Skip to main content

research: Climate change adaptation for nutrition

Ghana hosts West African consultative meeting to transform dryland agriculture

The West Africa Regional Consultation Conference, organized by CIMMYT and the African Drylands Crop Improvement Network in Accra, addressed pressing issues in the region’s agricultural sector, notably in dryland farming amid climate change. CIMMYT’s Dr. Paswel Marenya emphasized the need to boost yields of crucial cereals like sorghum and millet through innovative practices discussed at the conference. With 47 scientists from nine countries participating, the event aimed to foster collaboration and drive tangible improvements in food security and livelihoods across West Africa.

Read the full story.

Mexico safeguards agriculture against invasive pests, diseases

In 2023, Mexico, with CIMMYT’s support, rejected 1,463 risky agricultural shipments, preventing 258 quarantine-worthy pests from entering the country. CIMMYT highlighted climate change’s role in pest spread, emphasizing Mexico’s commitment to safeguarding food production and ensuring global food security.

Read the full story.

Stakeholders call for a holistic approach to managing Kenya’s dryland crop seed system

In February 2024, the Kenya Drylands Crop Seed Systems Workshop, co-hosted by CIMMYT and KALRO in Nairobi, focused on enhancing seed systems for key dryland crops like pigeon pea and sorghum. The workshop aimed to align innovative breeding with effective seed distribution, crucial for improving agricultural productivity and food security in Kenya’s semi-arid regions.

Read the full story.

Nevada Researcher Aims to Improve Sorghum Hybrids for Dairy Cattle Feed

Melinda Yerka, a researcher from the University of Nevada, Reno, is collaborating with CIMMYT, focusing on enhancing sorghum hybrids for better dairy feed, utilizing her breakthroughs in sorghum breeding alongside CIMMYT’s agricultural expertise. Their joint efforts aim to develop sorghum varieties with higher protein and starch content, suitable for diverse climates, particularly in Africa. This partnership underscores a strategic approach to global food security, leveraging sorghum’s adaptability to support sustainable agriculture and climate resilience.

Read the full story.

Study links climate change with wheat blast; warns crop yield could drop by 75% in South America, Africa by 2050

CIMMYT’s latest study reveals climate change could significantly expand wheat blast’s reach by 2050, threatening a 13% drop in global wheat production. The research highlights the critical need for developing resistant wheat varieties and adapting farming practices to counter this growing threat to food security.

Read the full story.

CIMMYT joins global efforts to curb greenhouse emissions and strengthen food systems

The 2023 UN Climate Change Conference (COP 28) took place from November 30 to December 12, 2023, in Dubai, UAE. The conference arrived at a critical moment when over 600 million people face chronic hunger, and global temperatures continue to rise at alarming rates. CIMMYT researchers advocated for action into agriculture’s mitigating role in climate change, increasing crop diversity, and bringing the tenets of sustainability and regenerative agroecological production systems to a greater number of farmers.

Directly addressing the needs of farmers, CIMMYT proposed the creation of an advanced data management system, training, and protocols for spreading extension innovations such as digital approaches and agronomic recommendations to farmers via handheld devices to harmonize the scaling in Africa of regenerative agriculture—diverse practices whose outcomes include better productivity and environmental quality, economic feasibility, social inclusivity, and nutritional security.

CIMMYT presented research showing that in times of fertilizer shortages, targeting nitrogen supplies from inorganic and organic sources to farms with minimal access to nitrogen inputs can improve nitrogen-use efficiency and helps maintain crop yields while limiting harm from excesses in fertilizer use. Examining how food production is driving climate change, CIMMYT promoted ways to lessen climate shocks, especially for smallholder farmers who inordinately suffer the effects of climate change, including rising temperatures and extended droughts. Improved, climate-resilient crop varieties constitute a key adaptation. Boosting farmer productivity and profits is a vital part of improving rural livelihoods in Africa, Asia, and Latin America.

When asked about CIMMYT’s contribution to COP 28, Bram Govaerts, CIMMYT’s director general, highlighted the inclusion of agriculture in the COP28 UAE Declaration on Sustainable Agriculture, Resilient Food Systems, and Climate Action as part of various potential solutions for climate change, an effort that CIMMYT supported through advocacy with leaders and government officials.

“Our participation addressed some of the pressure points which led to this significant recognition. It further cleared our role as an active contributor to discussions surrounding the future of food and crop science,” said Govaerts.

Unlocking the potential of crop genetic diversity

“The diversity stored in today’s gene banks contains the potential to unlock genes that can withstand drought and warmer temperatures,” said Sarah Hearne, CIMMYT’s director of Genetic Resources at a side-event: Crop diversity for climate change adaptation and mitigation contributing to resilient and nature positive futures for farmers globally.

Sarah Hearne presents on the potential of crop diversity to help combat climate change impacts on agrifood systems. (Photo: Food Pavilion/COP 28)

Hearne explained the process that characterizes plant DNA to identify the ideal, climate-adaptable breeding traits. This classification system also opens the door for genetic modeling, which can predict key traits for tomorrow’s climatic and environmental conditions.

“Our thinking must shift from thinking of gene banks to banks of genes, to make vibrant genetic collections for humanity, opening up genetic insurance for farmers,” said Hearne.

Working towards a food system that works for the environment

With an increased strain on food production, sustainability becomes critical for long-term human and environmental health. Sarah Hearne and Tek Sapkota, agricultural systems and climate change senior scientist, from CIMMYT participated in a panel discussion: Responsible consumption and sustainable production: pathways for climate-friendly food systems. They shared how progress in genetic innovation and fertilizer use can contribute to sustainable consumption and a resilient food system.

Fertilizer use remains highly skewed, with some regions applying more fertilizer than required and others, like sub-Saharan Africa, not having sufficient access, resulting in low crop yields. However, to achieve greater food security, the Global South must produce more food. For that, they need to use more fertilizer. Just because increased fertilizer use will increase greenhouse gases (GHGs) emissions, institutions cannot ask smallholder farmers not to increase fertilizer application. Increased GHGs emission with additional fertilizer application in low-input areas can be counterbalanced by improving Nutrient-Use Efficiency (NUE) in high-output areas thereby decreasing GHGs emissions. This way, we can increase global food production by 30% ca with the current level of fertilizer consumption.

Tek Sapkota speaks on how sustainable and efficient fertilizer use can contribute to a resilient food system. (Photo: Food Pavilion/COP 28)

“This issue needs to be considered through a holistic lens. We need to scale-up already proven technologies using digital extensions and living labs and linking farmers with markets,” said Sapkota.

On breeding climate-resilient seeds, Hearne addressed whether farmers are accepting new seeds and how to ensure their maximum adoption. Hearne detailed the partnership with CGIAR and NARS and the numerous technologies advancing the selection of ideal breeding traits, considering shortened breeding cycles, and responding to local needs such as heat or flood tolerance, and traditional preferences.

“Drought-tolerant maize, developed by CIMMYT and the International Institute of Tropical Agriculture (IITA), has benefited over 8 million households in sub-Saharan Africa, which proves that farmers are increasingly receptive to improved seeds. With a better selection of appropriate traits, we can further develop and distribute without yield penalties,” said Hearne.

Regenerative and agroecological production systems

Researchers have studied regenerative and agroecological production systems for decades, with new and old research informing current debates. These systems restore and maintain ecosystems, improving resource use efficiency, strengthening resilience, and increasing self-sufficiency. In his keynote presentation, Sapkota presented 3 examples of regenerative agriculture and agroecological systems:  conservation agriculture, cropping system diversification and site-specific nutrient management and their impact on food production, climate change adaptation and mitigation.

“As the science continues to develop, we need to harness digital capacity to co-create sustainable solutions alongside local, indigenous knowledge,” said Sapkota. “While we should continue research and innovation on cutting-edge science and technologies, we should also invest in knowledge sharing networks to spread access to this research; communication is fundamental for further adoption of these practices.”

Researchers push for adoption of high-yielding millet varieties in Busia

In Busia, Chris Ojiewo from CIMMYT and partners are spearheading the adoption of high-yielding millet varieties to boost food security and tackle climate change. This initiative aims to equip farmers with quality seeds and modern farming techniques, ensuring the sustainable cultivation of millet, a crop resilient to harsh climates.

Read the full story.

USAid programme equips rural farmers

With generous support from USAID, CIMMYT, in collaboration with the lead organization World Food Programme and partner organizations SNV, Tree of Life, and MTDC, has significantly enhanced climate resilience in Zimbabwe through the promotion of conservation agriculture practices under the Zambuko Livelihoods Initiative initiated, since 2020.

Read the full story.

Soybean rust threatens soybean production in Malawi and Zambia

Healthy soybean fields. (Photo: Peter Setimela/CIMMYT)

Soybeans are a significant source of oil and protein, and soybean demand has been increasing over the last decade in Malawi and Zambia. Soybean contributes to human nutrition, is used in producing animal feed, and fetches a higher price per unit than maize, thus serving as a cash crop for smallholder farmers. These are among the main factors contributing to the growing adoption of soybean among smallholder producers. In addition, soybean is a vital soil-fertility improvement crop used in crop rotations because of its ability to fix atmospheric nitrogen. To a large extent, soybean demand outweighs supply, with the deficit covered by imports.

Soybean production in sub-Saharan Africa is expected to grow by over 2% per annum to meet the increasing demand. However, as production increases, significant challenges caused by diseases, pests, declining soil fertility, and other abiotic factors remain. According to official government statistics, Zambia produces about 450,000 tonnes of soybean per annum, with an estimated annual growth of 14%. According to FAOSTAT, this makes Zambia the second largest soybean producer in the southern African region. Although soybean was traditionally grown by large commercial farmers in Zambia, smallholders now account for over 60% of the total annual soybean production.

Production trends show that smallholder soybean production increased rapidly in the 2015–2016 season, a period that coincided with increased demand from local processing facilities. As smallholder production continued to increase, in 2020, total output by smallholder farmers outpaced that of large-scale farmers for the first time and has remained dominant over the last two seasons (Fig 1). However, soybean yields among smallholder farmers have remained low at around 1 MT/HA.

Figure 1. Soybean production trends by smallholders and large-scale farmers. (Photo: Hambulo Ngoma/Zambia Ministry of Agriculture, Crop Forecast Survey)

Soybean production in the region is threatened by soybean rust caused by the fungus Phakopsora pachyrhizi. The rust became prevalent in Africa in 1996; it was first confirmed in Uganda on experimental plots and subsequently on farmers’ fields throughout the country. Monitoring efforts in the U.S. have saved the soybean industry millions of dollars in fungicide costs due to the availability of accurate disease forecasting based on pathogen surveillance and environmental data.

Soybean rust disease is spread rapidly and easily by wind, and most available varieties grown by farmers are susceptible. The above-normal rainfall during the 2022–2023 season was conducive to the spread of the fungus. A recent survey of over 1,000 farm households shows that 55% and 39% of farmers in Zambia and Malawi, respectively, were affected by soybean rust during the 2022–2023 season. The lack of rust-tolerant varieties makes production expensive for smallholder farmers who cannot afford to purchase fungicides to control the pathogens. It is estimated that soybean rust can cause large yield losses of up to 90%, depending on crop stage and disease severity. Symptoms due to soybean rust infection may be observed at any developmental stage of the plant, but losses are mostly associated with infection from the flowering stage to the pod-filling stage.

Soybean plants affected by soy rust. (Photo: Peter Setimela)

Mitigation measures using resistant or tolerant varieties have been challenging because the fungus mutates very rapidly, creating genetic variability. Although a variety of fungicides effective against soybean rust are available, the use of such fungicides is limited due to the high cost of the product and its application, as well as to environmental concerns. Due to this restricted use of fungicide, an early monitoring system for detecting rust threats for steering fungicide might only be relevant for large-scale producers in eastern and southern Africa. With the massive increase in the area under soybean production, soybean rust is an important disease that cannot be ignored. Host-plant resistance provides a cheaper, more environmentally friendly, and much more sustainable approach for managing soybean rust in smallholder agriculture that characterizes the agricultural landscape of eastern and southern Africa.

To advance the use of rust-tolerant varieties, the Southern Africa Accelerated Innovation Delivery Initiative (AID-I) Rapid Delivery Hub, or MasAgro Africa, is presently concluding surveys to assess farmers’ demand and willingness to pay for rust-tolerant varieties in Malawi and Zambia. The results from this assessment will be valuable to seed companies and last-mile delivery partners to gain a better understanding of what farmers need and to better serve the farmers.  This coming season AID-I will include rust tolerant varieties in the mega-demonstrations to create awareness about new varieties that show some tolerance to rust.

The Landscape of Agricultural Biotechnology

Navigating the Challenges of Modern Agriculture: Kevin Pixley’s, Dryland Crops and Wheat Program Director, expertise highlights the transformative impact of genetic engineering in crop improvement, focusing on developing resilient varieties to meet global food demands amidst climate change.

Read the full story.

Viewpoint: Hunger crisis — The number of countries unable to feed their populations has soared 400% since 2000. Here’s why crop biotechnology is a key solution

Global concerns are escalating as population growth, climate challenges and regional conflicts contribute to a food crisis. CIMMYT, in collaboration with 13 countries, is registering 160 drought-tolerant maize varieties to address changing climatic conditions, underscoring the need for unified efforts in global agricultural organizations.

Read the full story.

Resilience Building through agroecological intensification in Zimbabwe (RAIZ)

Zimbabwe’s agricultural sector is predominantly subsistence-oriented, with maize as the main staple crop and limited use of external inputs. To promote sustainable and climate-smart agriculture, Zimbabwe has developed a 10-year framework (2018-2028) that emphasizes the adoption of climate-smart agriculture (CSA). However, the adoption of CSA practices remains limited in the country. Agroecological practices (AE) and the systemic perspective embedded in agroecological approaches hold great potential to address climate change and enhance agricultural sustainable intensification in Zimbabwe. RAIZ was conceived as the research component of the “Team Europe Initiative” (TEI) on “Climate-Smart Agriculture for Resilience Building”, formulated by the European Union (EU) delegation in Zimbabwe together with its member states.

Led by the French Agricultural Research Centre for International Development (CIRAD), in partnership with CIMMYT and the University of Zimbabwe, with funding from the European Union, RAIZ operates along a gradient of declining rainfall from Murewa in Natural Region II to Mutoko in Natural Region IV. Both districts are in the Mashonaland East province. Under RAIZ, CIMMYT leads Work Package 3 which involves ‘developing the capacity of extension and advisory services on agroecological approaches’ is actively involved in research and development activities, including the creation of training materials and the establishment of on-farm trials. In efforts to address challenges associated with low soil fertility on Zimbabwe’s granitic sandy soils. CIMMYT scientists working on RAIZ are testing the contribution of organic fertilizers and conservation agriculture in building up soil organic carbon and bringing back soil life to these mostly dead soils. These efforts aim to support farmers in adopting sustainable and climate-smart agricultural practices, ultimately contributing to the long-term resilience and prosperity of Zimbabwe’s agricultural sector.

Key objectives 

The overall objective is to support government in the development and implementation of scientifically tested agroecological approaches which will enhance agricultural production and resilience to climate change in Zimbabwe.

In addition, the project focuses on protecting the environment and reducing greenhouse gas (GHG) emissions. It will provide scientific evidence and experience for the design of climate-smart agriculture (CSA) at the plot, farm, and landscape levels, contextualized for mixed crop–livestock farms under sub-humid to semi-arid environments.