnel traps in a prairie near El BĂĄtan, Texcoco, Mexico. (Photo: Jessica GonzĂĄlez/CIMMYT)

Preliminary results of this study were presented by Hannah Quellhorst from the Department of Entomology at Kansas State University during an online seminar hosted by CIMMYT.

The collected insect samples were cultured in agar to identify the microbial community associated with them. Two invasive pests, the larger grain bore and the maize weevil, a potent carcinogenic mycotoxin was identified and associated with the larger grain borer and the maize weevil.

The larger grain borer is an invasive pest, which can cause extensive damage and even bore through packaging materials, including plastics. It is native to Mexico and Central America but was introduced in Africa and has spread to tropical and subtropical regions around the world. Together with the maize weevil, post-harvest losses of up to 60% have been recorded in Mexico from these pests.

“With climate change and global warming, there are risks of these pests shifting their habitats to areas where they are not currently present like sub-Saharan Africa and North Africa,” said Quelhorst. “However, the monitoring of the movement of these pests at an international level is lacking and the microbial communities moving with these post-harvest insects are not well investigated.”

Enhancing partnerships for agricultural development

Annual AID-I meeting participants gather for a group photo. (Photo:Christabel Chabwela)

Implementing partners of the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) project, or MasAgro Africa, converged in Arusha, Tanzania, for the project’s first annual review and planning meeting. The event, which brought together 58 participants from 28 allied organizations coordinating and implementing activities as part of the flagship USAID-funded initiative, provided an opportunity to review progress towards targets set at the project launch in September 2022. During the event, partners also took time to collaboratively plan for stronger implementation in the project’s second year, while discussing challenges faced in the previous year and coming up with practical solutions for these. Similar planning meetings took place in Malawi and Zambia during the same month.

Speaking during the meeting’s opening session, USAID Tanzania Mission Feed the Future Coordinator Melanie Edwards expressed excitement about the achievements of in-country partners in the past year. “The Tanzania component of the project was performing very well,” she said, “and it was exciting to see the proposals coming, meaning that the number of partners was expanding.” Edwards noted that there is still a lot more to be done by the AID-I project and a call for new partner proposals was going to be issued soon to augment ongoing work. She also emphasized the importance of expanding the number of partners and was eager to see planned activities for the second year of the project.

Speaking on behalf of the Government of Tanzania—a key partner in the AID-I initiative—Abel Mtembenji outlined the government’s priorities: increasing productivity, creating decent jobs, enhancing extension services, improving resilience for food security, and expanding market and credit access. Mtembenji was pleased that AID-I interventions aligned with these and encouraged stakeholders to coordinate their efforts with the Tanzanian government to enhance the sustainability of project activities. He further encouraged stakeholders to notify the government of their initiatives to foster collaboration during implementation. Mtembenji recognized the support from USAID, through CIMMYT and thanked all partners for their participation and contribution to agricultural development in Tanzania.

Showcasing early successes

The AID-I initiative provides targeted assistance to up to three million African smallholder farmers by improving soil health and fertilizer management; strengthening local seed systems; connecting to financial products and services; and delivering extension and advisory services. An update presentation made by SAS Program Manager Grace Mwai revealed that through its 42 partners across Malawi, Tanzania, and Zambia, AID-I had in the past 12 months set up 125 mega-demonstrations for the 2022-2023 season. Forty-two of these were managed by farmer groups themselves, with 60% managed by women.

Across all three project countries, AID-I also reached approximately 5.3 million farmers with various agronomic advisory messages through radio and television, 160,000 listeners through interactive voice response (IVR) messages. Over 9,000 farmers were linked to inputs and outputs markets, of which 40% were women. Mwai added that the project had also conducted 5,143 seed company demonstrations—of which 2,400 took place in Tanzania—and had harvested and processed 13,000 metric tons of certified maize and legume seed, which was expected to directly benefit around one million smallholder farmers across the hub.

Partners demonstrate seed packages to meeting participants. (Photo: Christabel Chabwela)

To highlight achievements from the first project year, partners showcased their products through posters and display items like seed packets during a structured session based on the World Café method. This activity allowed participants to interact and ask questions about various innovations being scaled under AID-I. More than ten partners displayed their products, and all participants at the meeting were given 15 minutes to visit other tables and share how many tons of seed they had produced and how many farmers they could reach during the season.

On the second day of the meeting, partners organized themselves into three small groups based on the three AID-I pillars—Seed Systems, Agriculture Advisories, and Market Linkages—to discuss forthcoming activities and what they hoped to do better in the coming season. The meeting concluded with discussions on issues including financial reporting, establishing and nurturing collaborations, and leveraging technology for improved project outcomes. During his closing remarks, Legume and Seed Systems Specialist under AID-I, Peter Setimela, emphasized the importance of timely proposal submission for the second year.

Peter Setimela

Peter Setimela is CIMMYT Country Representative for Zambia and Legume Seed Systems Lead for the AID- Project.

Setimela is a seed systems scientist with over 20 years of experience in CG centers, universities, and national agricultural research institutes.

A credible and innovative scientist with strong technical, commercial, and financial acumen and extensive experience in leading multi-cultural teams to deliver ground-breaking agricultural initiatives primarily in the Eastern and Southern African regions. Demonstrates a comprehensive portfolio of skills including research and development, technology scaling, program management, advocacy, partnerships, capacity building, logistics, team leadership, operations, fundraising, and training. An adaptable and resilient leader with strong communication and influencing skills and the ability to unite diverse agendas to achieve outstanding results.

Richa Sharma Puri

Richa is a digital anthropologist and communicator with 17+ years of experience in the media and development sector. Currently, she provides strategic leadership and support for BISA’s institutional and corporate communications programs in India.

She is an ex-journalist and worked with India’s leading news channel, TV Today (now India Today), as a correspondent and anchor, but now aims to strengthen and empower NGOs with communication strategies in the digital landscape. Richa has a broad understanding of coalitions and networks; she strives to develop people-centric communication strategies for the Asia Pacific region. Richa’s previous role, as a fellow for the Affinity Group of National Associations program, provided overall programmatic leadership and oversight for policy advocacy, knowledge management, communication and campaigns. Her core strengths are digital media, content development, filmmaking, website management, media mobilization, social media & Comms Strategy.

Marcelo Ortiz

Marcelo is an experienced graphic designer with over 20 years of graphic design experience for CIMMYT headquarters in Mexico. His main responsibilities include branding development, branding, design, and production of corporate reports and project reports. Developing designs for scientific articles, papers, abstracts, and serving as a liaison with the various vendors that provide a service for communications.

Kudzanai Chimhanda

Kudzanai is an experienced communications strategist and development researcher who currently supports communications for the CIMMYT Zimbabwe office. With a career spanning seven years, Kudzanai has been actively involved in impactful research at both local and international think tanks. Specializing in agricultural issues, Kudzanai’s expertise spans policy analysis, food systems, regional integration, and sustainability. As a dedicated professional, Kudzanai brings invaluable insights to the field, combining research acumen with effective communication strategies to drive positive change and promote informed decision-making in the field of agriculture and development.

Understanding and Enhancing Adoption of Conservation Agriculture in Smallholder Farming Systems of southern Africa (ACASA)

Conservation agriculture (CA) has increasingly been promoted in southern Africa to address low agricultural productivity, food insecurity, and land degradation. Despite significant experimental evidence on the agronomic and economic benefits and the large scaling-up investments by donors and national governments, the adoption rates of CA practices among smallholder farmers are low and slow.

With funding from the Norwegian Agency for Development Cooperation (NORAD) and implemented by the International Institute of Tropical Agriculture (IITA) and CIMMYT, ACASA strives to understand “why previous efforts and investments to scale CA technologies and practices in southern Africa have not led to widespread adoption.” It is a three-year project implemented in Malawi, Zambia, and Zimbabwe, where CA is part of national policy.

Since 2021, the project has undertaken extensive surveys aimed to understand incentives, drivers, and barriers of CA adoption across the three countries (Malawi, Zambia, and Zimbabwe) typifying much of the southern Africa smallholder systems. The aim of the project is to consolidate the lessons learned so far and provide a pathway to scaling and foster the next generation of social, crop, agronomic and climate research; to mainstream CA enabled by fundamental paradigm shifts in farming practices, markets, and social institutions for sustainable intensification of smallholder farming systems of southern Africa.

Project objectives include –

  • Understanding the contexts of smallholder farmer in southern Africa to identify the drivers and barriers preventing adoption of CA practices, including biophysical, socio-economic, institutional and policy constraints
  • Identifying labor-efficient mechanization options for smallholder farmers
  • Identifying opportunities and tools for better targeting of appropriate CA practices and options across heterogenous agroecologies and farm types, and
  • Identifying approaches and strategies for inclusive scaling of CA practices (policy, institutional and value chain entry points and pathways to promote and scale CA)

 

Afriseed: How improved legume seed can help transform Zambia’s agrifood systems

Certified soyabean seed from Afriseed. (Photo: AFRI archives)

In Zambia, smallholder farmers obtain their seed from a variety of sources. Over 75 percent of farmers in Zambia have adopted certified maize seed and about 30 percent in southern Africa, overall. The private sector has been instrumental in creating demand for certified and timely delivery of seed to remote areas, and the Government of Zambia’s Farmer Input Support Programme (FISP) has largely contributed to better accessibility to certified seed for farmers. In 2022–2023, of the three million registered smallholder farmers in Zambia, more than one million accessed certified seed through FISP.

Afriseed is a seed company in Zambia that has been gaining ground in local seed markets. It has emerged as a catalyst for helping smallholder farmers transition to new, high-yielding legume varieties. Afriseed provides solutions to help smallholders increase their agricultural productivity with improved seed varieties of cereals and legumes and assist them with technology transfer. The company aims to increase the food security and incomes of Zambia’s smallholder farming community, which accounts for 90 percent of agricultural output in the country. During the 2022–2023 farming season, a critical turning point was reached when Afriseed became a partner in the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, a two-year project under CIMMYT, with the aim of scaling-up production of certified seed varieties of soybean and common bean.

Under the partnership, Afriseed promotes the cultivation of improved legume seed through a smallholder farmer seed multiplication approach. By engaging with practicing smallholder farmers and signing grower contracts, basic seeds are multiplied into certified seed for soybean and common bean. Certified seed is a known variety produced under strict seed certification standards to support varietal purity. In collaboration with the Seed Control and Certification Institute (SCCI), the country’s national seed authority, contracted farmers received training on climate-smart agricultural techniques and seed production guidelines. Through extension services to seed growers, smallholder farmers can adhere to the seed production guidelines set out in the National Seed Act to ensure the quality of certified seed produced.

Smallholder farmers hold improved, certified seed. (Photo: AFRI archives)

Afriseed has invested more than USD 335,000 toward supporting the production, aggregation, and processing of 317 t of certified climate-smart legume seeds—265 metric tonnes (MT) for soybean and 52 MT for common bean. Data have shown that the seeds were aggregated from 313 smallholder seed growers, 40 percent of whom were women, in Zambia’s Eastern Muchinga, Copperbelt and the Northern provinces. Seed aggregation improves access to quality seed varieties, increases crop yields and incomes, enhances integration into value chains, and creates market links for smallholder farmers.

Notable progress has been made with the contracted farmers, who have applied improved crop management practices and technologies on more than 600 ha of land to produce the seed. With this encouraging progress, Afriseed intends to scale up its last-mile seed distribution strategy to reach and directly help an estimated 35,000 underserved rural smallholder farming households with improved legume seeds in the 2023–2024 cropping season.

AID-I is one of the ways in which Feed the Future, the U.S. Government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. One of the project’s initial actions is to strengthen local seed systems so that agribusinesses can reach smallholder farmers with a diversity of improved seeds varieties, including climate-resilient and more nutritious varieties for maize and legumes.

Visit by Dr. Vijesh Krishna – CIMMYT

On January 10, 2024, Vijesh V. Krishna, Principal Scientist / Lead Economist of CIMMYT visited the Foundation for Agrarian Studies in Bengaluru, sparking collaborative discussions on future research. This meeting, enhanced by online participation, laid the groundwork for potential joint research efforts in the future.

Read the full story.