The importance of agroecological methods is starting to be a necessity across the Congo Basin. CIMMYT researcher, Prasanna Boddupalli, emphasises the importance of agroecological methods for biodiversity-smart agricultural development.
Bangladesh is one of the most climate-vulnerable countries in the world. The climate risks are negatively impacting the country’s agricultural sector, which constitutes nearly 12% of the country’s GDP. Additionally, 40% of the country’s workforce rely on agriculture for a major portion of their income (BBS, 2021-22).
Despite these challenges, Bangladesh has demonstrated remarkable economic growth by strategically investing in climate resilience and disaster preparedness over the years. The country has gained global recognition as a leader in these areas, driving its overall development. However, escalating climate risks continue to pose threats to Bangladesh’s progress, particularly impacting the most vulnerable segments of society and jeopardizing the nation’s growth trajectory.
Photo: (Harikhali in Paigachha/CCAFS)
In response to these challenges, Bangladesh has made concerted efforts to develop climate adaptation strategies. A significant milestone was the launch of the GCA Global Hub on locally led adaptation by the Honorable Prime Minister Sheikh Hasina in 2022. This groundbreaking initiative aims to support one million climate-vulnerable migrants in Bangladesh. The government has also formulated policies, plans and programs to combat the impacts of climate change. The Bangladesh Climate Change Strategy and Action Plan (BCCSAP), formulated in 2009 and updated in 2022, focuses on six thematic areas, with five and six emphasizing adaptation and mitigation, respectively. Another important initiative is the Bangladesh Delta Plan 2100, prepared in 2017, which categorizes the entire country into six hotspots. To safeguard the agricultural sector from climate change, Bangladesh has also developed vulnerability Atlases such as the ‘Bangladesh Climate and Disaster Risk Atlas: Volume 1 & 2’ and the ‘Climate Adaptation Services Bangladesh (Haor region).’
While significant progress has been made in risk mapping, there is room for improvement. For instance, the current Atlases operate at the district level, and there is immense potential to downscale them to the upazila (sub-district) level to achieve enhanced granularity. Additionally, transforming the Atlases from report format to a more interactive and user-friendly online one would be beneficial.
The Atlas of Climate Adaptation in South Asian Agriculture (ACASA) project aligns with the goals of BCCSAP, focusing on location-specific climate change adaptation and mitigation strategies in agricultural production. The Atlas will play a crucial role in quantifying localized climatic risks, assessing their impacts on agriculture today and in the future, and identifying key adaptation options to mitigate these risks. This knowledge will strengthen Bangladesh’s food security and reduce its vulnerability to climatic risks.
The Bangladesh Agricultural Research Council (BARC) will actively utilize the Atlas, leveraging agro-geospatial data to expedite decision-making processes. BARC will further leverage its expertise in geospatial tools, crop zoning information systems, GIS-based mobile apps, climate information databases and drought monitoring systems, further combined with the knowledge base of Atlas to ensure informed and evidence-based actions. Moreover, collaborating with ACASA to develop an advanced and interactive online Atlas expands the country’s scope and fosters stakeholder participation, enabling informed decision-making and refined risk characterization at a granular level.
Piece by Shaikh Mohammad Bokhtiar, Executive Chairman, Bangladesh Agricultural Research Council (BARC), Bangladesh
It is official: the World Meteorological Organization (WMO) announced the beginning of the global climate heating event El Niño on July 4, which means that extreme weather events will affect the lives and livelihoods of millions of people on all continents from now until midyear 2024. El Niño is considered the biggest climate oscillation on Earth. It occurs when winds and water temperatures change periodically in the Pacific Ocean. The last occurrence was in 2016, which according to the WMO remains the hottest year on record.
What can we do to mitigate El Niño’s effects in the food systems that sustain livelihoods in the Global South?
Climate change will lower global wheat production with the most negative impacts occurring in Africa and South Asia, reveals a new study released by the International Maize and Wheat Improvement Center (CIMMYT).
Leading crop simulation models used by a global team of agricultural scientists to simulate wheat production up to 2050 showed large wheat yield reductions due to climate change for Africa and South Asia, where food security is already a problem.
The model predicted average declines in wheat yields of 15% in African countries and 16% in South Asian countries by mid-century, as described in the 2021 paper “Climate impact and adaptation to heat and drought stress of regional and global wheat production,” published in the science journal Environmental Research Letters. Climate change will lower global wheat production by 1.9% by mid-century, with the most negative impacts occurring in Africa and South Asia, according to the research.
“Studies have already shown that wheat yields fell by 5.5% during 1980-2010, due to rising global temperatures,” said Diego N.L. Pequeno, wheat crop modeler at the International Maize and Wheat Improvement Center (CIMMYT) and lead author of the paper. “We chose several models to simulate climate change impacts and also simulated wheat varieties that featured increased heat tolerance, early vigor against late season drought, and late flowering to ensure normal biomass accumulation. Finally, we simulated use of additional nitrogen fertilizer to maximize the expression of these adaptive traits.”
Wheat fields in Ankara, Turkey, where data was used for crop model simulation (Photo: Marta Lopes/CIMMYT)
The wheat simulation models employed — CROPSIM-CERES, CROPSIM, and Nwheat within the Decision Support System for Agrotechnology Transfer, DSSAT v.4.6 — have been widely used to study diverse cropping systems around the world, according to Pequeno.
“The DSSAT models simulated the elevated CO2 stimulus on wheat growth, when N is not limiting,” he said. “Our study is the first to include combined genetic traits for early vigor, heat tolerance, and late flowering in the wheat simulation.”
Several factors, including temperature, water deficit, and water access, have been identified as major causes in recent wheat yield variability worldwide. The DSSAT wheat models simulate the impact of temperature, including heat stress, water balance, drought stress, or nitrogen leaching from heavy rainfall.
“Generally, small and low-volume wheat producers suffered large negative impacts due to future climate changes, indicating that less developed countries may be the most affected,” Pequeno added.
Climate change at high latitudes (France, Germany, and northern China, all large wheat-producing countries/region) positively impacted wheat grain yield, as warming temperatures benefit wheat growth through an extended early spring growing season. But warmer temperatures and insufficient rainfall by mid-century, as projected at the same latitude in Russia and the northwestern United States, will reduce rainfed wheat yields — a finding that contradicts outcomes of some previous studies.
At lower latitudes that are close to the tropics, already warm, and experiencing insufficient rainfall for food crops and therefore depending on irrigation (North India, Pakistan, Bangladesh), rising heat will damage wheat crops and seriously reduce yields. China, the largest wheat producer in the world, is projected to have mixed impacts from climate change but, at a nation-wide scale, the study showed a 1.2% increase in wheat yields.
“Our results showed that the adaptive traits could help alleviate climate change impacts on wheat, but responses would vary widely, depending on the growing environment and management practices used,” according to Pequeno. This implies that wheat breeding for traits associated with climate resilience is a promising climate change adaptation option, but its effect will vary among regions. Its positive impact could be limited by agronomical aspects, particularly under rainfed and low soil N conditions, where water and nitrogen stress limit the benefits from improved cultivars.
Extreme weather events could also become more frequent. Those were possibly underestimated in this study, as projections of heat damage effects considered only changes in daily absolute temperatures but not possible changes in the frequency of occurrence. Another limitation is that most crop models lack functions for simulating excess water (e.g., flooding), an important cause of global wheat yield variability.
This study was supported by the CGIAR Research Program on Wheat agri-food systems (CRP WHEAT; 2012-2021), the CGIAR Platform for Big Data in Agriculture, the International Wheat Yield Partnership (IWYP115 Project), the Bill & Melinda Gates Foundation, the World Bank, the Mexican government through the Sustainable Modernization of Traditional Agriculture (MasAgro) project, and the International Treaty of Plant Genetic Resources for Food and Agriculture and its Benefit-sharing Fund for co-funding the project, with financial support from the European Union.
Maize under conservation agriculture (CA) in Malawi (Photo: T. Samson/CIMMYT)
With many stresses facing agricultural food systems, including climate change, disease epidemics, growing populations, there is not one solution that will answer all the challenges. However, a foundational part of any attempt to strengthen food systems is the effort to conserve crop diversity. Maintaining a robust set of plant varieties serves as a building block for developing favorable traits, like increased yield, increased disease resistance, and drought tolerance, among others.
Dedicated to conserving crop diversity, the Crop Trust is a non-profit international organization with the mission of making that diversity available for use globally, forever, for the benefit of everyone.
On April 3, 2023, Crop Trust’s Executive Director, Stefan Schmitz, and Director of Programs, Sarada Krishnan, visited the International Maize and Wheat Improvement Center (CIMMYT) for the first time to examine CIMMYT’s maize and wheat genebanks, with the goal of establishing a set of standards for genebanks around the world. The parties also discussed future collaborations between the two institutions that will be best amplify each organization’s strengths.
A key part of the Crop Trust’s mission is support for collections of unique and valuable plant genetic resources for food and agriculture held in genebanks.
“CIMMYT is — and has been — one of the key partners in making sure crop diversity is safe and available for all of humanity,” said Schmitz. “Their maize and wheat genebanks serve a crucial role in assuring crop diversity, especially in Latin America.”
Maize seed samples, CIMMYT germplasm bank (Photo: Xochiquetzal Fonseca/CIMMYT)
CIMMYT manages the most diverse maize and wheat collections. CIMMYT’s germplasm bank, also known as a seed bank, is at the center of CIMMYT’s crop-breeding research. This remarkable, living catalog of genetic diversity comprises over 28,000 unique seed collections of maize and 123,000 of wheat.
“CIMMYT is honored to host the Crop Trust as any global solution requires global collaboration,” said CIMMYT Director General, Bram Govaerts.
Advances in genebank management
Representatives of the Crop Trust were eager to learn more about CIMMYT’s efforts in Digital sequence information (DSI). CIMMYT is using DSI to analyze structure, redundancies, and gaps within its own genebank and is now working to bring DSI tools to national genebanks in Latin America.
This visit builds on ongoing work, such as the third workshop of the Community of Practice for Latin America and the Caribbean on the use of genomic and digital tools for the conservation and use of Genetic Resources for Food and Agriculture (GRAA) held in November 2022.
In 2020, CIMMYT was the largest contributor to the Svalbard Global Seed Vault, providing 173,779 maize and wheat accessions from 131 countries.
The Seed Vault, managed by the Crop Trust, is a repository collection holding duplicates of seeds from over 1,700 genebanks around the world.
CIMMYT’s most recent donation to the Seed Vault was in October 2022.
Colleagues from CIMMYT’s germplasm bank prepare a delivery of 263 accessions of maize and 3,548 accession of wheat. (Photo: Francisco Alarcón/CIMMYT)
“All CIMMYT staff we met were passionate about their work and welcomed us kindly, generously sharing their knowledge and time with us. We look forward to continuing our collaboration, to strengthen it, and make sure that the crop collections held at the CIMMYT genebank are safe and available, forever,” said Schmitz.
During the recent International Day of Plant Health, a group of experts from across the globe sat together in a webinar to discuss and address the challenges facing plant health management capacity in the Global South.
In sub-Saharan Africa, 85% of the population couldn’t afford an energy- and nutrient-sufficient diet. In the 12 most afflicted countries, World Bank data shows 9 out of 10 people struggle to afford a nutritious meal.
Climate change aggravates risk to make food even more unaffordable and crops more susceptible to crop pests and diseases.
CIMMYT maize research guides startups and nonprofits across Africa to act and put pressure on public and private actors to avert food insecurity and regional instability.
Bram Govaerts, CIMMYT Director General, promotes 5 adaptation measures that can transform global agri-food systems, making them more resilient to climate shocks to help vulnerable regions cope with diminishing yields and forced migrations.
Through decades-long Asian and global partnerships, the International Maize and Wheat Improvement Center (CIMMYT) is refining and spreading a suite of resource-conserving, climate-smart innovations for highly diverse maize- and wheat-based cropping systems, including more precise and efficient use of water and fertilizer, as well as conservation agriculture, which blends reduced or zero-tillage, use of crop residues or mulches as soil covers, and more diverse intercrops and rotations.
“Zero-tillage and residue management for cereals — that is, sowing the seed directly into unplowed soils and residues from the preceding rice crop — has been adopted on a significant area in the transact of Indo-Gangetic Plain, with positive impacts on crop yields, profitability, and resource-use efficiencies,” said Tek Sapkota, senior scientist in agricultural systems/climate change, CIMMYT.
Continuous maize plot in El Batán, Mexico (Photo: CIMMYT)
The paper “Conservation agriculture for sustainable intensification in South Asia,” published in the science journal Nature Sustainability reported that, compared to the conventional practice, conservation agriculture resulted overall in a 4.6% higher grain yield, a 14.6% improvement in water use efficiency, and a 25.6% greater net economic return. The net economic return was 40.5% higher for full conservation agriculture but, given the benefits of partial adoption of the practices, rigid adherence to an “all or nothing” approach to spread conservation agriculture in South Asia does not seem warranted.
Conservation agriculture also offers several ecosystem services. In the study data, global warming potential was reduced by as much as 33.5% in rice-wheat systems, values that are consistent with other research. Moreover, conservation agriculture-based practices provide an economically feasible alternative to burning rice residues, a serious public health threat in northwestern India given the roughly 23 million tons of residues that are burned each year in the region.
“More widespread adoption of zero-tillage in India has been made possible with the development of next-generation tractor-drawn implements that allow direct seeding into heavy residues, as well as business models whereby implement owners contract out with neighboring farmers to sow their crops and provide other services,” said Sapkota. “National governments in South Asia are actively promoting conservation agriculture to address residue burning and other farming sustainability problems.”
Aerial view of maize and wheat breeding plots (Photo: CIMMYT)
Fitting conservation agriculture to maize farming in Mexico
Efforts to adapt conservation agriculture and promote its adoption by farmers operating highly-diverse, mostly rainfed maize-based cropping systems in Mexico have had mixed results. A recent study assessed soil health in 20 trials in starting between 1991 and 2016 in agro-ecologies ranging from handplanted traditional systems to intensive irrigated systems, contrasting conservation agriculture effects with those of local conventional practices, which commonly involve tillage, residue removal, and continuous maize production.
As reported in the 2021 paper “Effects of conservation agriculture on physicochemical soil health in 20 maize-based trials in different agro-ecological regions across Mexico,” published in the science journal Land Degradation and Development, conservation agriculture increased maize yields at most sites by 0.85 tons per hectare, on average. Organic matter and nitrates were higher in topsoils under conservation agriculture and soil aggregate stability was greater, meaning the soil more effectively moved air and water to plant roots. For other soil health parameters, such as nutrient content, pH, or compaction, most values were determined more by local soil type than by crop management.
Maize plot in El Batán, Mexico (Photo: CIMMYT)
“Given the significant variation across agro-ecologies, local adaptive trials are important to assess the effects of conservation agriculture on soil health and fit it to local conditions,” said Simon Fonteyne, a CIMMYT cropping systems agronomist and first author of the paper.
Emissions control
Several recent studies have assessed the costs and potential of various sustainable intensification technologies for reducing greenhouse gas emissions in India, Bangladesh and Mexico. Their findings can help inform national policies on food security, economic development and environment, including those relating to the Paris Agreement.
In the 2019 study “Cost-effective opportunities for climate change mitigation in Indian agriculture,” published in the journal Science of the Total Environment, CIMMYT and partners found that estimated total emissions from Indian agriculture were 481 tons of CO2 equivalent (MtCO2e) in 2012, with crops contributing over 40% and livestock nearly 60%. Under a business-as-usual scenario, agricultural greenhouse gas emissions in India would be 515 MtCO2e by 2030. This annual emissions could be reduced by 85.5 MtCO2e through adoption of mitigation practices and about 80% of that reduction could be achieved through measures that would actually save money and, in many cases, could be implemented with current technology. The efficient use of fertilizer, zero-tillage, and rice-water management could deliver more than 50% of the technical abatement potential.
“Realization of this mitigation potential will depend largely on the extent adoption by farmers,” said Sapkota, who was lead author of the study. “Large-scale adoption of apparently win-win options is not happening, so the government of India will need to apply appropriate policy measures and incentives, consistent with its food security and emission reduction goals.
A similar study in Bangladesh, reported in the 2021 paper “Quantifying opportunities for greenhouse gas emissions mitigation using big data from smallholder crop and livestock farmers across Bangladesh,” published in the journal Science of the Total Environment, found greenhouse gas emissions from agriculture in Bangladesh of 76.8 MtCO2e for 2014–15. Yearly emissions by 2030 under a business-as-usual approach would approximate 86.9 MtCO2e and, by 2050, about 100 MtCO2e. Adoption of realistic, climate-smart crop and livestock management options to reduce emissions offer mitigation opportunities of 9.51 MtCO2e per year by 2030 and 14.21 MtCO2e by 2050. As much as 75% of this potential can be achieved through cost-saving options that benefit smallholder farmers. As is the case for India, realization of this potential largely depends on the degree to which supportive policies and measures can encourage farmer adoption.
The Walmart Foundation and CIMMYT promote crop diversification in Oaxaca, Chiapas, and Campeche, Mexico. (Photo: CIMMYT)
A similar rapid assessment of costs for to mitigate greenhouse gas emissions from crops, livestock, and forestry in Mexico found a national mitigation potential of 87.9 MtCO2eq per year, fully 72.3 MtCO2eq from livestock. As reported in the 2022 paper, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico,” published in the science journal Carbon Management, implementing mitigation potential on Mexican cropland could bring net benefits, compared to livestock and forestry options, which involve net costs. In the 2021 paper “Reduced Water Use in Barley and Maize Production Through Conservation Agriculture and Drip Irrigation” a reduction of emissions caused by lower fuel use in conservation agriculture of 192 kg CO2 ha−1 was measured in farmers fields, as well as an increase in soil carbon and a reduction in water use.
The vital tasks for each country to reduce its greenhouse gas (GHG) emissions and limited carbon outputs are daunting, especially with 2030 deadlines imposed by the Paris Climate Agreement only eight years away. National stakeholders would benefit greatly from roadmaps that identify realistic and achievable milestones to point the way forward.
Researchers at the International Maize and Wheat Improvement Center (CIMMYT) have provided just such a road map. Using easily available data, they developed rapid assessment methods and adoption costs for mitigation related to crops, livestock, and forestry to identify priority locations and actions. Their article, “Quantification of economically feasible mitigation potential from agriculture, forestry and other land uses in Mexico”, was published in Carbon Management.
Applying these methods for Mexico, researchers found a national mitigation potential of 87.88 million metric tons (Mt) of carbon dioxide equivalents per year.
“Faced with such an overwhelming issue like climate change, it can be difficult for an individual, an organization, and especially an entire nation to know where to start. We developed a rapid assessment framework, tested in India, Bangladesh, and Mexico, but we believe other nations can use our methods as well,” said Tek Sapkota, the project leader and first author of the paper.
The research specifically focused on climate change mitigation in agriculture, forestry, and other land uses (AFOLU). Agriculture and related land use change contributed about 23% of the world’s anthropogenic GHG emissions in 2016, and that number is expected to increase as more food needs to be produced for the world’s growing population.
Chickpeas planted on wheat residue under conservation agriculture. (Photo: Ivan Ortiz-Monasterio/CIMMYT)
The researchers’ starting point was to quantify baseline emissions and analyze the major sources of emissions. Mexico’s AFOLU sector is responsible for 14.5% of its total national GHG emissions. In Mexico’s agricultural sector, methane and nitrous oxide emissions arise from livestock activities (enteric fermentation and fertilizers), as well as from agricultural activities (soil management and field burning of crop residues). For land use, carbon dioxide emissions and removals result from changes in forest lands, pastures, agricultural land, wetlands, and settlements.
Activities identified for GHG mitigation in crop production included avoiding fertilizer subsidies, since those tend reward inefficient nitrogen use. Subsidies could be of use, however, in encouraging farmers to adopt more efficient nitrogen management. Precision levelling of crop fields can help to lower GHG emissions by reducing cultivation time and improving the efficiency of fertilizer and irrigation water and adoption of conservation agriculture practices, such as zero tillage.
“Adoptions of these practices will not only reduce GHG emissions, but they will also help increase productivity,” said Ivan Ortiz-Monasterio, co-author and Mexico coordinator of the study.
In the livestock sector, mitigation possibilities identified are the creation of official programs, financial support, and capacity building on composting and biodigester. In FOLU sector, researchers identified options such as zero deforestation and C offset in the C market.
In addition to mapping out the mitigation benefits of specific activities, researchers also considered the costs associated with implementing those activities. “Looking at these efforts together with the cost of their implementation provide a complete picture to the implementing bodies to identify and prioritize their mitigation efforts consistent with their development goals,” said Sapkota. For example, some efforts, like increasing nitrogen use efficiency, do not provide the most climate benefits but are relatively inexpensive to realize, while establishing and maintaining carbon capture markets provides large reductions in GHG, they can be expensive to implement.
Researchers examined publicly available AFLOU spatial data for each Mexican state. At the state level, AFOLU mitigation potentials were highest in Chiapas (13 Mt CO2eq) followed by Campeche (8Mt CO2eq), indicating these states can be considered the highest priority for alleviation efforts. They identified an additional 11 states (Oaxaca, Quintana Roo, Yucatan, Jalisco, Sonora, Veracruz, Durango, Chihuahua, Puebla, Michoacán, and Guerrero) as medium priorities with mitigation potentials of 2.5 to 6.5 Mt CO2eq.
“Our data driven, and evidence-based results can help the government of Mexico refine its national GHG inventory and its Nationally Determined Contributions target and monitor progress,” said Eva Wollenberg, the overall coordinator of the study and research professor of University of Vermont, USA. “This analysis further provides an example of a methodology and results to help inform future efforts in other countries in addition to Mexico.”
Cover photo: Low nitrogen (at the front) and high nitrogen (at the back) maize planted to address nitrogen use efficiency. (Photo: Ivan Ortiz-Monasterio/CIMMYT)
Research for development organizations generate a wealth of knowledge. However, due to time and resource restraints, this knowledge has not been systematically analyzed, and the dynamics of how research is shared online have not been fully understood.
Today, technical advances in text mining, network analysis and hyperlink analysis have made it possible to capture conversations around research outcomes mentioned almost anywhere on the web. New digital research methodologies have emerged offering comprehensive approaches to leverage data across the web and to synthesize it in ways that would be impossible to carry out using traditional approaches.
In a study published in Nature Scientific Reports, scientists from the International Maize and Wheat Improvement Center (CIMMYT) teamed up with researchers from the University of Coimbra and University of Molise to investigate how CIMMYT research in climate change and climate sensitive agriculture is developing and the extent to which the center is exchanging knowledge with communities around the world.
Using text mining, social network analysis and hyperlink analysis to uncover trends, narratives and relationships in digital spaces such as research databases, institutional repositories, and Twitter, the team found that CIMMYT has steadily increased its focus on climate change research and is effectively sharing this knowledge around the world. The authors also found that CIMMYT’s climate research was centered on three main countries: Mexico, India, and Ethiopia.
The novel analytical framework developed by the team will help scientists track where their research is being shared and discussed on the web, from traditional scientific journal databases to social media.
“The web analytics framework proposed in this paper could be a useful tool for many research for development organizations to assess the extent of their knowledge production, dissemination, and influence from an integrated perspective that maps both the scientific landscape and public engagement,” said Bia Carneiro, first author of the paper.
The results of the study showed that sharing of CIMMYT’s climate science research was strongest on academic and research platforms but was also reflected in social media and government and international organization websites from across the Global North and South.
The findings from the study are important for the decolonization of science and the democratization of scientific debate. They show that CIMMYT is decolonizing climate science by sharing, creating, and co-creating knowledge with communities across the globe, particularly in Latin America, South Asia and Africa. On Twitter, the team noted that almost all countries were mentioned in CIMMYT’s Twitter conversations.
The study also shows that CIMMYT is bringing climate science and climate-sensitive agriculture into public debate, particularly through social media platforms, though they note there is potential to share more knowledge through these channels.
According to CIMMYT Agricultural Systems and Climate Change Scientist and coordinator of the study, Tek Sapkota, these types of analyses help research for development organizations to understand how people around the world view their expertise on subject matter, identify their comparative advantage and develop the value proposition of their work going forward.
Cover photo: Twitter mentions network for the International Maize and Wheat Improvement Center official account (@CIMMYT). (Credit: Nature Scientific Reports)
A recent study by Harvard University, the Jet Propulsion Laboratory, Environmental Defense Fund (EDF), the University of Michigan, the Public Health Foundation of India, the International Maize and Wheat Improvement Center (CIMMYT), Columbia University, and the University of California, Los Angeles, has determined the environmental impact of a government policy of delayed rice planting in northwest India.
“We have shown that the groundwater and air quality crises are major regional issues and are interconnected,” said co-author Balwinder-Singh, former Cropping System Scientist at the International Maize and Wheat Improvement Center (CIMMYT) in New Delhi. “But there is still a path to clearer skies and safer water practices. Local solutions include planting rice varieties that either grow more quickly or need less water. Promoting less water-demanding crops like maize would be helpful in zones with severe groundwater depletion.”
To test solutions that could mitigate the impacts of drought, the study used randomized control trials to test the impact of combining drought-resistant seeds and index insurance in Mozambique and Tanzania.
Results show that combining these two technologies expands their benefits: using the improved seeds reduces insurance costs, and having insurance to begin with counteracts the risk of adopting the seeds. Farmers who use both technologies have greater resilience to drought in the short- and long-term.
Demonstrating the benefits to farmers and informing the scaling-up of the solution-bundling approach was also found to be important.