Skip to main content

research: Maize

CIMMYT advances in fight against MLN

Monica Mezzalama, Head of the CIMMYT’s Seed Health Unit, searches for MLN resistance in the Biosafety Lab at El Batán. Photo: Sam Storr/CIMMYT

Scientists have made progress in identifying maize varieties that could combat maize lethal necrosis (MLN) disease, reported SciDev.Net Sub-Saharan Africa last month in the article “Experts on track to create maize varieties to tame virus” by Robin Hammond.

The scientific news website reported from the International Conference on Diagnostics and Management of Maize Lethal Necrosis in Africa held in Nairobi, Kenya, 12-14 May. The conference discussed issues on diagnostics and management of the disease, which has wreaked havoc in East Africa since first reported in Kenya in 2011. Curbing the disease is imperative for improving food security in the region, making the development and deployment of new MLN-resistant maize varieties of the utmost importance.

“We have now identified promising lines with resistance to MLN,” announced CIMMYT maize breeder Yoseph Beyene.

Drought Tolerant Maize for Africa (DTMA) Project Leader Tsedeke Abate examines the impact of MLN on a seed production farm in Babati, Tanzania. Photo: Florence Sipalla/CIMMYT
Drought Tolerant Maize for Africa (DTMA) Project Leader Tsedeke Abate examines the impact of MLN on a seed production farm in Babati, Tanzania. Photo: Florence Sipalla/CIMMYT

B.M. Prasanna, Director of CIMMYT’s Global Maize Program (GMP), discussed the importance of improving MLN surveillance and diagnostic capacity throughout Africa in order to keep the virus from spreading through contaminated seeds. “Farmers also need to be sensitized on appropriate agronomic practices that reduce disease incidence and severity,” he added.

To learn more about CIMMYT’s comprehensive efforts to combat MLN both in the lab and the field, and the search for resistance, view the recently published article here on MAIZE.org.

Sin in the seed: meeting of the minds to combat maize lethal necrosis

“We are all gravely concerned about the rapid spread of maize lethal necrosis [MLN], not just due to the wide prevalence of insect vectors that can transmit the MLN-causing viruses, but also due to production, distribution and cultivation of commercial seed contaminated with MLN pathogens,” said Stephen Mugo, CIMMYT’s Regional Representative for Africa, at the opening of the recently concluded three-day International Conference on MLN Diagnostics and Management in Africa. This captures a core message the conference – seed transmission is a primary means of MLN’s spread in East Africa.

Jointly organized by the Alliance for a Green Revolution in Africa (AGRA), CIMMYT and the Bill & Melinda Gates Foundation in collaboration with the Kenya Agricultural and Livestock Research Organization (KALRO), the conference brought together scientists, regulators and policymakers from 17 African countries, USA and Mexico, to discuss how to effectively control seed transmission of MLN pathogens, especially to non-endemic countries.

MLN presents a new and unprecedented challenge to East Africa’s robust seed industry since it can be transmitted through infected seed. Needless to say, seed companies are crucial in limiting seed contamination and thus in stemming further spread of the disease. For this reason, major seed companies participated in the conference to help map feasible joint action to control transmission through seed. Companies in MLN-endemic areas of East Africa are already feeling the heat from the disease leading to massive production losses, increased production costs and reduced sales. “We have had to shut down almost all our maize-production sites in the endemic areas across eastern Africa because of major losses attributed to MLN,” said Kassim Owino from Seed Co, Kenya.

Officials at the opening of the MLN international conference in Nairobi. Left to right: George Bigirwa (standing, AGRA), Stephen Mugo (CIMMYT), Joe DeVries (AGRA), Felister Makini (KALRO) and Gary Atlin (Bill & Melinda Gates Foundation).

Seed poses a problem, but also presents a solution
“The seed sector can ensure that when a series of MLN-resistant varieties are developed, farmers benefit from the seed. But we must recognize the fact that in the case of MLN, the seed sector can also be a factor in its spread. So we need to work together to identify means of preventing spread,” remarked Dr. Joe DeVries, Director of AGRA’s Program for Africa’s Seed Systems.

Collective efforts will be required not only to control the spread of MLN but also to effectively manage the disease where already present, including developing and deploying new MLN-resistant varieties as a lasting solution. Ongoing research to develop MLN-resistant varieties is at the core of CIMMYT’s work in Africa and is being undertaken in close partnership with the private and public sectors including seed companies. The Africa RISING Project and the CGIAR Research Program on MAIZE have also supported these efforts. However, there are no quick solutions, and developing and disseminating MLN-resistant maize varieties will take several years.

In the meantime, seed companies and seed producers need to ensure that seed is MLN-free. To do this, they require support to train their personnel to recognize early infection in addition to adopting best practice on surveillance, diagnostics and management of MLN. CIMMYT’s MLN diagnosis and protocols and MLN-free seed production are examples of best practice. In parallel, regional phytosanitary bodies need to regulate and monitor production and movement of seed, especially into areas currently unaffected.

What next and what needs to be done?
The CIMMYT–KALRO MLN screening facility at Naivasha, Kenya, will continue to have a critical role in the ongoing research. This facility screens germplasm from transnational and national seed companies, and from national research programs. Conference participants visited the facility and witnessed MLN leaf sampling and ELISA diagnostics systems, as well as experimental maize hybrids demonstrating promising MLN tolerance. Seed companies were invited to send their germplasm for screening for the current cropping season.

Viewing hybrids

Viewing experimental maize hybrids at the MLN screening facility with explanations from CIMMYT staff.

Other than a recent CIMMYT study on Kenya, there is little information on MLN incidence, distribution, severity and impact. More studies like this would help to quantify the magnitude of the disease.

The conference made important recommendations on joint action and regional protocols, summed up by Gary Atlin from the Bill & Melinda Gates Foundation:, “Efforts to manage seed production within an environment that seems conducive to the spread of MLN are very important. There are strategies and tools available that can help manage the disease. We hope to get a clear picture of these strategies and how they can be applied in the region’s seed systems, to safeguard the maize-seed supply for African farmers and ensure delivery of germplasm continues in the positive direction it has been moving.”

Some of the presentations from the conference are on SlideShare.

The conference was widely reported in national and regional newspapers and television, as indicated by the links below.

Links

Seeds for needs in Malawi

On May 6, the United States Agency for International Development (USAID) and the Government of Malawi jointly launched five projects on food security, fisheries and environment. The USD-141-million-worth projects will be implemented by USAID in 13 districts over a five-year period.

These complementary projects are designed to work together to strengthen resilience to climate change, increase production and improve nutrition in targeted communities. The projects also connect with other USAID–Malawi activities in these areas.

More than 1,000 people attended the launch, representing farmer associations, USAID, local communities, non-governmental organizations, research institutions, Malawi government departments, seed companies, and CGIAR.

Officiating the launch held in Machinga District were Ms. Virginia Palmer, the United States Ambassador to Malawi; Dr. Allan Chiyembekeza, the Minister of Agriculture, Irrigation, and Water Development; and Mr. Bright Msaka, the Minister of Natural Resources, Energy and Mining.

Ms, Virginia Palmer (left), US Ambassador to Malawi, and Dr Peter Setimela (CIMMYT–SARO), with the Feed the Future Malawi Improved Seed Systems and Technologies Project certificate of launch. Malawi heavily relies on agriculture for economic growth, with 80 percent of the country’s population engaged fulltime in agriculture.
Ms, Virginia Palmer (left), US Ambassador to Malawi, and Dr Peter Setimela (CIMMYT–SARO), with the Feed the Future Malawi Improved Seed Systems and Technologies Project certificate of launch. Malawi heavily relies on agriculture for economic growth, with 80 percent of the country’s population engaged fulltime in agriculture.

Through the USD-21-million Feed the Future Malawi Improved Seed Systems and Technologies project, a consortium of agricultural research centers led by the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is working to increase the supply and distribution of quality seed for maize, groundnuts, pigeonpeas, soybeans and sweet potatoes, and on developing an aflatoxin control product in seven focus districts in South-central Malawi. Other members of this consortium are CIMMYT, the International Potato Center, and the International Institute of Tropical Agriculture.

Partnerships for progress

Feed the Future is the U.S government’s global hunger and food security initiative.

ICRISAT and its partners are working closely with the Ministry of Agriculture, Irrigation, and Water Development. USAID support will promote the production and multiplication of breeder, basic and certified seed by skilled seed growers to ensure smallholder farmers have greater access to improved seed.

Winds of change in a changing world
Much of southern Malawi can no longer depend on traditional rain cycles in the face of climate change. Some districts, such as Machinga in the Southern Region, live under rain shadows – areas on the leeward side of the mountains where winds push the dry heat upward and drive promising rain clouds away, resulting in chronic droughts.

Ambassador Palmer’s speech focused on integrating development programs to enhance community resilience and lead to better outcomes. “We think this strong focus on co-location, coordination and collaboration will allow us to advance sustainable livelihood opportunities at a greater scale – and with greater impact – than would otherwise be possible.”

She also said this integration of USAID development projects in Malawi might soon become a model for development worldwide.

Seeds for needs, now and in the future
Dr. Peter Setimela, CIMMYT–Southern Africa Regional Office Seed Systems Specialist, observed: “To popularize drought-tolerant maize varieties, CIMMYT will support pre-basic and basic seed production, field days and demonstration plots to benefit smallholder farmers. We will support capacity building of both private-sector seed companies and government seed inspectors to improve overall quality and seed marketing in Malawi.”

Dr. Peter Setimela (wearing fleece), CIMMYT–SARO Seed Systems Specialist, explains CIMMYT's work on drought-tolerant maize. In the next three years, CIMMYT hopes to reach 50,000 households in Malawi with drought-tolerant maize varieties to help smallholder farmers adapt to the impacts of climate change.
Dr. Peter Setimela (wearing fleece), CIMMYT–SARO Seed Systems Specialist, explains CIMMYT’s work on drought-tolerant maize. In the next three years, CIMMYT hopes to reach 50,000 households in Malawi with drought-tolerant maize varieties to help smallholder farmers adapt to the impacts of climate change.

At only 25 percent, use of improved seeds is still very low among smallholders in Malawi. Maize yields are below 2 tonnes per hectare, whereas there are varieties available that can yield as much as 10 tonnes per hectare.

Over the next three years, CIMMYT hopes to reach 50,000 households with drought-tolerant maize varieties. This will ultimately reduce poverty and help farmers adapt to the impacts of climate change.
A seed system in a well-linked value chain is very important and had been missing in previous development efforts in the country.

“The design of the Improved Seed Systems and Technologies Project addresses these issues. My ministry is also keen to further work with the US government to ensure that these research activities reach Malawi’s smallholder farmers,’’ said Dr. Chiyembekeza.

In a country where more than half the population lives below the poverty line, the Southern Region has the highest percentage of poor households. Malawians are mainly farmers, and with 85 percent of the population depending on rain, these recurring droughts make it harder to feed the family – nearly one-quarter of Malawians cannot meet their daily food needs.

“In Mozambique, you cannot talk about food security without talking about maize”

IIAM's site for confined field trials at Chokwe.
IIAM’s site for confined field trials at Chokwe.

Good news from Africa! Policy breakthroughs on transgenic research in Mozambique and Tanzania have led to approval of confined field trials (CFTs) and a more research-friendly regulatory framework, respectively.

Mozambique’s CFTs will be at the Instituto de Investigação Agrária de Moçambique (IIAM; Agricultural Research Institute of Mozambique) research station at Chokwe, some 200 kilometers north of the country’s capital, Maputo.

Next door in Tanzania, an erstwhile stringent policy that was prohibitive in terms of the onerous liability it placed on researchers has been favorably revised. What all this means is that the two countries – which have been somewhat lagging behind on account of policy constraints – can now more substantively engage in the Water Efficient Maize for Africa (WEMA) project to a fuller extent, and be more in step with other WEMA partners.

images_research_gmp_projects_WEMA_Inacio_Maposse_w These momentous breakthroughs were revealed at the 7th WEMA Project Review and Planning Meeting in Maputo, Mozambique, which took place February 8–12, 2015. In his opening remarks, Dr. Inacio MapossĂ© (pictured left), IIAM’s Director General, said that Mozambique’s Ministry of Agriculture had been renamed to the Ministry of Agriculture and Food Security. This, he emphasized, was not just an exercise in words, but also underscored the importance of projects such as WEMA. In his words, “In Mozambique, you cannot talk about food security without talking about maize.” True. Statistics show that nearly all (95 percent) of Mozambique’s smallholders grow maize (report forthcoming), and that maize covers nearly half (40 percent) of the land devoted to annual crops. Hence, the ministry could well have been renamed to ‘The Ministry of Maize’ and the cap would have fitted!

But back to policy and regulatory frameworks, despite the recent breakthroughs, more remains to be done. In Kenya, the 2012 ban on importation of genetically modified organisms is still in force. And while there has been remarkable progress in Tanzania and the policy is less stringent on transgenic research, there is still more ground to be covered. Uganda is yet to pass the Biosafety Bill.

The CIMMYT team at the WEMA meeting. Back row, left to right: Yoseph Beyene, Kassa Semagn, Lewis Machida, Jarett Abramson, Mosisa Regasa, Tadele Tefera, Bruce Anani and Amsal Tarekegne. Front row, left to right: Vongai Kandiwa, B.M. Prasanna, Stephen Mugo and James Gethi.
The CIMMYT team at the WEMA meeting. Back row, left to right: Yoseph Beyene, Kassa Semagn, Lewis Machida, Jarett Abramson, Mosisa Regasa, Tadele Tefera, Bruce Anani and Amsal Tarekegne. Front row, left to right: Vongai Kandiwa, B.M. Prasanna, Stephen Mugo and James Gethi.

The menace posed the maize lethal necrosis (MLN) disease was high and hot on the agenda, given its threat to Africa’s food security. MLN diagnostics and management call for concerted action by all players in the maize value chain, with regulatory frameworks playing a key role. CIMMYT has an open call for MLN screening for the cropping season starting at the end of this month.

CIMMYT participants at the WEMA annual meeting included, among others, Dr. B.M. Prasanna, CIMMYT’s Director of the Global Maize Program and a member of WEMA Executive and Advisory Board, and Dr. Stephen Mugo, Coordinator of CIMMYT activities in WEMA.

Led by the African Agricultural Technology Foundation, the WEMA project is now in its second phase, which will end in 2017. Aside from WEMA, CIMMYT has had a long and fruitful engagement with Mozambique, as this brief dating back to 2008 attests.

Maize lethal necrosis: a serious threat to food security in eastern Africa and beyond

MLN_WS_participants_w
Participants are shown how to inspect maize fields for MLN symptoms and how to collect samples for laboratory analysis.

Maize lethal necrosis (MLN) has rapidly emerged as one of the deadliest maize diseases in eastern Africa capable of causing complete yield loss under heavy disease pressure. This means that Kenya and neighboring countries which largely depend on maize as their main staple food and source of income are on the verge of a looming food and economic crisis.

The disease is difficult to control for two reasons: firstly, it is caused by a combination of viruses; secondly, it can be spread through seed and by insect vectors that may be carried by wind over long distances. Affected crops suffer various symptoms such as severe stunting, tassel abnormality, small ears with poor seed set, chlorotic leaf mottling, leaf necrosis and premature plant death.

Much more than CIMMYT and East Africa

Sixty phytosanitary regulators and seed industry scientists from 11 countries in eastern and southern Africa attended an MLN diagnostics and screening workshop from March 17–19, 2015, in Naivasha, Kenya. The objective of the workshop was to train scientists on the latest MLN diagnostics and screening methods and to share knowledge on how to control the spread of MLN. Besides DR Congo, Ethiopia, Kenya, Rwanda and Tanzania where the disease has been reported, other participants were from South Sudan and southern Africa (Malawi, Mozambique, South Africa, Zambia and Zimbabwe) that have no confirmed cases of MLN, but where maize is an important crop.

CIMMYT organized the workshop in response to the high demand for development of appropriate diagnostics methods and harmonization of regional protocols. Hence, facilitation by agencies like the Food and Agricultural Organization provided a much-needed regional overview of the MLN threat, in addition to perspectives from the International Centre of Insect Physiology Ecology and the Kenya Plant Health Inspectorate Services (KEPHIS) on MLN insect vectors and diagnostics methods respectively.

The workshop was conducted at the MLN screening facility in Naivasha, the largest of its kind established in response to the MLN outbreak in eastern Africa in 2013. It supports countries in the sub-Saharan region to screen seeds under artificial inoculation. The facility is managed jointly by the Kenya Agricultural and Livestock Research Organization (KALRO) and CIMMYT, and was established with support from the Bill & Melinda Gates Foundation and the Sygenta Foundation for Sustainable Agriculture. Biswanath Das, a maize breeder at CIMMYT, noted that “the site has evaluated more than 20,000 accessions since its inception in 2013 from over 15 multinational and national seed companies and national research programs.” This, he added, “has become a primary resource in the fight against MLN regionally.”

Collective pre-emptive actions for prevention: seeds of hope
Participants received hands-on training to identify symptoms of MLN-causing viruses and how to score disease severity by screening germplasm at the site. For some participants, this was a first. “This is my first time to see an MLN-infected plant. Now I understand the impact of MLN on maize production and the need to set up a seed regulatory facility. South Sudan has no laboratory to test planting materials. My first step will be to talk to my counterparts in the ministry to set up one,” said Taban James, a regulator from the Ministry of Agriculture in South Sudan.

DAS-ELISA_demo_w.jpg
CIMMYT staff demonstrate DAS–ELISA method used for detecting MLN-causing viruses.

The tragic reality is that almost all commercial maize varieties in East Africa are highly susceptible to MLN, based on evaluations done at the screening facility. Therefore, stronger diagnostic and sampling capacity at common border-points was agreed to be a key step towards controlling inadvertent introduction of MLN through contaminated seeds. This was particularly important for participants from southern Africa countries who noted an urgent need for surveillance at seed import ports and border areas to contain the spread.

Currently, Kenya, Uganda and Zimbabwe are the only countries that require imported seed to be certified as free of MLN-causing viruses. KEPHIS and CIMMYT have worked closely to restrict movement of germplasm from Kenya to countries in East Africa with reported MLN cases. Seed production fields are inspected thrice by KEPHIS, in addition to analysis of final seed lots. Plans are underway for CIMMYT in collaboration with the ministries of agriculture in Mexico and Zimbabwe to establish quarantine sites to ease germplasm movement in and out of these countries. Speaking on KEPHIS’ role, Francis Mwatuni, the officer-in-charge of Plant Quarantine and Biosecurity Station said, “We ensure all seed fields are inspected and samples tested for MLN resistance including local and imported seed lots from seed companies, to ensure that farmers get MLN-free seeds.”

The latest trends and options for diagnostics on MLN-causing viruses were covered as well, giving participants hands-on training using ELISA diagnostics systems. They were also briefed on polymerase chain reaction based diagnostics and the latest lateral flow diagnostic kits that are under development that will enable researchers to obtain diagnostic results in the field in minutes.

What next for MLN?
The rapid multiplication of the disease coupled with uncertainties over its spread is the biggest hurdle that scientists and other stakeholders are grappling with. KALRO Chief Researcher, Anne Wangai, who played a key role in discovering the disease in Kenya in 2011 observes that “The uncertainties over the transmission of MLN is a worrying phenomenon that requires stakeholders to urgently find a control point to manage and ensure seeds being given to farmers are MLN-free.”

Breeding remains a key component in the search for long-term solution for MLN, and several milestones have been covered to develop MLN-resistant varieties in East Africa. “CIMMYT has developed five hybrids with good MLN tolerance under artificial inoculation, which have either been released or recommended for release in Kenya, Uganda and Tanzania. Thirteen hybrids are currently under national performance trials in the three countries,” noted Mosisa Regasa, a maize seed system specialist at CIMMYT. He further added that it is critical for the MLN-tolerant hybrids to also have other traits important to farmers, so farmers accept these new hybrids.

Open information sharing forums like the diagnostics workshop are an important step to raise awareness and seek solutions to manage the disease. Sharing best practice and lessons learnt in managing the disease are major steps towards curbing MLN. In pursuit of this end, a major international conference on MLN opens next week.

Links: Slides from the workshop | Workshop announcement |Open call for MLN screening – May 2015

Seed systems team strategizes and plans for Africa

By Florence Sipalla/CIMMYT

 

The CIMMYT-Africa seed systems team met in Nairobi, Kenya, on 7 February to take stock of progress in 2013, identify challenges and brainstorm on turning those challenges into opportunities. Global Maize Program (GMP) Director B.M. Prasanna and members of the breeding, communications and socioeconomics teams also attended.

Continue reading

Student reflection: my visit to CIMMYT-Hyderabad, India

Alex-RenaudAlex Renaud is a third-year graduate student pursuing a doctorate degree in plant breeding and genetics from Purdue University in West Lafayette, Indiana, USA.

When given the opportunity to travel to India to work on heat tolerance in maize, I leaped at the prospect. I was excited by the potential for professional development and the chance to experience a different culture. My visit was part of the Heat Tolerant Maize for Asia (HTMA) collaborative project, funded by the United States Agency for International Development Feed the Future Initiative. The project supports graduate students in plant breeding to learn about and contribute to completing initiative objectives. HTMA is a public-private partnership (PPP) led by CIMMYT-Asia. Partners include Purdue University, Pioneer Hi-Bred and other seed companies and public sector maize programs in South Asia.

CIMMYT-Asia in Hyderabad, India, provides an ideal environment to evaluate or phenotype maize genotypes for heat stress tolerance. Temperatures regularly reach 40°C or higher and the relative humidity is usually below 30 percent during the reproductive development of maize planted during spring season. Additionally, the CIMMYT facilities in Hyderabad provided an excellent laboratory environment for testing hypotheses concerning the basis of heat stress tolerance in maize.

Having never been to India, I really enjoyed my stay in Hyderabad, from both research and cultural standpoints. I enjoyed getting to know the research scientists and technicians involved in the research project and had ample opportunities to learn in workshops, trainings, field visits and over dinner. My stay, which was longer than two months, provided me with the opportunity to build both personal and professional relationships. Anyone who has visited Hyderabad in May will understand just how hot it can be. It took time for me to adapt to the heat. As I was leaving the U.S. for India, my hometown received 300 millimeters of snow in 24 hours. During my first week in Hyderabad, the temperatures exceeded 40°C. It was quite a change.

Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud
Alex Renaud (middle) with CIMMYT-Hyderabad field staff. Photo: By Alex Renaud

In addition to taking advantage of research opportunities, I visited several interesting cultural sites, including the Taj Mahal. My favorite memories include sampling many different types of food, from Hyderabadi biryani to India’s version of Kentucky Fried Chicken; I never tried anything I did not like! As an aspiring plant breeder, this was a great experience, and I hope to continue my involvement with the PPP as it develops heat-stress-tolerant maize for South Asia.

I would like to sincerely thank Mitch Tuinstra, professor of plant breeding at Purdue University for providing me with this opportunity as well as P.H. Zaidi, senior maize physiologist at CIMMYT-Hyderabad and project leader of HTMA, and his wonderful team for everything that made my two-month stay professionally productive and personally memorable.

Trained maize breeders can bring huge benefits to Africa

By Cosmos Magorokosho/CIMMYT

Photo: Wandera Ojanji/CIMMYT
Photo: Wandera Ojanji/CIMMYT

CIMMYT recently conducted an intensive, three-week course in Kenya for 37 young maize breeders – including 10 women – to provide them the knowledge and skills to use modern breeding methods efficiently in their maize programs. The course included participants from national programs and seed companies in 14 African countries.

Dennis Kyetere, the executive director of the African Agricultural Technology Foundation (AATF), who officially opened the course, said the smallholder agriculture sector in Africa loses billions of dollars worth of agriculture produce annually. Kyetere said maize breeders have a significant role in reducing these losses and increasing smallholder farmers’ productivity. Courses included refresher sessions on principles of applied maize breeding, statistical data analysis and the use of information technology tools in managing breeding, analyzing data and managing breeding information.

Emphasis was placed on breeding maize for abiotic stress tolerance. Presenters also focused on maize lethal necrosis disease (MLN), including background on the disease in Africa, efforts made to breed for MLN resistance in African germplasm and strategies to prevent the spread of the disease. During the course, a mini-workshop emphasized the application of technologies such as molecular markers, doubled haploids (DH) and transgenics. Course attendees toured the Kenya Agriculture Research Institution’s (KARI) Kiboko field station and Olerai farm.

In Kiboko, participants learned about the practical aspects of drought and low-nitrogen screening and toured the new CIMMYT-KARI DH facility. Participants were encouraged to send their elite breeding populations for DH production. “I have improved my general understanding of maize breeding theory and learned about breeding for drought tolerance,” Dunlop said. “This should speed up selections and make more efficient use of time.” GMP breeders Cosmos Magorokosho, Stephen Mugo and Dan Makumbi organized the course while Catherine Kalungu handled logistics. Participants were sponsored through various GMP projects, including Drought Tolerant Maize for Africa (DTMA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), a USAID project, Harvest Plus and the private seed companies Pannar, MozSeed, Zamseed and Seedco.

Stepping up the fight against maize lethal necrosis in Eastern Africa

MLN-Eastern-Africa1“I can now identify with accuracy plants affected with maize lethal necrotic disease,” stated Regina Tende, PhD student attached to CIMMYT, after attending the CIMMYT-Kenya Agricultural Research Institute (KARI) “Identification and Management of Maize Lethal Necrosis” workshop in Narok, Kenya, during 30 June-3 July 2013. This was not the case a few weeks ago when Tende, who is also a senior research officer at KARI-Katumani, received leaf samples from a farmer for maize lethal necrosis (MLN) verification.

Tende is one of many scientists and technicians who experienced difficulty in differentiating MLN from  other diseases or abiotic stresses with similar symptoms. According to Stephen Mugo, CIMMYT Global Maize Program (GMP) principal scientist and organizer of the workshop, this difficulty encouraged CIMMYT and KARI to organize this event to raise awareness about MLN among scientists, technicians, and skilled field staff; provide training on MLN diagnosis especially at field nurseries, trials, and seed production fields; train on MLN severity scoring to improve the quality of data generation in screening trials; and introduce MLN management in field screening sites to scientists, technicians, and skilled staff. The workshop brought together over 80 scientists and technicians from CIMMYT, KARI, and other national agricultural research systems (NARS) partners from Tanzania, Uganda, Rwanda, and Zimbabwe.

“It is important that all the people on the ground, particularly the technicians who interact daily with the plants and supervise research activities at the stations, understand the disease, are able to systematically scout for it, and have the ability to spot it out from similar symptomatic diseases and conditions like nutrient deficiency,” stated GMP director B.M. Prasanna.

Proper and timely identification of the MLN disease, which is a pre-requisite for effective control, is not easy. CIMMYT maize breeder Biswanath Das explains: “First of all, the disease is caused by a combination of two viruses, Maize chlorotic mottle virus (MCMV) and Sugarcane mosaic virus (SCMV). Secondly, its symptoms –severe mottling of leaves, dead heart, stunted growth (shortened internode distance), leaf necrosis, sterility, poor seed set, shriveled seeds– are not always unique to MLN but could be due to other fungal diseases and abiotic conditions.”  The training workshop was one of CIMMYT/KARI initiatives to combat the disease threatening all the gains made so far in maize breeding. “With nearly 99% of the commercial maize varieties so far released in Kenya being susceptible to MLN, it is important that institutions like CIMMYT and KARI, in strong collaboration with the seed sector, develop and deploy MLN disease resistant varieties in an accelerated manner,” stated Prasanna. One of the key initiatives in this fight is the establishment of a centralized MLN screening facility under artificial inoculation for Eastern Africa at the KARI Livestock Research Farm in Naivasha. Plans are also underway to establish a network of MLN testing sites (under natural disease pressure) in the region to evaluate promising materials from artificial inoculation trials in Naivasha. The state of the art maize doubled haploid (DH) facility currently under construction in Kiboko will also play a crucial role in accelerating MLN resistant germplasm development. “The DH technology, in combination with molecular markers, can help reduce by half the time taken for developing MLN resistant versions of existing elite susceptible lines,” stated Prasanna.

MLN-Eastern-Africa2During his opening speech, Joseph Ng’etich, deputy director of Crop Protection, Ministry of Agriculture, noted that about 26,000 hectares of maize in Kenya were affected in 2012, resulting in an estimated loss of 56,730 tons, valued at approximately US$ 23.5 million. Seed producers also lost significant acreages of pre-basic seed in 2012: Agriseed lost 10 acres in Narok; Kenya Seed lost 75; and Monsanto 20 at Migtyo farm in Baringo, according to Dickson Ligeyo, KARI senior research officer and head of Maize Working Group in Kenya.

While this loss represents only 1.7%, Ligeyo assured everyone that Kenya is not taking any chances and has come up with a raft of measures and recommendations: farmers in areas where rainfall is all year round or maize is produced under irrigation are advised to plant maize only once a year; local quarantine has been enforced and farmers are to remove all infected materials from the fields and stop all movement of green maize from affected to non-affected areas; seed companies must ensure that seeds are treated with appropriate seed dressers at recommended rates, they must also promote good agricultural practices, crop diversification, and rotation with non-cereal crops.

Throughout the workshop, participants learned about theoretical aspects of MLN, such as the disease dynamics, management of MLN trials and nurseries, and identification of germplasm for resistance to MLN. They also participated in practical sessions on artificial inoculation, and identification and scoring. Several CIMMYT scientists played an active role in organizing the workshop, including breeders Stephen Mugo, Biswanath Das, Yoseph Beyene, and Lewis Machida; entomologist Tadele Tefera; and seed systems specialist Mosisa Regasa. They were accompanied by KARI scientist Bramwel Wanjala, KEPHIS regulatory officer Florence Munguti, and NARS maize research leaders Claver Ngaboyisonga (Rwanda), Dickson Ligeyo (Kenya), Julius Serumaga (Uganda), and Kheri Kitenge (Tanzania). During his closing remarks, KARI Food Crops program officer Raphael Ngigi, on behalf of KARI director, urged participants to rigorously implement what they had learnt during the workshop in their respective countries or Kenya regions to help combat MLN at both research farms and farmers’ fields.

Commenting on the usefulness of the workshop, technical officer at KARI-Embu Fred Manyara stated: “I will no longer say I do not know or I am not sure, when confronted by a farmer’s question on MLN.”

Promising CIMMYT maize inbreds and pre-commercial hybrids identified against maize lethal necrosis (MLN)

maize-inbreds-against-MLNThe maize lethal necrosis (MLN) disease first appeared in Kenya’s Rift Valley in 2011 and quickly spread to other parts of Kenya, as well as to Uganda and Tanzania. Caused by a synergistic interplay of maize chlorotic mottle virus (MCMV) and any of the cereal viruses in the family, Potyviridae, such as Sugarcane mosaic virus (SCMV), Maize dwarf mosaic virus (MDMV), or Wheat streak mosaic virus (WSMV), MLN can cause total crop loss if not controlled effectively.

A regional workshop on MLN and the control strategies was organized by CIMMYT and KARI during February 12-14, 2013 in Nairobi, which was attended by some 70 scientists, seed company breeders and managers, and representatives of ministries of agriculture and regulatory authorities in Kenya, Uganda, Tanzania, and the USA. The Workshop led to identification of important action points steps for effectively controlling the disease.

CIMMYT scientists have been working closely with virology experts from USDA-ARS and Kenya Agricultural Research Institute (KARI) to develop suitable protocols for testing the responses of maize germplasm against MLN, and to identify promising inbred lines and hybrids with resistance to MLN. During the 2012-2013 crop season, the CIMMYT-KARI team undertook extensive screening of inbred lines, pre-commercial and commercial hybrids in Naivasha and Narok in Kenya, under high natural disease pressure and artificial inoculation, respectively.

A trial featuring 119 commercial maize varieties (released in Kenya) under artificial inoculation during 2012-2013 revealed that as many as 117 varieties were susceptible to MLN. Another set of trials including 335 elite inbred lines, 366 pre-commercial hybrids and 7 commercial hybrids (as checks) under MLN artificial inoculation in Narok, and another set of trials comprising 350 elite inbred lines and 135 pre-commercial hybrids under natural disease pressure in Naivasha, led to identification of some promising CIMMYT inbred lines as well as pre-commercial hybrids showing resistance or moderate resistance. These results offer considerable hope to combat, through breeding efforts, the deadly MLN disease that has severely affected maize harvests and discouraged farmers from growing maize in eastern Africa.

Table 1
Table 1

Notes on trial results

The details of the promising CIMMYT elite inbred lines and pre-commercial hybrids against MLN are presented in Table 1 and Table 2, respectively. The results presented in Table 1 are based on evaluation of CIMMYT inbred lines in four independent trials, two under artificial inoculation (Narok) and two under natural disease pressure (Naivasha) during 2012-2013. In each trial, entries were replicated (minimum two), and MLN severity scores (on a 1-5 scale basis) were recorded three or more times during the crop cycle, from the vegetative to the reproductive stage. The highest average MLN severity score (max. MLN score), recorded at any stage during the trial, is presented as representative of a given entry.

Table 2
Table 2

The data must be critically assessed and cautiously used by stakeholders and partners. More weight should be given to data from artificially inoculated trials, since trials under natural disease pressure are more liable to ‘disease escapes’ and identification of false positives. Caution must be exercised when using specific lines identified as potentially resistant (R) or moderately resistant (MR), especially when classification is based on data from only one trial (even under artificial inoculation). Please note that in such cases, the responses of the lines need to be validated by CIMMYT through further trials.

CIMMYT is working closely with both public and private sector partners to significantly expand the MLN evaluation network capacity in eastern Africa, and will continue the intensive efforts to identify/develop and deliver new sources of resistance to MLN.

For further information on:
MLN research-for-development efforts undertaken by CIMMYT, please contact: Dr BM Prasanna, Director, Global Maize Program, CIMMYT, Nairobi, Kenya; Email: b.m.prasanna@cgiar.org.
Availability of seed material of the promising lines and pre-commercial hybrids, please contact: Dr Mosisa Regasa (m.regasa@cgiar.org) if your institution is based in eastern Africa, or Dr James Gethi (j.gethi@cgiar.org) if your institution is based in southern Africa or outside eastern and southern Africa.

Additional resources

UPDATE: Promising CIMMYT maize inbreds and pre-commercial hybrids identified against maize lethal necrosis (MLN) in eastern Africa
Maize lethal necrosis (MLN) disease in Kenya and Tanzania: Facts and actions (Download )
KARI-CIMMYT maize lethal necrosis (MLN) screeing facility (1.43 MB)
Maize lethal necrosis: Scientists and key stakeholders discuss strategies as the battle continues

Videos

MLN: A farmer's pleaMLN: A farmer’s plea
Maize lethal necrosis disease: A new challenge for maize scientists in eastern AfricaMaize lethal necrosis disease: A new challenge
for maize scientists in eastern Africa 

Media coverage

Deadly maize disease resurfaces in N. Rift. Business Daily, 31 May 2013.

Fresh viral maize disease worries farmers. Daily Nation, 31 May 2013.

Alert out in Coast over maize disease. Daily Nation, 31 May 2013.

Table 2Download table in pdf format

Global Maize Program meeting: The old and the new intersect in Kathmandu

Lone Badstue (CIMMYT gender and monitoring and evaluation specialist; third from left, bottom) talks with four coordinators of community-based seed production groups in Nepal (top, from right). Also present are Katrine Danielsen, Senior Advisor, Social Development and Gender Equity of the Royal Tropical Institute of Denmark (far left), and Kamala Sapkota, intern working in the Hill Maize Research Project (second from left).

 

Applying advanced technologies and reconciling dramatic growth in funding, staffing, and complex partnerships with the need to speed farmers’ access to options for better food security and incomes were the themes of discussion among more than 60 specialists in maize breeding, agronomy, socioeconomics, and diverse related disciplines who met in Kathmandu, Nepal, during 28-31 January 2013. “This was a great opportunity for old and new staff to get acquainted and help launch the vibrant evolution of our Program to meet clients and stakeholders’ needs,” said GMP director B.M. Prasanna. “The participation of colleagues from other programs and organizations was crucial, allowing us to identify and address logjams and potential synergies and continue our journey toward being an institution, rather than a mere collection of isolated projects.”

Continue reading

Discussing the importance of seed systems

As we endeavour to reach more farmers with improved varieties, seed systems are becoming increasingly important for CIMMYT in Africa, and a number of projects are generating germplasm to meet the varied abiotic and biotic challenges in smallholder agriculture. To improve effectiveness and collaboration amongst projects in seed systems activities, a coordination meeting was held on 3–4 July 2012 in Nairobi, Kenya. The meeting was attended by scientists from Global Maize Program (GMP) projects: Drought Tolerant Maize for Africa (DTMA), New Seed Initiative for Maize in Southern Africa (NSIMA), Sustainable Intensification of Maize-Legume Cropping Systems in Eastern and Southern Africa (SIMLESA), Sustainable Intensification of Maize-Legume Systems for the Eastern Province of Zambia (SIMLEZA), Water Efficient Maize for Africa (WEMA), Improved Maize for African Soils (IMAS), HarvestPlus, and Insect Resistant Maize for Africa (IRMA).

The agenda included seed initiatives in different countries, coordination between projects, seed production research priorities, demonstrations, and variety seed production. Seed road maps and seed delivery strategies for projects and/or countries working in partnership with seed companies and the National Agriculture Research Systems (NARS) were also discussed. Participants also considered more effective ways to convey key messages to stakeholders involved in seed delivery, the Socioeconomics Program’s involvement in maize seed systems, and global policy changes affecting seed systems. Special focus was placed on gender equity and the inclusion of female farmers in demonstrations and field days. Where male farmers form the majority, they should be encouraged to bring their wives and other female household members to field days and demonstrations to ensure family participation in decision making. However, following the results of a survey indicating that significant proportions of farms are managed by female-headed households, the group also recognised the need for developing promotional strategies specifically targeting women.

seed-systems-meeting-group-photo

CIMMYT recognizes the growing importance of seed systems and is increasing its staff capacity accordingly to provide appropriate support and expertise. The latest additions to the team are seed systems specialists James Gethi and Mosisa Regasa.

Honing skills in scientific writing for publishing

107_7608writing-workshopHave you ever wondered why the papers you have written on a piece of innovative research are rejected by your target peer-reviewed journals, or why your colleagues in similar projects are publishing with less difficulty? It could be that you are not writing in a style that is acceptable by the journals. For this reason Insect Resistant Maize for Africa (IRMA) and its sister project Water Efficient Maize for Africa (WEMA) have been conducting annual scientific writing workshops for their project scientists and students based in Nairobi. This year’s IRMA/WEMA Writing Workshop, which was attended by 15 participants, was held in Nakuru, Kenya during 07–11 May 2012.

The objectives of the workshop were to: train the participants on how to write scientific papers; demonstrate how to write technical papers in English; break down the process of journal choice, submission, reviews, and publication; provide assistance in completing manuscripts; and to draft new technical papers.

Stephen Mugo, principal scientist, Global Maize Program (GMP) and the IRMA/WEMA team leader, notes that publishing is the most effective way to disseminate research findings to fellow researchers, extension and development agents, and farmers. It is the best way to advance science and also provides an opportunity to account for resources provided by donors. GMP scientists are encouraged to publish at least one or two articles per year.

Reiterating the importance of publishing, maize breeder Biswanath Das of the Improved Maize for African Soils (IMAS) project stated, “Considering that we are working in public institutions, we have an obligation to share our research findings.” He was one of the scientists outside the IRMA and WEMA projects who were attracted to the writing workshop. There are plans to expand participation in the workshop to include more scientists from other CIMMYT projects in Kenya.

Mugo noted that the workshop is particularly important in training young professionals and students in scientific writing. This kind of retreat is a sure way of getting publications out in the shortest time possible.

Indeed, the number of papers published in peer reviewed journals is steadily increasing, from six in 2010—when the projects held their first writing workshop—to 16 in 2011. By the end of April 2012, seven papers had been published. Another six papers have been submitted to various journals, while 23 more are being drafted with authors promising to submit by the end of July this year.

For Murenga Mwimali, a PhD student, the workshop provided him with an opportunity to sharpen his skills in scientific writing. It was also an opportunity for him to consolidate data findings and to write papers based on research done within the IRMA/WEMA projects.

The workshop was facilitated by Stephen Mugo and Liz Lucas, consulting copy editor. They would like to thank Hugo De Groote for his work in compiling resources for these workshops.

Open Access Publishing increases impact

Petr Kosina, CIMMYT manager of knowledge, information and training, has recently been promoting Open-Access (OA) publishing through meetings and presentations. OA publishing refers to unrestricted online access to scientific publications (no need to subscribe to the scholarly journal or pay per article or book). Why is Open Access important for you and for CIMMYT?

Published research results and ideas are the foundation for future progress in science. Open Access publishing leads to wider readership and dissemination of information, particularly to our large audiences in developing countries without the means to pay for expensive journal subscriptions, by providing:

  • Open Access to ideas: Making papers freely available online provides all scientists with the most current peer-reviewed scientific information and discoveries.
  • Open Access to the broadest audience: As a researcher, publishing in an open access journal allows anyone with an interest in your work to read it, which translates into increased usage and impact.

OA articles can be published in two ways, in Open Access Journals (OAJ), or by paying copyrighted journals. Indeed, OA publishing may mean some additional cost for authors (from hundreds to thousands of dollars depending on length of the article and the quality of the journal). However, the cost of publishing is able to be bypassed as most of our donors are ready to accept project proposals with funds allocated to OA publishing. As a matter of fact some of our donors are even demanding it. An example of such is the UK Department for International Development. As well, the Bill & Melinda Gates Foundation is currently discussing the need for OA publications.

Thus, OA publishing is here to stay, and something that we at CIMMYT should consider as a viable alternative to the traditional publishing model. There are already some OA publishing examples in CIMMYT e.g. the GMP research team including Raman Babu and Yunbi Xu has published article in PLoS ONE.

There are currently several thousands of OAJ in many areas of science, and many of them have high impact factors e.g. PLOS Genetics (8.8) or PLOS Biology (12.6)

If you are interested in browsing a list of OA journals, visit the Directory of Open Access Journals or Open Access Journals Gate. Also, CIMMYT library staff will also be happy to assist and to connect you with those who have already published in some OA journals, from CIMMYT and other CGIAR centers.

GMP director visits Zimbabwe

During the week of 15 August 2010, Boddupalli Prasanna, director of the Global Maize Program, visited CIMMYT-Zimbabwe to participate in the first day of the “Drought Tolerant Maize for Africa (DTMA) Maize Breeding Course.” The course runs from 15-31 August and is designed for early-career maize breeders who are interested in maize improvement for stress environments. During the trip, Prasanna also reviewed maize activities in Zimbabwe; conversed with CIMMYT-Harare staff; met with representatives of seed companies to discuses CIMMYT’s support activities for the private sector; and spoke with government officials. Additionally, Prasanna visited the CIMMYT research station at the University of Zimbabwe Farm (12.5 km north of Harare) and the Chiredzi and Chisumbunje research stations (500 km south of Harare) to review the drought testing sites, and the Muzarabani Estate (200 km north of Harare) to observe the winter nurseries.