Skip to main content

research: Climate change adaptation for nutrition

Earlier wheat planting will boost yields in eastern India

“For several years, we’ve been building dense data sets with colleagues from the Indian Agricultural Research Council, which have allowed us to unravel complex farm realities through big data analytics, and to determine what agricultural management practices really matter in smallholder systems,” said Andrew McDonald ’94, M.S. ’98, Ph.D. ’03, associate professor of soil and crop sciences in the College of Agriculture and Life Sciences. “This process has confirmed that planting dates are the foundation for climate resilience and productivity outcomes in the dominant rice-wheat cropping systems in the eastern sector in India.”

McDonald is first author of “Time Management Governs Climate Resilience and Productivity in the Coupled Rice-Wheat Cropping Systems of Eastern India,” published July 21 in Nature Food with a consortium of national and international partners, including scientists from the International Maize and Wheat Improvement Center (CIMMYT).

The research was conducted through the  Cereal Systems Initiative for South Asia (CSISA). CSISA, which is led by CIMMYT with the International Rice Research Institute and the International Food Policy Research Institute as research partners, was established in 2009 to promote durable change at scale in South Asia’s cereal-based cropping systems.

Researchers found that farmers in eastern India could increase yield by planting wheat earlier – avoiding heat stress as the crop matures – and quantified the potential gains in yields and farm revenues for the region. They also found that the intervention would not negatively impact rice productivity, a key consideration for farmers. Rice alternates with wheat on the cropping calendar, with many farmers growing rice in the wet season and wheat in the dry season.

The study also provides new recommendations for rice sowing dates and types of cultivars, to accommodate the earlier sowing of wheat.

“Farmers are not just managing single crops. They are managing a sequence of decisions,” said McDonald, who has a joint appointment in the Department of Global Development. “Taking a cropping systems approach and understanding how things cascade and interlink informs our research approach and is reflected in the recommendations that emerged from this analysis. Climate resilient wheat starts with rice.”

The research is the result of years of collaboration with international groups and government agencies in India, which have identified the Eastern Ganges Plain as the area with the most potential growth in production. The region will become essential, McDonald said, as the demand for wheat grows, and climate change makes production more difficult and unpredictable; just this year, record heat waves in March and April and food shortages caused by the war in Ukraine – both of which prompted India’s government to instate a ban on wheat exports – have highlighted the need for increased yields and more sustainable farming practices.

“In the bigger sense, this research is timely because the hazards of climate change aren’t just a hypothetical,” McDonald said. “Many of these areas are stress-prone environments, and extreme weather already constrains productivity. Identifying pragmatic strategies that help farmers navigate current extremes will establish a sound foundation for adapting to progressive climate change.”

Poverty is endemic in the Eastern Ganges Plain, and the region is dominated by small landholders, with varying practices and access to resources. The breadth and specificity of the data collected and analyzed in the study – including field and household survey data, satellite data, and dynamic crop simulations – allowed researchers to understand regional small farms’ challenges and the barriers to change.

“At the end of the day, none of this matters unless farmers opt in,” McDonald said. “There’s a spatial dimension and a household dimension to opportunity.  If we can  target approaches accordingly, then we hope to position farmers to make management changes that will benefit the entire food system.”

The study was co-authored with researchers from the Australian Department of Primary Industries and Regional Development, the International Rice Research Institute, the International Maize and Wheat Improvement Center, the International Food Policy Research Institute, the Indian Council of Agricultural Research and Bihar Agricultural University. The research was supported by the Bill and Melinda Gates Foundation and the U.S. Agency for International Development through grants to the Cereal Systems Initiative for South Asia, which is led by the International Maize and Wheat Improvement Center.

This piece by Caitlin Hayes, was originally posted on the Cornell Chronicle website.

It is time to invest in the future of Afghanistan’s wheat system

A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
A wheat field of Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

The UN High Commissioner Michelle Bachelet recently said of Afghanistan, “In the wake of years of conflict, and since the takeover by the Taliban in August last year, the country has been plunged into a deep economic, social, humanitarian and human rights crisis” (UN News 2022a). International humanitarian agencies and NGOs have persisted in supporting the population, half of whom are suffering food insecurity, and some of whom are facing unprecedented and catastrophic levels of hunger (UN News 2022b). The conflict in Ukraine is exacerbating the crises in poor import-dependent countries and humanitarian programmes, and Afghanistan will be among the most affected (Bentley and Donovan 2022).

The rural sector underlies Afghanistan’s economic potential, with agriculture as the foundation of the economy. Wheat, both irrigated and rainfed, is the principal agricultural crop, and bread is the major component of the Afghan diet. For decades the country has relied for food security on neighbors such as Kazakhstan and Pakistan and import dependence appears to be a permanent feature of the agricultural economy (Sharma and Nang 2018).

In a recent paper published in Plants, People, Planet, CIMMYT scientists and partners from SOAS University of London, Afghanistan Research and Evaluation Unit, FAO-Afghanistan, The HALO Trust, Afghanaid and the Agricultural Research Institute of Afghanistan call for renewed investment in Afghanistan’s wheat and agricultural sector.

Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)
Bread and spread in Bamyan, Afghanistan. (Photo: Nigel Poole/SOAS University of London)

Improved CIMMYT wheat germplasm has supported agricultural development

CIMMYT’s activities in Afghanistan have focused primarily on supporting the national agricultural research system through the provision of elite, widely adapted germplasm with strong disease resistance. Recent estimates of genetic gains over 14 years (2002-2003 to 2015-2016) of testing of CIMMYT’s Elite Spring Wheat Yield Trial material across 11 locations in Afghanistan documents significant grain yield progress of 115 kg/year. Average yields across 11 testing locations ranged from 3.58 to 5.97 t/ha (Sharma et al., 2021). This indicates that yield potential can be increased through introduction and testing of internationally improved germplasm.

But such investment in research has come to a halt. Local public- and private-sector wheat breeding activities have been largely absent in Afghanistan for over a decade. Hence, wheat productivity remains low due to the limited availability of improved varieties, inadequate quality seed production and distribution. Although in the short term, humanitarian interventions are likely to be the major determinant of food security, we propose that strategic rebuilding of the wheat system will lay the foundation for restoring Afghanistan’s agricultural production, food supplies, nutrition and health. Here we signal opportunities for future improvement.

Opportunities to build climate resilience and enhance seed systems

The need for climate-resilient varieties that meet farmers’ varied requirements and consumer preferences is paramount. Afghan farmers need varieties with improved traits such as heat and drought resilience, incorporating functional variation from existing landrace collections. In addition, agronomic interventions such as conservation agriculture will offer substantial benefits in buffering environmental stresses.

The technological pathways for seed (re-)distribution are a critical part of the innovation pathway from plant breeding to production and productivity. Given the particularities of markets in Afghanistan, both the public sector and the private sector often fail to reach farming geographies that are remote, diverse, and unserved by physical and institutional infrastructure. For many years, basic public services and agricultural interventions have been provided by the NGO sector, and this form of delivery continues. Hence, local ‘informal’ systems for seed and inputs are important to smallholder farmers.

Investment to support both irrigated and rain-fed wheat production

Rehabilitation of ancient irrigation practices and infrastructure could once again serve local farming in a way that supports stable production, restores Afghan heritage, and rebuilds social cohesion. However, there are no easy solutions to the challenges of increasing irrigation to boost agriculture. Although yields are lower, there is potential to optimize breeding specifically for rain-fed production. We expect rain-fed agriculture to continue given the limitations of water and infrastructure access.

Wheat improvement must be embedded in the wider agricultural environment. There is a renewed need for a deep understanding of social, political, and cultural systems and how they vary between villages, and from districts, provinces, and regions to people groups. We need to re-envision the roles of men and women in agriculture, and investment in skills and capacity building to provide a stable foundation for the eradication of poverty and food insecurity.

A new wheat program for Afghanistan

We highlight the urgent need for:

  • Resumption of breeding of nutritious and climate-resilient varieties.
  • Development of a knowledge base on current wheat production systems, gendered agricultural roles, farmer needs for varietal change and consumer preferences for tasty and nutritious wheat-based products.
  • Development of seed information systems using new technologies to enhance farmer engagement in research.
  • Expansion of appropriate irrigation systems and development of nature-based solutions to protect soil and to preserve and conserve water.
  • Investment in capacity building among private, non-governmental, university and public stakeholders in seed systems and delivery of agricultural services.

These foundations will support the wider regeneration of Afghanistan’s agricultural sector and enhance food security, nutrition and health of some of the world’s most vulnerable populations.

Full paper

Poole, N., Sharma, R., Nemat, O.A., Trenchard, R., Scanlon, A., Davy, C., Ataei, N., Donovan, J. and Bentley, A.R. (in production). Sowing the wheat seeds of Afghanistan’s future. Plants, People, Planet DOI: https://doi.org/10.1002/ppp3.10277

References

Bentley, A. and Donovan, J. (2022). What price wheat? Crisis in Ukraine underscores the need for long-term solutions for global food security. Retrieved 16 June 2022, from https://staging.cimmyt.org/blogs/what-price-wheat/.

Sharma, R.K. and Nang, M. (2018). Afghanistan wheat seed scenario: Status and imperatives. International Journal of Agricultural Policy and Research 6(5): 71-75 DOI: https://doi.org/10.15739/IJAPR.18.008

UN News (2022a). Afghanistan facing ‘the darkest moments’ in a generation. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/06/1120492.

UN News (2022b). Afghanistan: Nearly 20 million going hungry. Retrieved 16 June 2022, from https://news.un.org/en/story/2022/05/1117812.

Galvanized leaf storage proteins serve as a nutrient lifeline for maize under drought, recent study says

For the first time ever, a biotechnology team has identified vegetative storage proteins (VSP) in maize and activated them in the leaves to stockpile nitrogen reserves for release when plants are hit by drought, which also causes nutrient stress, according to a recent report in Plant Biotechnology Journal. In two years of field testing, the maize hybrids overexpressing the VSP in leaf cells significantly out-yielded the control siblings under managed drought stress applied at the flowering time, according to Kanwarpal Dhugga, a principal scientist at the International Maize and Wheat Improvement Center (CIMMYT).

“One of the two most widely grown crops, maize increasingly suffers from erratic rainfall and scarcer groundwater for irrigation,” Dhugga said. “Under water stress, nitrogen availability to the plant is also attenuated. If excess nitrogen could be stored in the leaves during normal plant growth, it could help expedite the plant’s recovery from unpredictable drought episodes. In our experimental maize hybrids, this particular VSP accumulated to more than 4% in mesophyll cells, which is five times its normal levels, and offered an additional, dispensable source of nitrogen that buffered plants against water deficit stress.”

Dhugga noted as well that the study, whose authors include scientists from Corteva Agriscience, the Bill & Melinda Gates Foundation, and the US Department of Agriculture (USDA), provides experimental evidence for the link between drought tolerance and adequate nitrogen fertilization of crop plants. “This mechanism could also help farmers and consumers in sub-Saharan Africa, where maize is grown on nearly 40 million hectares, accounts for almost one-third of the region’s caloric intake, and frequently faces moderate to severe drought.”

Scientists multiply and power up vegetative storage proteins in maize leaves as nutrient stockpiles for drought-stressed maize crops. Graphic adapted from: Pooja Gupta, Society for Experimental Biology (SEB).

Read the full study:
A vegetative storage protein improves drought tolerance in maize.

Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA)

The Accelerating Impacts of CGIAR Climate Research for Africa (AICCRA) project is an initiative that will enhance access to climate information services and validated climate-smart agriculture technologies in Africa.

AICCRA aims to support farmers and livestock keepers to better anticipate climate-related events and take preventative actions, with better access to climate advisories linked to information about effective response measures.

Development of Smart Innovation through Research in Agriculture (DeSIRA)

The overall objective of the 5-year EU-funded DeSIRA action, led by the International Potato Center (CIP), is to improve climate change adaptation of agricultural and food systems in Malawi through research and uptake of integrated technological innovations.

CIMMYT’s role is focused on the following project outputs:

  • Identify and develop integrated technology options that effectively provide management options to contribute to reducing risks and increasing resilience and productivity of the smallholder farmers’ agrifood systems in Malawi. Towards this objective, CIMMYT will evaluate drought-tolerant and nutritious maize varieties under conservation agriculture and conventional practices, and assess the overall productivity gains from agronomic and germplasm improvements versus current farming practices.
  • Develop, test and promote robust integrated pest and disease management strategies to predict, monitor and control existing and emerging biotic threats to agriculture while minimizing risks to farmers’ health and damage to the environment. Towards this objective, CIMMYT will evaluate the effect of striga on maize performance under conservation agriculture and conventional practices; evaluate farmer methods and other alternatives to chemical sprays for the control of fall armyworm; and study the effect of time of planting for controlling fall armyworm.

Double Burden of Malnutrition in Zimbabwe

The “double burden of malnutrition” refers to the seemingly paradoxical coexistence of obesity and undernutrition. It affects people whose diet consists primarily of “empty” calories: high-energy foods lacking in essential vitamins and minerals.

This project takes aim at both issues by combining improved agronomic practices with the use of biofortified maize varieties, to increase the nutritional value of maize, Zimbabwe’s most important, high-calorie staple food crop.

This project, whose full title is “Addressing malnutrition with biofortified maize in Zimbabwe: From crop management to policy and consumers”, will carry out on-station trials at Harare Research Station and Domboshava Training Centre, and conduct on-farm trials with 60 farmers in two wards in Murehwa district. These trials will help researchers predict the effect of bio + agro fortification at the national level. Project findings will be broadly disseminated through a well-defined stakeholder engagement strategy.

Objectives:

  • Evaluate new Provitamin A maize varieties and the next generation of multiple-biofortified lines under different agronomic practices to gain knowledge on the combination of bio + agronomic fortification.
  • Determine the actual nutrient content of the new Provitamin A lines in farmers’ fields with a range of different soil fertility levels and under farmers crop management.
  • Evaluate the possible impact of the combined bio + agro fortification approach on micronutrient uptake and human health by integrating the new grain composition with food supply data from household/individual dietary surveys at country level in Zimbabwe.
  • To move knowledge into practice, the information developed throughout the project will be distributed to stakeholders working in nutrition in Zimbabwe. This will ensure that the knowledge generated in the project helps farmers and consumers to maximize the benefits from biofortified crops.

Biofortified Maize for Improved Human Nutrition

The Biofortified Maize for Improved Human Nutrition project conducts field research both at CIMMYT and with partners on breeding for increased pro-vitamin A and Zinc content in both Africa and Latin America. The project grant is renewed annually and has been in operation since 2004.

Key activities include supporting early and mid-late product development, evaluation and release in Mexico and target countries in southern Africa, food science and retention studies. Molecular breeding and biochemical analysis are key components for successful breeding, and the project also involves technical backstopping for partners in both regions.

Objectives

  • Conduct field research on breeding for increased pro-vitamin A for target countries in Africa
  • Conduct field research on breeding for increased Zinc for product evaluation and release
  • Conduct essential research to deploy analytical tools and marker assisted selection or genomic selection methods in micronutrient breeding work
  • Facilitate the dissemination, promotion and consumption of biofortified crops

Nutritious Maize for Ethiopia (NuME)

Nutritious Maize for Ethiopia (NuME) is implemented in collaboration with research institutions, international non-governmental organizations, universities and public and private seed companies in Ethiopia.

Through the development and dissemination of new maize varieties, including quality protein maize (QPM), and the deployment of improved agronomic practices, NuME is helping to reduce food insecurity by strengthening Ethiopia’s capacity to feed itself.

NuME brings QPM to rural maize producers in the Ethiopian maize belt and beyond, where consumers – especially young children and women – are at risk of lysine deficiency. Since 2003, the Ethiopian Institute of Agricultural Research and CIMMYT have made good progress in breeding, resulting in new QPM hybrids and open-pollinated varieties adapted to all major maize-producing agro-ecologies in Ethiopia, including the high-potential mid-altitude and highland zones, as well as adapted to drought-prone zones.

Partners:  Ethiopian research institutions, international non-governmental organizations, universities and public and private seed companies

Santiago Lopez-Ridaura

Santiago Lopez-Ridaura focuses on the quantitative analysis of agricultural systems at the field, farm, landscape and regional level. By developing and applying a suit of quantitative systems analysis approaches, methods and tools, he builds a detailed understanding of the characteristics, dynamics and diversity of farming systems in a given region. Then, through multi-criteria assessments of different cropping and farming systems, he helps target interventions to specific types of farms within certain agro-ecologies.

Lopez-Ridaura works closely with farmers, farmer organizations, national and international non-governmental organizations, and agricultural research and development institutions to help them answer what technological and policy interventions are most appropriate for a given community. This enables organizations to comprehensively understand the main challenges and opportunities of specific technologies, and improve their adoption and adaptation to reach impact at scale.

Natalia Palacios Rojas

Natalia Palacios’s main area of work is the development of maize germplasm with high nutritional quality, including high quality protein maize, high zinc and high provitamin A maize, the evaluation of nutritional and processing quality of maize under different production systems and the characterization of maize for end-use quality. She has also recently become involved in the safety of maize kernels by evaluating different strategies for aflatoxin control. Her research also includes the development of food processing methods to increase health and nutrition benefits for consumers.

Palacios has worked as a Quality Specialist at CIMMYT since 2005. She studied Microbiology at Andes University in Bogota, Colombia, and completed her doctoral studies in Plant Biology at the University of East Anglia and the John Innes Centre in Norwich, England. She later completed two postdoctoral placements at the University of Dublin, Ireland, and the Max Planck Institute for Molecular Plant Physiology, Germany.