Skip to main content

research: Demand-driven seed systems

Enhancing the resilience of our farmers and our food systems: global collaboration at DialogueNEXT

“Achieving food security by mid-century means producing at least 50 percent more food,” said U.S. Special Envoy for Global Food Security, Cary Fowler, citing a world population expected to reach 9.8 billion and suffering the dire effects of violent conflicts, rising heat, increased migration, and dramatic reductions in land and water resources and biodiversity. “Food systems need to be more sustainable, nutritious, and equitable.”

CIMMYT’s 2030 Strategy aims to build a diverse coalition of partners to lead the sustainable transformation of agrifood systems. This approach addresses factors influencing global development, plant health, food production, and the environment. At DialogueNEXT, CIMMYT and its network of partners showcased successful examples and promising directions for bolstering agricultural science and food security, focusing on poverty reduction, nutrition, and practical solutions for farmers.

Without healthy crops or soils, there is no food

CIMMYT’s MasAgro program in Mexico has enhanced farmer resilience by introducing high-yielding crop varieties, novel agricultural practices, and income-generation activities. Mexican farmer Diodora Petra Castillo Fajas shared how CIMMYT interventions have benefitted her family. “Our ancestors taught us to burn the stover, degrading our soils. CIMMYT introduced Conservation Agriculture, which maintains the stover and traps more humidity in the soil, yielding more crops with better nutritional properties,” she explained.

CIMMYT and African partners, in conjunction with USAID’s Feed the Future, have begun applying the MasAgro [1] model in sub-Saharan Africa through the Feed the Future Accelerated Innovation Delivery Initiative (AID-I), where as much as 80 percent of cultivated soils are poor, little or no fertilizer is applied, rainfed maize is the most widespread crop, many households lack balanced diets, and erratic rainfall and high temperatures require different approaches to agriculture and food systems.

The Food and Agriculture Organization of the United Nations (FAO) and CIMMYT are partnering to carry out the Vision for Adapted Crops and Soils (VACS) movement in Africa and Central America. This essential movement for transforming food systems endorsed by the G7 focuses on crop improvement and soil health. VACS will invest in improving and spreading 60 indigenous “opportunity” crops—such as sorghum, millet, groundnut, pigeon pea, and yams, many of which have been grown primarily by women—to enrich soils and human diets together with the VACS Implementers’ Group, Champions, and Communities of Practice.

The MasAgro methodology has been fundamental in shaping the Feed the Future Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, an effort between government agencies, private, and public partners, including CGIAR. AID-I provides farmers with greater access to markets and extension services for improved seeds and crop varieties. Access to these services reduces the risk to climate and socioeconomic shocks and improves food security, economic livelihoods, and overall community resilience and prosperity.

Healthy soils are critical for crop health, but crops must also contain the necessary genetic traits to withstand extreme weather, provide nourishment, and be marketable. CIMMYT holds the largest maize and wheat gene bank, supported by the Crop Trust, offering untapped genetic material to develop more resilient varieties from these main cereal grains and other indigenous crops. Through the development of hardier and more adaptable varieties, CIMMYT and its partners commit to implementing stronger delivery systems to get improved seeds for more farmers. This approach prioritizes biodiversity conservation and addresses major drivers of instability: extreme weather, poverty, and hunger.

Food systems must be inclusive to combat systemic inequities

Successful projects and movements such as MasAgro, VACS, and AID-I are transforming the agricultural landscape across the Global South. But the urgent response required to reduce inequities and the needed investment to produce more nutritious food with greater access to cutting-edge technologies demands inclusive policies and frameworks like CIMMYT’s 2030 Strategy.

“In Latin America and throughout the world, there is still a huge gap between the access of information and technology,” said Secretary of Agriculture and Livestock of Honduras, Laura Elena Suazo Torres. “Civil society and the public and private sectors cannot have a sustainable impact if they work opposite to each other.”

Ismahane Elouafi, CGIAR executive managing director, emphasized that agriculture does not face, “a lack of innovative science and technology, but we’re not connecting the dots.” CIMMYT offers a pathway to bring together a system of partners from various fields—agriculture, genetic resources, crop breeding, and social sciences, among others—to address the many interlinked issues affecting food systems, helping to bring agricultural innovations closer to farmers and various disciplines to solve world hunger.

While healthy soils and crops are key to improved harvests, ensuring safe and nutritious food production is critical to alleviating hunger and inequities in food access. CIMMYT engages with private sector stakeholders such as Bimbo, GRUMA, Ingredion, Syngenta, Grupo Trimex, PepsiCo, and Heineken, to mention a few, to “link science, technology, and producers,” and ensure strong food systems, from the soils to the air and water, to transform vital cereals into safe foods to consume, like fortified bread and tortillas.

Reduced digital gaps can facilitate knowledge-sharing to scale-out improved agricultural practices like intercropping. The Rockefeller Foundation and CIMMYT have “embraced the complexity of diversity,” as mentioned by Roy Steiner, senior vice-president, through investments in intercropping, a crop system that involves growing two or more crops simultaneously and increases yields, diversifies diets, and provides economic resilience. CIMMYT has championed these systems in Mexico, containing multiple indicators of success from MasAgro.

Today, CIMMYT collaborates with CGIAR and Total LandCare to train farmers in southern and eastern Africa on the intercrop system with maize and legumes i.e., cowpea, soybean, and jack bean. CIMMYT also works with WorldVeg, a non-profit organization dedicated to vegetable research and development, to promote intercropping in vegetable farming to ensure efficient and safe production and connect vegetable farmers to markets, giving them more sources for greater financial security.

Conflict aggravates inequities and instability. CIMMYT leads the Feed the Future Sustainable Agrifood Systems Approach for Sudan (SASAS) which aims to deliver latest knowledge and technology to small scale producers to increase agricultural productivity, strengthen local and regional value chains, and enhance community resilience in war-torn countries like Sudan. CIMMYT has developed a strong partnership funded by USAID with ADRA, CIP, CRS, ICRISAT, IFDC, IFPRI, ILRI, Mercy Corps, Near East Foundation, Samaritan’s Purse, Syngenta Foundation, VSF, and WorldVeg, to devise solutions for Sudanese farmers. SASAS has already unlocked the potential of several well-suited vegetables and fruits like potatoes, okra, and tomatoes. These crops not only offer promising yields through improved seeds, but they encourage agricultural cooperatives, which promote income-generation activities, gender-inclusive practices, and greater access to diverse foods that bolster family nutrition. SASAS also champions livestock health providing food producers with additional sources of economic resilience.

National governments play a critical role in ensuring that vulnerable populations are included in global approaches to strengthen food systems. Mexico’s Secretary of Agriculture, Victor Villalobos, shared examples of how government intervention and political will through people-centered policies provides greater direct investment to agriculture and reduces poverty, increasing shared prosperity and peace. “Advances must help to reduce gaps in development.” Greater access to improved agricultural practices and digital innovation maintains the field relevant for farmers and safeguards food security for society at large. Apart from Mexico, key government representatives from Bangladesh, Brazil, Honduras, India, and Vietnam reaffirmed their commitment to CIMMYT’s work.

Alice Ruhweza, senior director at the World Wildlife Fund for Nature, and Maria Emilia Macor, an Argentinian farmer, agreed that food systems must adopt a holistic approach. Ruhweza called it, “The great food puzzle, which means that one size does not fit all. We must integrate education and infrastructure into strengthening food systems and development.” Macor added, “The field must be strengthened to include everyone. We all contribute to producing more food.”

Generating solutions, together

In his closing address, which took place on World Population Day 2024, CIMMYT Director General Bram Govaerts thanked the World Food Prize for holding DialogueNEXT in Mexico and stressed the need for all partners to evolve, while aligning capabilities. “We have already passed several tipping points and emergency measures are needed to avert a global catastrophe,” he said. “Agrifood systems must adapt, and science has to generate solutions.”

Through its network of research centers, governments, private food producers, universities, and farmers, CIMMYT uses a multidisciplinary approach to ensure healthier crops, safe and nutritious food, and the dissemination of essential innovations for farmers. “CIMMYT cannot achieve these goals alone. We believe that successful cooperation is guided by facts and data and rooted in shared values, long-term commitment, and collective action. CIMMYT’s 2030 Strategy goes beyond transactional partnership and aims to build better partnerships through deeper and more impactful relationships. I invite you to partner with us to expand this collective effort together,” concluded Govaerts.

[1] Leveraging CIMMYT leadership, science, and partnerships and the funding and research capacity of Mexico’s Agriculture Ministry (SADER) during 2010-21, the program known as “MasAgro” helped over 300,000 participating farmers to adopt improved maize and wheat varieties and resource-conserving practices on more than 1 million hectares of farmland in 30 states of Mexico.

Visual summaries by Reilly Dow.

Reaching farmers in Zambia

Farmers are guided on how to use Atubandike and VIAMO. (Photo: CIMMYT)

It is challenging to disseminate information across far-flung areas of rural Zambia as extension officers must travel vast distances to reach farmers. The Southern Africa Accelerated Innovation Delivery Initiative (AID-I) MasAgro Africa Rapid Delivery Hub, managed by CIMMYT and funded by the United States Agency for International Development (USAID) helps alleviate these issues by engaging with existing mobile phone networks to reach farmers with agronomic information, weather data, and soil information.

To introduce farmers to these specific tools: Atubandike and VIAMO, AID-I conducted a community sensitization and engagement exercise in Zambia. Atubandike emphasizes farmer learning and feedback using mobile phones for disseminating knowledge about the new generation of drought-tolerant varieties, sustainable intensification practices, and collecting farmer feedback to enable demand-driven delivery under AID-I. VIAMO, accessible via a basic mobile phone, provides agronomic information for every farmer in a specific area. The platform comes in different languages and farmers access information on various crops such as maize, beans, and groundnuts in their native language, provide feedback on information content, and connect with other farmers.

An AID-staff facilitates a training session. (Photo: Nancy Malama/CIMMYT)

In Choma District, Morgan Katema, who provides extension services to farmers, explained that going digital is one way of reaching farmers through technology to ensure that all farmers have access to extension services. “In this case, lessons will be available through mobile phones and farmers will ask agriculture-related questions and get a response. This is a good initiative because farmers can access information on the spot instead of waiting for an extension officer to reach them, and information can be accessed after working hours, and the VIAMO initiative will help us overcome the challenge of long distances between farmers as we will no longer need to travel long distances,” Katema said.

Judith Simuliye, a farmer who grows maize and groundnuts, said, “I was told about this meeting by the camp officer, and I am happy to learn about this project. I have learned how to manage my crop by using the right seed varieties and how to space the crops.”

During the meeting, two community facilitators were selected through a voting process, after farmers nominated community members who are literate, trustworthy, energetic, and able to use a smart phone. Facilitators register farmers on the VIAMO platform, assist them in accessing the information they require, and support them in their learning journey.

Namasumo Rithay, a farmer in the village of Kalalasa, said, “Mobile phone access to extension services has come at the right time. We have faced a lot of challenges with the poor rain patterns and pests. Through this meeting organized by AID-I, we have learned how we can obtain information to mitigate these challenges through our mobile phones.”

A participant casts her vote. (Photo: Nancy Malama/CIMMYT)

An additional community meeting was held in the village of Namuswa and was attended by 150 farmers. AID-I and Atubandike Research Associate, Brian Mpande, informed farmers that AID-I, with the assistance from VIAMO, will help them overcome the challenges of climate change by delivering timely and useful information via their phones. 

Afriseed: How improved legume seed can help transform Zambia’s agrifood systems

Certified soyabean seed from Afriseed. (Photo: AFRI archives)

In Zambia, smallholder farmers obtain their seed from a variety of sources. Over 75 percent of farmers in Zambia have adopted certified maize seed and about 30 percent in southern Africa, overall. The private sector has been instrumental in creating demand for certified and timely delivery of seed to remote areas, and the Government of Zambia’s Farmer Input Support Programme (FISP) has largely contributed to better accessibility to certified seed for farmers. In 2022–2023, of the three million registered smallholder farmers in Zambia, more than one million accessed certified seed through FISP.

Afriseed is a seed company in Zambia that has been gaining ground in local seed markets. It has emerged as a catalyst for helping smallholder farmers transition to new, high-yielding legume varieties. Afriseed provides solutions to help smallholders increase their agricultural productivity with improved seed varieties of cereals and legumes and assist them with technology transfer. The company aims to increase the food security and incomes of Zambia’s smallholder farming community, which accounts for 90 percent of agricultural output in the country. During the 2022–2023 farming season, a critical turning point was reached when Afriseed became a partner in the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, a two-year project under CIMMYT, with the aim of scaling-up production of certified seed varieties of soybean and common bean.

Under the partnership, Afriseed promotes the cultivation of improved legume seed through a smallholder farmer seed multiplication approach. By engaging with practicing smallholder farmers and signing grower contracts, basic seeds are multiplied into certified seed for soybean and common bean. Certified seed is a known variety produced under strict seed certification standards to support varietal purity. In collaboration with the Seed Control and Certification Institute (SCCI), the country’s national seed authority, contracted farmers received training on climate-smart agricultural techniques and seed production guidelines. Through extension services to seed growers, smallholder farmers can adhere to the seed production guidelines set out in the National Seed Act to ensure the quality of certified seed produced.

Smallholder farmers hold improved, certified seed. (Photo: AFRI archives)

Afriseed has invested more than USD 335,000 toward supporting the production, aggregation, and processing of 317 t of certified climate-smart legume seeds—265 metric tonnes (MT) for soybean and 52 MT for common bean. Data have shown that the seeds were aggregated from 313 smallholder seed growers, 40 percent of whom were women, in Zambia’s Eastern Muchinga, Copperbelt and the Northern provinces. Seed aggregation improves access to quality seed varieties, increases crop yields and incomes, enhances integration into value chains, and creates market links for smallholder farmers.

Notable progress has been made with the contracted farmers, who have applied improved crop management practices and technologies on more than 600 ha of land to produce the seed. With this encouraging progress, Afriseed intends to scale up its last-mile seed distribution strategy to reach and directly help an estimated 35,000 underserved rural smallholder farming households with improved legume seeds in the 2023–2024 cropping season.

AID-I is one of the ways in which Feed the Future, the U.S. Government’s global food security and hunger initiative led by USAID, is taking immediate action to help cushion the blow of high fuel and fertilizer prices on farmers. One of the project’s initial actions is to strengthen local seed systems so that agribusinesses can reach smallholder farmers with a diversity of improved seeds varieties, including climate-resilient and more nutritious varieties for maize and legumes.

Strengthening farmer resilience through sustainable synergies between crops and livestock

Local farmer showcases her indigenous seed during the seed and livestock fair in Mbire. (Photo: CIMMYT)

Farmers, stakeholders, and partners, including seed companies, Hamara Chicks, PHI Commodities, the International Livestock Research Institute (ILRI), BioHUB Trust (BHT), Kurima Machinery and Technology, and Zimplow Limited, participated in the Seed and Livestock Fair in the Mbire and Murewa districts of Zimbabwe, which showcased indigenous and improved seed varieties and different technologies to strengthen crop and livestock value chain systems.

Initiated by CIMMYT in 2022, as the CGIAR Initiative on Agroecology, these series of fairs have become instrumental in bringing agrodealers closer to farmers and showcasing sustainable technologies and innovations that have the potential to strengthen production systems. It was also an opportunity for the agroecology initiative team to provide feedback to farmers and stakeholders on ongoing activities and technologies that were being tested since the initiative’s inception in Zimbabwe. By adopting a multi-partner approach, these fairs bring local food systems actors together to ensure food and nutrition security and improved income for farmers.

“The agroecology initiative has been collaborating with an array of organizations and institutes that can support our mission towards promoting agroecology and improving farming production, including other CGAIR entities like IWMI and ILRI, Hamara Group, Ecolyfe, and PHI Commodities,” said Dorcas Matangi, research associate at CIMMYT.

This year’s edition of the seed and livestock fair “Fostering Synergies: Diverse Crops, Livestock and Inclusive Communities” advocated for enhancing synergies within the farm to foster sustainable agroecology transitions for resilient food and nutrition outcomes. With over 800 farmers and stakeholders participating, the event provided a vibrant platform for knowledge sharing, exploration of indigenous and improved seed varieties, and sensitization of innovative technologies.

“The seed and livestock fairs hosted by the agroecology initiative bring together farmers and food system actors from all walks of life to foster learning around agroecology, which includes the importance of diversity (crop and livestock) while also appreciating local innovations in the respective area,” said Jesca Mapfinya, a Murewa farmer.

The right seed, assures a good harvest

Various seed companies participated in the fair to showcase different seeds which are well adapted in Murewa and Mbire districts.  Each agroecological region in Zimbabwe is unique, with adaptable seed varieties that are either landrace or improved. Local landraces and many underutilized crop species are adapted to weather and climate variability, climate change, and extreme weather such as drought and heat stress. Farmers indicated that their motivations for growing landraces are related to sustainable farming systems suitable for social, cultural, nutritional, and agronomic traits. Their place in rural communities remains important, providing much-needed functional diversity and social capital. Including improved varieties within the basket of options can further intensify production systems in these communities.

“Primarily, we sell seed varieties and build farmer capacity around appropriate agronomic practices. The seed fairs are a good platform to match seeds and systems and allows a farmer to provide feedback about our seed varieties and how they are performing in the respective areas,” said Onesmous Satenga, SeedCo.

Farmers interact and purchase seed from a local company. (Photo: CIMMYT)

Building crop and livestock synergies

For the first time since the inception of the fairs, livestock such as cattle, sheep, goats, chicken and rabbits were displayed. Partners, including ILRI and the Hamara Chicks, who are into sasso chicken and feed production, reiterated the importance of crop diversity for improved livestock nutrition. ILRI and the Grasslands Research Institute exhibited various local feedstocks and alternative livestock feed grasses and also presented several feed formulations. Farmers also provided feedback on the feeding strategies employed for different livestock.

“We feed cattle with poultry litter, maize grain, maize stover, and groundnut shells in various proportions depending on the availability of these feed sources. Forage legumes such as velvet bean (mucuna pruriens) and lablab (lablab purpureus) have been introduced, and we have started to grow these for feed,” said Samson Tashaya, Murewa farmer.

Local goat breeds showcased by farmers during the seed and livestock fair. (Photo: CIMMYT)

Of keen interest to farmers and stakeholders was the sasso breed of chickens that the Hamara Group was promoting.

“We have recently joined as partners with CIMMYT and are promoting hybrid chicken production, especially sasso, here in Murewa ward 27 and 4. This is our first time coming to this seed fair, and it was a learning opportunity. The interactions with farmers were really good,” said Alan Norton, team leader at Hamara Chicks.

Modernizing smallholder production systems

Mechanization experts from Kurima Machinery and Zimplow shared their recommendations at the fair. They acknowledged that farmers rely heavily on scarcely available labor and production activities that are backbreaking. They advocated for modern production systems to produce more food and support economic transformation. Experts from Kurima Machinery and Zimplow demonstrated several machines that could aid farmers in various on-farm activities.

“This fair has come at the right time as I begin land preparation for my pfumvudza (conservation agriculture plots). I have seen how the basin digger works, and I am keen to purchase an instrument to make my work much easier,” said Chief Chisunga, Mbire.

“This crop season’s outlook is still unclear, but weather experts have warned of an intense El Nino event likely to happen in the second half of the season. Technologies such as conservation agriculture can ensure good moisture retention in crop fields, and it needs to be paired with good agronomic practices,” said Tafadzwanashe Mabhaudhi, climate and food systems expert.

Live demonstration by Kurima of machinery equipment to local farmers (Photo: CIMMYT)

Market Intelligence Briefs – a new publication series to inform crop-breeding decisions

The CGIAR Initiative on Market Intelligence represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach. (Photo: Susan Otieno/CIMMYT)

What is ‘Market Intelligence’?

Strategies for breeding and seed systems to deliver greater impact will benefit from reliable and comparable evidence on the needs and requirements of farmers, processors and consumers. This includes anticipating how farmers may respond to emerging threats and opportunities in light of seed-sector and product-market evolution and the changing environment. Experts generally agree that ‘demand-led breeding’ will be essential to achieve more impact from investments in crop breeding. But the continued interest in a demand-led approach to the design of varieties and the prioritization of breeding pipelines requires reliable, comparable and timely market intelligence. It also requires new mechanisms for how market intelligence is collected, shared and discussed with those engaged in the design and funding of breeding pipelines and seed systems.

Over the past 25 years, social science researchers from CGIAR, NARES and universities have generated important insights on the traits and varieties farmers prefer. These farmer preferences for traits and varieties have been explored through household surveys, participatory rural appraisals and participatory varietal selection. More recently, economists have employed tools such as choice experiments, experimental auctions and gamification of farmer priority traits. Overall, a large body of work has emerged, but variations in research questions, methodologies and interventions have contributed to disparate research findings and limited the opportunities for consolidation and comparative analyses.

Looking ahead, a strategic opportunity to guide more impactful investments in crop breeding and seed systems development lies in:

  • designing a consistent approach for generating and disseminating market intelligence
  • coordinating research across CGIAR and NARES to deliver timely market intelligence;
  • establishing processes for coordination across social science teams and among social science, crop modelers, CGIAR-NARES networks and the private sector.

The CGIAR Initiative on Market Intelligence (‘Market Intelligence’ for brevity) represents a new effort to engage social scientists, crop breeding teams and others to work together toward the design and implementation of a demand-led breeding approach.

Within this initiative, the International Maize and Wheat Improvement Center (CIMMYT) leads Work Package 1, ‘Market Intelligence’, which is responsible for the design of innovative methods and tools to collect market intelligence and the application of these tools across different regions and crops relevant for CGIAR breeding. The Work Package engages either other CGIAR centers and external partners, such as CIRAD and the World Vegetable Center. An early, but critical, challenge facing the Work Package team was how to disseminate in an accessible and timely manner market intelligence to breeding teams, funders, and the private sector.

Market Intelligence Briefs

Traditionally, researchers from CGIAR, NARES and universities who have sought to inform crop breeding and seed systems programming have done so by publishing their work in reputable international peer-reviewed journals. However, the process can be slow, potentially requiring multiple revisions over years. The practical nature of market intelligence research can limit its relevance for journal editors who are looking to push theoretical debates forward. Thus, for Market Intelligence to deliver on its promise, new ways of communicating will be essential. In looking to address these limitations, work package 1 has led the design and implementation of a new publication series called Market Intelligence Briefs (MIB). Each brief is reviewed by peers, is concise (less than 4000 words), avoids technical jargon, and attempts to present conclusions in a clear and decisive manner. In 2022 the first two editions of the MIB series were published, both led by CIMMYT researchers and available online.

MIB 1: a framework for informing crop breeding

This brief defines several important concepts that, when taken together, form the basic framework used by the Initiative to generate comparable and useful market intelligence. Some of the definitions are inspired by previous work on demand-led breeding, while others build on work by CGIAR’s Excellence in Breeding (EiB) platform. A confusing set of terms and definitions has emerged around market intelligence—a field rooted in commercial product innovation—with different terms and definitions for similar concepts. In the interest of clear communication and understanding among those engaged in crop breeding, seed systems and social science, this brief presents key concepts and definitions that have been discussed extensively during the initial months of implementation of Market Intelligence. We conclude the brief with reflections on the way forward for implementation.

MIB 2: future market segments for hybrid maize

The second brief zooms into the maize market segments in East Africa and proposes a new methodology for gathering insights from farmers about their varietal preferences to inform future market segmentation. This brief explains the conceptual and methodological underpinnings of Video-based Product Concept Testing (VPCT) and presents an application of the tool in hybrid maize. Seven new product concepts (representing potential future market segments) were identified based on discussions with breeders, seed companies and farmers, which we labelled: home use, intercropping, drought avoidance, nutritious, feed (yellow), green maize and food and fodder. These future concepts, together with the resilient benchmark product concept (the current breeding target), were evaluated through triadic comparisons with 2400 farmers in Kenya and Uganda. The results showed that concepts focused on agronomic performance were preferred over concepts focused on end use characteristics, but that diversity in farming practices can lead to different seed preferences.

Looking ahead

In 2023, several briefs will be published from scientists working in the market intelligence initiative and various partners of Market Intelligence from outside the CGIAR. An on-line repository for these briefs is being designed now. Future briefs will cover a variety of topics, from competition in maize seed markets in Kenya (based on a two year study that tracked seed sales at the retail level), methods for assessing the demand for future step-change innovations in genetic innovations, and preferences for future groundnut seed products in Tanzania, considering the needs of farmers and processors. We believe that these briefs will become a valuable communication tool to support informed decision making by crop breeders, seed system specialists, and donors on future priorities and investments by CGIAR, NARS, the private sector and non-governmental organizations (NGOs).

This project received funding from the Accelerating Genetic Gains in Maize and Wheat project (AGG) [INV-003439], funded by the Bill & Melinda Gates Foundation, the UK’s Foreign, Commonwealth & Development Office (FCDO), the Foundation for Food & Agricultural Research (FFAR) and the United States Agency for International Development (USAID).

Read the original article: Market Intelligence Briefs – a new publication series to inform crop-breeding decisions

Farmers in Zimbabwe embrace agroecology

Smallholder farmers display a range of small and large grains at the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove/CIMMYT)

Smallholder farmers in resource-poor communities of Zimbabwe and much of the Global South have been experiencing low crop productivity due to many factors, including inappropriate seeds and seed varieties, labor shortages, loss of agro-biodiversity, insufficient inputs, degrading soils, and recurrent droughts. These threats are now amplified by climate change.

This has resulted in broken food systems rendering food and nutrition insecurity commonplace. The One CGIAR initiative, Transformational Agroecology Across Food, Land, and Water Systems, led by the International Maize and Wheat Improvement Center (CIMMYT) in Zimbabwe, is designed to bring agroecological advances to smallholder famers in an effort to strengthen local food systems.

Smallholder farmers in the Mbire and Murehwa Districts of Zimbabwe were introduced to innovative agroecology interventions, premised on harnessing nature’s goods and services while minimizing adverse environmental impacts and improving farmer-consumer connectivity, knowledge co-creation, and inclusive relationships among food system actors.

Smallholder farmers register for the agroecology seed fair in Mbire, Zimbabwe. (Photo: Tawanda Hove)

Farmer to farmer collaboration at seed fairs

In response to challenges related to lack of appropriate seeds and eroding agrobiodiversity and, as a way to transition prevailing food systems to more sustainable ones, farmers were invited to take part in seed fairs. The seed fair’s objective was to enable smallholder farmers to access improved and locally adapted seeds of food crops originating from the private sector and fellow farmers. In addition, the seed fairs provided a platform for learning about agroecological practices. Farmers were also given a chance to see different machinery that could aid in land, food, and feed preparation, and address their labor shortage challenges.

At the opening of the seed fair in Mbire, Dorcas Matangi, CIMMYT research associate, acknowledged that smallholder farmers operate in challenging and complex ecological, social, and economic systems and there is a need for interventions that address the natural resource base without ignoring the social and economic dynamics within communities.

“The communal culture of sharing and trading between community members can be capitalized on for a collective benefit, said Matangi. “One such case is through events such as seed fairs where we encourage farmers to showcase and sell seeds they know perform very well.”

She further explained to the participating farmers how increasing their crop diversity and using practices such as conservation agriculture techniques benefit the environment and improves food security and nutrition.

“I am grateful for these efforts,” said Grace Musandaira, supervisor of the Agriculture Advisory and Rural Development Service. “Our region is arid, and as such, it is very difficult for our farmers to achieve significant yields to assure them there is enough food for the year. In addition, the knowledge provision relating to preserving and improving agrobiodiversity through agroecological practices is set to improve rural livelihoods.”

Senzeni Nyagonye, a farmer in Mbire, said “This initiative is teaching and exposing us to so many new concepts such as conservation agriculture with mechanization. If we can apply conservation agriculture with the seeds we bought at this seed fair, we are optimistic about a great harvest.”

A total of 1,058 farmers attended two seed fairs in Mbire and Murehwa. Farmers had the opportunity to access a variety of crop seeds ranging from maize, to sorghum, millets, groundnuts, bambara groundnuts, and sunflowers. More than 200 farmers exhibited local seeds that were available for sale or exchange. Private seed companies also showcased and sold certified drought-tolerant maize, sorghum, bean and cowpea varieties.

“The seed fairs in Mbire and Murehwa were very successful”, said Matangi. “And we feel these efforts will serve as a useful case study to guide a national scale-up.”

Tracking improved crop varieties

Participants of the IMAGE National Advisory Committee launch event in Ethiopia. (Credit: EIAR)

Coordinating the development and deployment of improved seed varieties is a complex task involving many stakeholders, including government agencies, public and private seed sector organizations, and ultimately, farmers and farmer groups. Cooperation among these groups is vital to assess and measure the impact of improved varieties and to guide decision making for future crop breeding efforts.

The Institutionalizing Monitoring of Crop Variety Adoption using Genotyping (IMAGE) project, funded by the Bill & Melinda Gates Foundation and managed by Context Global Development, is a five-year program operating in Nigeria, Tanzania, and Ethiopia designed to increase the efficacy of variety deployment by establishing, institutionalizing, and scaling up routine monitoring of improved variety adoption and turnover using genotyping technologies, focusing on wheat, maize, teff, and the common bean.

The International Center for Maize and Wheat Improvement (CIMMYT), in collaboration with the Ethiopian Institute of Agricultural Research (EIAR), launched Ethiopia’s IMAGE National Advisory Committee (NAC) February 25, 2022, in Addis Ababa.

Feto Esemo, the Director General of the Ethiopian Institute of Agricultural Research (EIAR) officially opened the workshop.

Esemo underscored in his opening remarks the NAC’s mission to promote the application of DNA fingerprinting for an accurate assessment and understanding of the adoption of improved maize and wheat varieties by small-holder farmers in Ethiopia and resolve data discrepancy among researchers.

The NAC is the highest advisory body for IMAGE’s implementation in Ethiopia and comprises seven institutions: Ministry of Agriculture (MoA), Ministry of Planning and Development (MPD), Agricultural Transformation Institute (ATI), EIAR, Central Statistical Agency (CSA), Ethiopian Biodiversity Institute (BI), and the Ethiopian Biotechnology Institute (EBI).

Kindie Tesfaye, CIMMYT senior scientist, emphasized the application of DNA fingerprint data on maize and wheat in Ethiopia and summarized the IMAGE Project.

“IMAGE supports inclusive agricultural transformation by providing insights and evidence for seed sector actors to enhance government agency capacity, improve stakeholder coordination, and lead to better resource allocation for varietal development and commercialization,” said Tesfaye.

He added the IMAGE Project provides the opportunity to leverage past monitoring pilots and cross-country lessons while advancing genetic reference libraries, establishing protocol adoption, and building towards institutionalization over five years.

National maize and wheat genotyping studies in Ethiopia proved the feasibility of using DNA fingerprinting for variety monitoring at scale and CIMMYT and EIAR presented the findings to seed system and policy stakeholders with an emphasis on demonstrating how varietal identity based on genotyping compares with farmers’ elicitation, the area-weighted average age of varieties, germplasm attribution, and varietal performance.

Chilot Yirga, Deputy Director-General, Capacity Building and Administration of EIAR, emphasized the functional and structural roles of the National Advisory Committee (NAC), Country Team (CT), and Technical Working Group (TWG) of the project in the country.

EIAR, the Holetta National Agricultural Biotechnology Research Center, CSA, and CIMMYT comprise the Country Team.

Yirga also briefed the participants on the details of the Committee’s mandate and indicated the roles of all stakeholders and policymakers, specifically in DNA fingerprinting.

The workshop concluded by electing a chairperson and vice-chairperson of the committee among its members and co-project leaders from CIMMYT and EIAR.

Novel technology to reduce the complexity of maize seed production and increase maize hybrid yields in farmer’s fields

A recently published study in Nature Communications Biology journal demonstrates the potential of a novel seed production technology to transform Africa’s seed production system, conferring important benefits to smallholder maize farmers and seed companies in sub-Saharan Africa.

The Seed Production Technology for Africa (SPTA) process enables production of non-pollen-producing inbred seed that can be used in a two-step multiplication process to produce commercial seed of hybrid varieties containing equal parts pollen producing and non-pollen producing plants.  The pollen producing plants provide pollen for the entire field, while the non-pollen producing plants deliver additional grain since they save energy by not producing pollen. Hybrids in which fifty percent of the plants are non-pollen producing have a significant grain yield advantage compared with hybrids in which all plants produce pollen.

Farmers and researchers evaluated the performance of fifty percent non-pollen producing (FNP) hybrids  in side-by-side comparisons across diverse farm sites in Kenya, South Africa, and Zimbabwe between 2016 and 2019. The results demonstrate that FNP hybrids deliver an average yield increase of 200 kg per hectare, representing a 10-20% increase at current sub-Saharan Africa yield levels where farmers face frequent drought and sub-optimal soil fertility. The FNP yield advantage was consistent in both low yielding and higher yielding conditions.  Additionally, in extensive farmer surveys, farmers rated the FNP hybrids higher than the pollen producing counterparts, recognizing the grain yield advantage. Favorable rating of FNP hybrids suggests that farmers are likely to adopt them once available.

Although consistent and steady improvement is being made for grain yield potential through plant breeding, the yield benefit of FNP hybrids is the equivalent of approximately six years of breeding progress under stressful conditions.  The FNP trait provided a consistent yield advantage in several genetically unique hybrids evaluated, indicating that the yield advantage from FNP will be complementary to and additive with progress from maize breeding efforts.

In sub-Saharan Africa, the challenge of delivering genetically pure, high-quality seed is substantial. Seed companies in the region contend with a complex and costly system to produce commercial seed. In addition to delivering higher grain yield to farmers through the FNP trait, the SPTA process will reduce the complexity of seed production, enabling seed producers to deliver higher purity improved hybrid seeds in sufficient quantities for smallholder farmers.

Hybrid seed production requires that one of the parents of the hybrid is prevented from producing pollen, ensuring that the seed harvested has been cross-fertilized by the pollen parent. Most hybrid seed production in sub-Saharan Africa involves physical removal of the tassels of the seed parent prior to the release of pollen, a process known as detasseling. Detasseling is important in commercial seed production to prevent self-fertilization of the seed parent plants. Nearly all detasseling in sub-Saharan Africa is done by hand, which is a labor-intensive and time-sensitive process. Poorly executed or ill-timed detasseling results in unwanted self-fertilization of the seed parent, leading to rejection of seed and incurring losses to the seed producer. Furthermore, timely detasseling typically involves removal of one or more leaves together with the tassel, reducing the photosynthetic capacity of the plant, and lowering the seed yield.

Use of the SPTA process ensures that the seed parent of the hybrid will not produce pollen, thereby eliminating the need for detasseling. This means seed producers can ensure higher integrity of hybrid seed while reducing costs and increasing seed yield. The technology is well suited for the three-way hybrid production commonly used in sub-Saharan Africa. Economic advantages to seed companies of using seed from the SPTA process is also expected to provide incentive to replace older, lower yielding varieties with more recently developed hybrids. Providing improved quality seed of better hybrids while delivering the yield advantage of the FNP trait can benefit smallholder maize farmers throughout the region. Saving costs can help the seed sector remain strong and competitive, which leads to increasingly better options for farmers in the future.

Read the full study: Incorporating male sterility increases hybrid maize yield in low input African farming systems

The research was conducted by scientists from the Seed Production Technology for Africa project, a collaborative initiative of the Agricultural Research Council of South Africa (ARC), International Maize and Wheat Improvement Center (CIMMYT), CortevaTM Agriscience, Kenya Agricultural and Livestock Research Organization (KALRO), and QualiBasic Seed Company (QBS).

Cover photo: A woman with a baby on her back evaluating maize plants farmer’s plots hosting FNP trials in Embu, Kenya. Photo: Hugo DeGroote/CIMMYT

Exploring the potential for blended wheat flours in Kenya  

Over the years, wheat-based foods have increasingly been incorporated as part of Kenyan meals. One example is packaged bread, which has become a common feature on Kenyan breakfast tables with millions of loaves from industrial bakeries delivered to retail shops daily, countrywide. Another example is chapati — a round unleavened flat bread. Once reserved for special occasions, chapati can now be purchased from roadside venders throughout the capital Nairobi.

Millers and processors in Kenya are highly dependent on imported wheat to meet the strong demand for wheat-based food products. The conflict between Russia and Ukraine, two of the most important sources of imported wheat for Kenya, presents a major threat to millers and industrial bakeries.  Prices for bread and chapati are increasing and may continue to increase. Governments and wheat-related industries are looking at short- and long-term options to reduce utilization of imported wheat. One short-term option is the blending of wheat flour with flour derived from locally available crops, such as cassava, millet or sorghum.

Record-high price of wheat

A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)
A sign at a flour mill in East Africa shows proportions of wheat from different origins (Argentina, Russia, Ukraine and local) used in that particular day’s production. (Photo: Alison Bentley/CIMMYT)

A visit to local industrial bakeries and wheat flour millers on the outskirts of Nairobi by International Maize and Wheat Improvement Center (CIMMYT) researchers confirmed the effects of record-high global prices of wheat.  Global Wheat Program director Alison Bentley and senior economist Jason Donovan had conversations with leaders of industrial bakeries and millers, who gave insights into their grain demands, production processes and sales volumes.

One of the leaders of an established industrial bakery divulged that they use approximately 15,000 tons of wheat flour monthly to make baked products, with only 10% of the wheat obtained locally.

“In the last ten years, local wheat production has comprised about ten to fifteen percent of our cereal mixture for bread, and we were already paying higher prices to farmers compared to import prices. The farmers were already being paid about 30 to 40 dollars more per ton,” a manager of a large baking industry in Kenya explained to the CIMMYT team.

According to government regulations, millers and bakeries must purchase locally produced wheat at agreed prices before they can buy imported wheat. He agreed that though the quality of local wheat is good, the local production cannot compete with the higher volume of imported wheat or its lower price.

Growing wheat in East Africa

It has been more than four months since the Russia-Ukraine conflict unfolded, and since then prices of wheat-based products have been increasing significantly. The current crisis has sparked the debate on low levels of self-sufficiency in food production for many countries. And this is especially the case for wheat in Kenya, and more widely in Africa.

Bentley points out that the biophysical conditions to produce wheat in East Africa are present and favorable. However, more work is needed to strengthen local wheat production, starting with efficient seed systems. Farmers who are interested in growing wheat need access to high performing and stress-tolerant wheat varieties.

CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)
CIMMYT Global Wheat Program director, Alison Bentley, observes the bread making process at an industrial bakery on the outskirts of Nairobi, Kenya. (Photo: Susan Otieno/CIMMYT)

Practical response to the crisis

With no certainty as to how long the conflict will continue and climate change resulting in significant crop loss in key production zones, wheat shortages on international markets could become a reality. Blending of wheat flour with locally available crops could be an option as an immediate response to the current scarcity of wheat in East Africa. “Blending [flour] is when for instance five percent of wheat flour is replaced with flour from a different crop such as sorghum or cassava,” Bentley explained.

Donovan added that, though it might seem like a small number, it becomes significant in consideration to the volume of wheat that industries use to make different products, translating into thousands of metric tons. He noted that blending flour therefore has the potential to create a win-win situtation, because it can boost the demand for local crops and address uncertainty and price volatility on international wheat markets.

Consumer acceptance of new products

Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)
Different types of flour on supermarket shelves in Kenya. (Photo: Pieter Rutsaert/CIMMYT)

During a full week of engagements with universities, partners, and industry experts in Kenya, the CIMMYT team explored the current interest of the sector in blending wheat flour. Several partners agreed that this could be a potential way forward for the grain industry but all highlighted one key element: the importance of consumer acceptance. If the functionality of the flour or taste would be negatively influenced by blending wheat flour, it would represent a no-go from the industry, even if blends would have higher nutritional benefits or lower prices. “This reinforces the need to understand consumer preferences and evaluate both the functionality of the flour to produce essential food products such as chapati or bread as well as the taste of those products,” Pieter Rutsaert explained.

CIMMYT researchers Sarah Kariuki and Pieter Rutsaert, both Markets and Value Chain Specialists, and Maria Itria Ibba, Head of the Wheat Quality Lab, are therefore engaging with local millers and universities in Kenya to design bread and chapati products derived from different wheat blends, to include blends comprised of 5%, 15% and 20% of cassava or sorghum. Lab testing and preliminary consumer testing will be used to identify the most promising products. These products will be taken to the streets in urban and peri-urban Nairobi to assess consumer tastes and preferences, through sensory analysis and at-home testing.

The market intelligence gained will offer foundational support for CGIAR’s Seed Equal Initiative to accelerate the growth of a demand-driven seed system. By gathering and analyzing consumer preferences on selected crops for blending, such as from farmers and milling industries, Donovan pointed out that CGIAR breeding will continue to make informed choices and prioritize breeding for specific crops, that seek to address specific challenges, therefore having greater impact.

Donovan noted that data and information from the studies will provide much needed evidence and fill information gaps that will support governments, millers, processors and farmers to make decisions in response to the evolving wheat crisis.

Wheat versus heat

Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)
Wheat leaves showing symptoms of heat stress. (Photo: CIMMYT)

Across South Asia, including major wheat-producing regions of India and Pakistan, temperature extremes are threatening wheat production. Heatwaves have been reported throughout the region, with a century record for early onset of extreme heat. Monthly average temperatures across India for March and April 2022 exceeded those recorded over the past 100 years.

Widely recognized as one of the major breadbaskets of the world, the Indo-Gangetic Plains region produces over 100 million tons of wheat annually, from 30 million hectares in Bangladesh, India, Nepal and Pakistan, primarily supporting large domestic demand.

The optimal window for wheat planting is the first half of November. The late onset of the 2021 summer monsoon delayed rice planting and its subsequent harvest in the fall. This had a knock-on effect, delaying wheat planting by one to two weeks and increasing the risk of late season heat stress in March and April. Record-high temperatures over 40⁰C were observed on several days in March 2022 in the Punjabs of India and Pakistan as well as in the state of Haryana, causing wheat to mature about two weeks earlier than usual.

In-season changes and effects

Prior to the onset of extreme heat, the weather in the current season in India was favorable, prompting the Government of India to predict a record-high wheat harvest of 111 million tons. The March heat stress was unexpected and appears to have had a significant effect on the wheat crop, advancing the harvest and likely reducing yields.

Departure of the normalized difference vegetation index (NDVI) during the period from March 22 to April 7 from the average of the previous five years. The NDVI is a measure of the leaf area and the greenness of vegetation. The yellow areas in the Punjabs of India and Pakistan, as well as in the state of Haryana, indicate that wheat matured earlier than normal due to elevated temperatures. Maximum temperatures reached 40⁰C on March 15 and remained at or above this level throughout the wheat harvesting period. (Map: Urs Schulthess/CIMMYT).
Departure of the normalized difference vegetation index (NDVI) during the period from March 22 to April 7 from the average of the previous five years. The NDVI is a measure of the leaf area and the greenness of vegetation. The yellow areas in the Punjabs of India and Pakistan, as well as in the state of Haryana, indicate that wheat matured earlier than normal due to elevated temperatures. Maximum temperatures reached 40⁰C on March 15 and remained at or above this level throughout the wheat harvesting period. (Map: Urs Schulthess/CIMMYT).

In the North-Western Plains, the major wheat basket of India, the area of late-sown wheat is likely to have been most affected even though many varieties carry heat tolerance. Data from CIMMYT’s on-farm experiments show a yield loss between 15 to 20% in that region. The states of Haryana and Punjab together contribute almost 30% of India’s total wheat production and notably contribute over 60% of the government’s buffer stocks. In the North-Eastern Plains, in the states of Bihar and Uttar Pradesh, around 40% of the wheat crop was normal or even early sown, escaping heat damage, whilst the remainder of late-sown wheat is likely to be impacted at a variable level, as most of the crop in this zone matures during the third and fourth week of March.

The Government of India has now revised wheat production estimates, with a reduction of 5.7%, to 105 million tons because of the early onset of summer.

India has reported record yields for the past 5 years, helping it to meet its goal of creating a reserve stock of 40 million tons of wheat after the 2021 harvest. It went into this harvest season with a stock of 19 million tons, and the country is in a good position to face this year’s yield loss.

In Pakistan, using satellite-based crop monitoring systems, the national space agency Space & Upper Atmosphere Research Commission (SPARCO) estimated wheat production reduction close to 10%: 26 million tons, compared to the production target of 29 million tons, for the 2021-22 season.

Rural and farming health impacts

Alongside a direct negative impact on agricultural productivity, the extreme temperatures in South Asia are likely to have negative health implications for the large rural labor force involved in wheat production. There is a growing body of evidence documenting declining health status in the agricultural workforce in areas of frequent temperature extremes. This also adds to the substantial human and environmental health concerns linked to residue burning.

We recommend that systematic research be urgently undertaken to characterize and understand the impacts of elevated temperatures on the health of field-based workers involved in wheat production. This is needed to develop a holistic strategy for adapting our global cropping systems to climate change.

Amplifying wheat supply risks

Combined with the wheat supply and price impacts of the current conflict in Ukraine and trade restrictions on Russian commodities, these further impacts on the global wheat supply are deeply troubling.

India had pledged to provide increased wheat exports to bolster global supplies, but this now looks uncertain given the necessity to safeguard domestic supplies. During the COVID-19 pandemic, the Indian government supported domestic food security by providing free rations — mainly wheat and rice — to 800 million people over several months. This type of support relies on the availability of large buffer stocks which appear stable, but may be reduced if grain production and subsequent procurement levels are lower than desired.

We are already seeing indications of reduced procurement by governments with market prices running higher than usual. However, although the Food Corporation of India has procured 27% less wheat grain in the first 20 days of the wheat procurement season compared to the same period last year, the Government of India is confident about securing sufficient wheat buffer stocks.

As with the COVID-19 pandemic and the war in Ukraine, it is likely that the most marked effects of both climate change and shortages of staple crops will hit the poorest and most vulnerable communities hardest.

A chain reaction of climate impacts

The real impacts of reduced wheat production due to extreme temperatures in South Asia demonstrate the realities of the climate emergency facing wheat and agricultural production. Direct impacts on farming community health must also be considered, as our agricultural workforce is pushed to new physical limits.

Anomalies, which are likely to become the new normal, can set off a chain reaction as seen here: the late onset of the summer monsoon caused delays in the sowing of rice and the subsequent wheat crop. The delayed wheat crop was hit by the unprecedented heatwave in mid- to late March at a relatively earlier stage, thus causing even more damage.

Preparing for wheat production tipping points

Urgent action is required to develop applied mitigation and adaptation strategies, as well as to plan for transition and tipping points when key staple crops such as wheat can no longer be grown in traditional production regions.

A strategic design process is needed, supported by crop and climate models, to develop and test packages of applied solutions for near-future climate changes. On-farm evidence from many farmers’ fields in Northwestern India indicates that bundled solutions — no-till direct seeding with surface retention of crop residues coupled with early seeding of adapted varieties of wheat with juvenile heat tolerance — can help to buffer terminal heat stress and limit yield losses.

Last but not least, breeding wheat for high-temperature tolerance will continue to be crucial for securing production. Strategic planning needs to also encompass the associated social, market and political elements which underpin equitable food supply and stability.

Download the pre-print:
Wheat vs. Heat: Current temperature extremes threaten wheat production in South Asia

Experts analyze the impact of the Russia-Ukraine war on global food and energy systems

Wheat fields in Kostanay, Kazakhstan. (Photo: M. DeFreese/CIMMYT)
Wheat fields in Kostanay, Kazakhstan. (Photo: M. DeFreese/CIMMYT)

A panel of experts convened by the Woodrow Wilson International Center for Scholars on April 13, 2022, discussed the effects that the Russia-Ukraine war could have on global supply chains of critical resources including staple crops, oil and natural gas, and strategic minerals.

Bram Govaerts, director general of the International Maize and Wheat Improvement Center (CIMMYT), joined three experts representing a security consulting firm, a mining investment company and the academic sector. They analyzed the complex ramifications of the armed conflict and put forward policy recommendations to mitigate its impact on global food and energy systems.

“We have immediate action to take in order to boost the production of crops with fewer resources available, such as fertilizers,” Govaerts said, reflecting on how to help food-insecure countries in the Middle East and North Africa that import most of their wheat supplies from the Black Sea region. “We also need to look at where we are going to be supplied with alternate sources,” he added.

Govaerts took this opportunity to position Agriculture for Peace, the CIMMYT-led call for secure, stable and long-term investment in agricultural research for development, to transform global food systems by shifting their focus from efficiency to resilience.

More information: System Shock: Russia’s War and Global Food, Energy, and Mineral Supply Chains

Russia-Ukraine conflict and global food security

For the past month, researchers from the International Maize and Wheat Improvement Center (CIMMYT) have analyzed the expected impacts of the Russia-Ukraine war on global food security.

The war in Ukraine and the sanctions against Russia will disrupt wheat supply chains, fertilizer exports and other components of food systems. Their combined effect, along with other factors, could unchain a major food security crisis as well as increased inequality.

Explore our analysis and coverage on major media outlets and journals. To get in touch with our experts, please contact the media team.

CIMMYT scientists have also made available a summary of key facts and figures about the impact of the Russia-Ukraine war on wheat supply (PowerPoint, 32MB): changing patterns of consumption and effect on food prices, geographic export supply concentration, global wheat imports, and specific vulnerabilities particularly in the Global South.

Another food crisis?

The Russia-Ukraine conflict will cause massive disruptions to global wheat supply and food security. Agricultural research investments are the basis of resilient agri-food systems and a food-secure future.

Drone shot of wheat trials at CIMMYT global headquarters in Texcoco, Mexico. (Photo: Alfonso Cortés/CIMMYT)

Broken bread — avert global wheat crisis caused by invasion of Ukraine

War highlights the fragility of the global food supply — sustained investment is needed to feed the world in a changing climate, Alison Bentley explains on Nature.

Food is just as vital as oil to national security

A new Bloomberg op-ed urges nations to steer more money to organizations like CIMMYT that are advancing crucial research on how to grow more resilient wheat and maize crops in regions that are becoming steadily less arable.

What price wheat?

Crisis in Ukraine underscores the need for long-term solutions for global food security, Alison Bentley and Jason Donovan explain.

Wheat fields in Ukraine. Photo: tOrange.biz on Flickr (CC BY 2.0)

Multiple breadbasket failures: Nations must address looming food emergencies

The war in Ukraine, coupled with weather-related disruptions in the world’s major grain-producing regions, could unleash unbearable humanitarian consequences, civil unrest, and major financial losses worldwide, say Sharon E. Burke (Ecospherics) and Bram Govaerts (CIMMYT) on The Boston Globe.

Multiple breadbasket failures: Nations must address looming food emergencies

The war in Ukraine, coupled with weather-related disruptions in the world’s major grain-producing regions, could unleash unbearable waves of displacement, humanitarian consequences, civil unrest, major financial losses worldwide, and geopolitical fragility, says Bram Govaerts, DG of CIMMYT, in a Boston Globe op-ed.

Read more: https://www.bostonglobe.com/2022/03/28/opinion/multiple-breadbasket-failures-nations-must-address-looming-food-emergencies/ 

Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.
Explore our coverage and analysis of the Russia-Ukraine war and its impact on global food security.