Skip to main content

research: Maize

New Publications: Storage of maize products results in vitamin loss

New Pubs

Biofortification of crops through traditional breeding techniques has become very common in the fight against malnutrition globally. Biofortified provitamin A maize is bred to produce increased carotenoids (a naturally occurring molecule also found in carrots) to reduce vitamin A deficiency (VAD). VAD affects 190 million children globally and causes an estimated 500,000 cases of preventable blindness per year. A study in 2014 showed that provitamin A maize, was as effective as a high-dose supplement at increasing vitamin A stores in Zambian children.

However, processing and storage can drastically reduce the level of carotenoids in these foods by the time they are consumed. The authors of a new study explain that processing of maize grains makes vitamins more bioavailable, but that exposure to heat, light and air can oxidize carotenoids, reducing the amount remaining in food.

The study shows that when stored for six months in traditional conditions, up to 65 percent of provitamin A may be lost, but it differs among maize varieties, with some varieties losing 40 percent of their carotenoid content in the first two weeks.

The study also examined processing and cooking methods of biofortified maize and eggs from hens who ate this maize to find the best and worst conditions for carotenoid retention. They found that boiling whole grain maize into porridge had the best retention rates of any tested processing methods, with retention rates over 100 percent, and deep frying maize and scrambling eggs had the lowest retention rates of around 70 and 80 percent, respectively.

Overall, the authors say cooking allowed both maize and eggs to retain upwards of 80 percent of effects carotenoid content, but storage at or above room temperature quickly degraded the carotenoid content. They suggest that whole grain and courser ground maize may be a good way to retain more provitamin A while sitting on a shelf, but say more research is necessary.

Read the full study “Retention of Carotenoids in Biofortified Maize Flour and β-Cryptoxanthin-Enhanced Eggs after Household Cooking” and check out other publications by CIMMYT staff below:

  1. A white paper on global wheat health based on scenario development and analysis. Savary, S., Djurle, A., Yuen, J., Ficke, A., Rossi, V., Esker, P.D., Fernandes, J.M.C., Del Ponte, E.M., Kumar, J., Madden, L.V., Paul, P., McRoberts, N., Singh, P.K., Huber, L., Pope de Vallavielle, C., Saint-Jea, S., Willocquet, L. In: Phytopathology v. 107, no. 10, p. 1109-1122.
  2. Characterization of leaf rust and stripe rust resistance in spring wheat ‘Chilero’. Ponce-Molina, L.J., Huerta-Espino, J., Singh, R.P., Basnet, B.R., Alvarado Beltrán, G., Randhawa, M.S., Caixia Lan, Aguilar Rincón, V.H., Lobato-Ortiz, R., García Zavala, J.J. In: Plant disease v. 102, no. 2, p. 421-427.
  3. Evaluation of grain yield of heat stress resilient maize hybrids in Nepal. Koirala, K.B., Giri, Y.P., Rijal, T.R., Zaidi, P.H., Ajanahalli, R.S., Shrestha, J. In: International Journal of Applied Sciences and Biotechnology v. 5, no. 4, p. 511-522.
  4. Genetic analysis of heat adaptive traits in tropical maize (Zea mays L.). Krishnaji Jodage., Kuchanur, P.H., Zaidi, P.H., Patil, A., Seetharam, K., Vinayan, M.T., Arunkumar, B.  In: International Journal of Current Microbiology and Applied Sciences v. 7, no. 1, p. 3237-3246.
  5. Genetic analysis of morpho-physiological traits and yield components in F2 partial diallel crosses of bread wheat (Triticum aestivum L.). Abidine Fellah, Z.E., Hannach, A., Bouzerzour, H., Dreisigacker, S., Yahyaoui, A.H., Sehgal, D. In: Revista Facultad Nacional de Agronomía v. 70, no. 3, p. 8237-8250.
  6. Genomics selection in plant breeding : methods, models, and perspectives. Crossa, J., Pérez-Rodríguez, P., Cuevas, J., Montesinos-Lopez, O.A., Jarquín, D., De los Campos, G., Burgueño, J., Camacho-González, J. M., Perez-Elizalde, S., Beyene, Y., Dreisigacker, S., Ravi Gopal Singh, Zhang, X., Gowda, M., Roorkiwal, M., Rutkoski, J., Varshney, R. K. In: Trends in Plant Science v. 20, no. 11, p. 961-975.
  7. Grain yield and stability of white early maize hybrids in the highland valleys of Mexico. Torres Flores, J. L., Mendoza García, B., Prasanna, B.M., Alvarado Beltrán, G., San Vicente, F.M., Crossa, J. In: Crop Science v. 57, no. 6, p. 3002-3015.
  8. High-throughput measurement methodologies for developing nutrient-dense crops. Guild, G., Parkes, E., Nutti, M., Palacios-Rojas, N., Stangoulis, J. In: African Journal of Food, Agriculture, Nutrition and Development v. 17, no. 2, p. 11941-11954.
  9. Retention of carotenoids in biofortified maize flour and β-Cryptoxanthin-Enhanced eggs after household cooking. Sowa, M., Jiaoying Yu, Palacios-Rojas, N., Goltz, S. R., Howe, J. A., Davis, C.R., Rocheford, T., Tanumihardjo, S. A. In: ACS Omega no. 2, p. 7320-7328.
  10. Risk assessment and spread of the potentially invasive Ceratitis rosa Karsch and Ceratitis quilicii De Meyer, Mwatawala and Virgilio sp. Nov. using life-cycle simulation models : implications for phytosanitary measures and management. Tanga, C. M., Khamis, F. M., Tonnang, H., Rwomushana, I., Mosomtai, G., Mohamed, S. A., Ekesi, S. In: PLoS One v. 13, no. 1:e0189138CIMMYTNEWSlayer1

New technical guide to help farmers protect against fall armyworm

32577231314_a7b9506122_kNairobi, Kenya (CIMMYT) – A new comprehensive integrated pest management (IPM)-based technical guide produced by international experts will help scientists, extension agents and farmers to tackle the fall armyworm (Spodoptera frugiperda), which has rapidly spread across the African continent in the last two years, decimating maize crops in its path.

Fall Armyworm in Africa: A Guide for Integrated Pest Management,” jointly produced by Feed the Future, the United States Agency for International Development (USAID), the International Maize and Wheat Improvement Center (CIMMYT) and the CGIAR Research Program on Maize (MAIZE), provides tips on fall armyworm identification as well as technologies and practices for effective control.

Native to North America, the fall armyworm has recently emerged as a major threat in Africa, where it has been identified in over 30 countries since it was first confirmed on the continent in January 2016. The pest can potentially feed on 80 different crop species but has a preference for maize, which poses a significant threat to the food security, income and livelihoods of over 300 million African smallholder farm families that consume maize as a staple crop.

“The potential impact of the fall armyworm as a major food security and economic risk for African nations cannot be overstated,” said Martin Kropff, director general at CIMMYT.

If proper control measures are not implemented, the fall armyworm could cause extensive maize yield losses of up to $6.2 billion per year in just 12 countries in Africa where its presence has been confirmed, according to the Centre for Agriculture and Biosciences International (CABI).

“The fall armyworm poses an enormous and wide-scale risk to the livelihoods of several million African smallholders, and requires urgent deployment of an IPM strategy and quick response from all stakeholders,” said B.M. Prasanna, director of MAIZE and the Global Maize Program at CIMMYT. “The Fall Armyworm Integrated Pest Management Guide provides comprehensive details on the best management practices to help smallholder farmers effectively and safely control the pest while simultaneously protecting people, animals and the environment.”

To read “Fall Armyworm in Africa: A Guide for Integrated Pest Management,” please click here.

Leading nutritionist cites whole grains as critical for better nutrition and health

Leading nutritionist Julie Miller Jones promotes the benefits of whole grains. (Photo: CIMMYT)
Leading nutritionist Julie Miller Jones promotes the benefits of whole grains. (Photo: CIMMYT)

People who eat the most whole grain foods have a lower risk of almost all chronic diseases and are less likely to gain weight as they age, according to Julie Miller Jones, Distinguished Scholar and Professor Emerita at St. Catherine University, U.S.A.

“All kinds of epidemiological research shows that whole grain intake reduces obesity and the risk of diabetes, coronary heart and cardiovascular diseases, stroke, cancers, and death from all causes,” said Miller Jones, speaking to representatives of food processing companies and associations and scientists at the first “Maize and Wheat Quality and Nutrition Day” held near Mexico City on September 14.

Miller Jones emphasized that relatively modest amounts of grain in diets can deliver important health impacts. “We’re talking about eating around three slices of bread, or a bowl of oatmeal with a sandwich, or oatmeal in the morning, with pasta at lunch and rice at night,” she explained.

Hosted by the International Maize and Wheat Improvement Center (CIMMYT), a publicly-funded organization that works with hundreds of partners throughout the developing world to increase the productivity and quality of maize and wheat cropping systems, the event highlighted the critical connections between farmers, crop breeding and the quality of maize (corn) and wheat food products.

“It’s great that CIMMYT hosted this meeting,” said one participant, noting the complementary roles of the food industry and CIMMYT. “Companies like ours are only beginning to realize that improving our bottom line and sustainability doesn’t start with the flour we receive, but rather ten steps before that, with breeding, quality analyses, agronomy and even extension work in the field.”

In addition to packaged commercial breads, small individual loaves prepared daily in neighborhood bakeries are standard fare in Mexico. Photo: Mike Listman/ CIMMYT
In addition to packaged commercial breads, small individual loaves prepared daily in neighborhood bakeries are standard fare in Mexico. Photo: Mike Listman/ CIMMYT

The participants were impressed with Miller Jones’ presentation and the potential for partnering with CIMMYT, which conducts grain quality and nutritional analyses, development, selection and characterization of wheat and maize varieties for industrial and nutritional quality, as well as fostering the responsible sourcing of grain and linking farmers with markets.

“This is the first time we’ve brought together numerous essential actors in Mexico’s maize and wheat quality and nutrition value chains, and we expect that it will give dividends in better quality, more nutritious cereal grains and food for better diets,” said Natalia Palacios, CIMMYT maize nutrition and quality specialist.

In addition to using more than 35 million tons of maize each year as human food and animal feed, Mexico’s food processors annually handle more than 8 million tons of wheat grain.

“CIMMYT can serve as a shared platform for joint research with the food industry, outside of the competitive arena, and for messaging on healthy nutrition and diets,” suggested Carlos Guzmán, head of CIMMYT’s wheat chemistry and quality lab.

Together with the International Association for Cereal Science and Technology (ICC), Guzmán is organizing the 4th ICC Latin American Cereals Conference and the 13th International Gluten Workshop, both to be held in Mexico City from 11 to 17 March 2018.

Humans and food grain crops: Shared history and future

Miller Jones said that DNA of cooked grain has been found in the dental remains of Paleolithic humans, showing that people have been eating grain for more than 100,000 years. She also emphasized the need for balanced diets that feature all food groups in healthy amounts.

“We need to change our diets to healthy patterns that we can maintain for our entire lifetime, not something that you go on to go off,” she said, speaking recently in an online interview hosted by CIMMYT. “Just as nutrition experts have always recommended, unless you’re allergic to a particular food, a healthy diet should include products from all food groups, in the right amounts.”

New online portal offers information to curb maize lethal necrosis in Africa

Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)
Artificial inoculation of maize germplasm at the Naivasha MLN screening site, Kenya. (Photo: B.Wawa/CIMMYT)

The new maize lethal necrosis (MLN) online portal provides up-to-date information and surveillance tools to help researchers control and stop the spread of the deadly disease.

MLN was first reported in Kenya in 2011 and has since then been reported in several countries in eastern Africa, especially the Democratic Republic of the Congo, Ethiopia, Kenya, Rwanda, Tanzania and Uganda. The disease kills plants before they can grow, and the pathogens are transmitted by insects or contaminated seed. Serious damage to the region’s maize production from MLN has impacted household food security.

The online portal, found at mln.cimmyt.org, details the spread of MLN, where the disease has been managed and controlled, and how to identify it in the field. It also provides key MLN publications, surveillance software, MLN incidence maps, information on the MLN Screening Facility, and MLN-tolerant hybrids that are either released or in pipeline.

One tool on the portal is the MLN surveillance and monitoring system that provides real-time data to identify the presence and spread of the disease across five endemic countries in eastern Africa, and three selected non-endemic countries in southern Africa. The system was developed by scientists collaborating with the International Maize and Wheat Improvement Center (CIMMYT), with support from the United States Agency for International Development (USAID).

In 2016, MLN surveillance was successfully conducted in Malawi, Zambia and Zimbabwe – three major seed producing countries in Africa – and the data is presented in the portal, detailing MLN’s status across 652 surveyed maize fields. Future data gathered in other affected countries will also be uploaded to the portal as surveillance teams conduct fieldwork using Global Positioning System online survey tools, to assess the spread and severity of the disease in these countries. Ongoing surveillance in endemic countries allows stakeholders to see real-time updates on the spread of MLN.

MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT
MLN susceptible hybrids compared to a CIMMYT-derived MLN-tolerant hybrid. Photo: CIMMYT

Since the disease was first reported, collaborative efforts have resulted in the establishment of a MLN Screening Facility at the Kenya Agricultural & Livestock Research Organization (KALRO) center at Naivasha in 2013. The facility, managed by CIMMYT, has so far screened nearly 100,000 maize germplasm entries — 56 percent from CIMMYT — against MLN under artificial inoculation over the last four years.

Nine CIMMYT-derived MLN-tolerant hybrids have been already released in three countries – seven in Kenya, one in Uganda and one in Tanzania. Eleven second generation hybrids are currently in national performance trials in these countries. Intensive efforts are currently being made by seed companies in Kenya, Tanzania and Uganda to expand the delivery of MLN-tolerant maize seed to the smallholders.

The MLN portal enables researchers to comprehensively assess the situation with regard to MLN, helps strengthen the national disease monitoring and diagnostic systems by providing faster and accurate data, and offers access to CIMMYT-offered MLN phenotyping services.

Seed certification critical to quality seed production

A new variety in the market must have significant value to the farmer, such as higher tolerance to stresses, or added nutritional value. Photo: K. Kaimenyi/CIMMYT
A new variety in the market must have significant value to the farmer, such as higher tolerance to stresses, or added nutritional value. Photo: K. Kaimenyi/CIMMYT

NAIROBI, Kenya (CIMMYT) – For over 50 years, CIMMYT has led the research and development of quality, improved seed, designed to help farmers mitigate the effects of climate change while improving livelihoods.

Every new variety released is driven by farmer needs and preferences, with desirable traits such as pest and disease resistance, drought and heat tolerance as well as water and nutrient use efficiency. With improved maize seed, farmers not only benefit from increased stress tolerance, they also enjoy higher yields, increased nutritional value and improved income from grain sales.

To ensure that quality seed standards are maintained, CIMMYT supports partners such as national agricultural research institutions and seed producers in acquisition and production of pure early generation seed, which is then tested by national quality assurance and certification agencies before certification and release.

Seed certification process

Seed certification is a rigorous process of testing new maize varieties before they are made available to farmers and follows an often lengthy three-step process.

The first step – value for cultivation and use, or national performance trials in some countries, – compares traits of the new variety to others already in the market to determine its value. For a new variety to enter the market it must have significant value to the farmer, such as higher tolerance to stress, or added nutritional value. It is at the end of this valuation process that a variety is registered, which takes about 2-3 years.

Next, a distinctiveness, uniformity and stability test (DUS) is performed on the seed sample provided to ensure that it is unique, uniform and will not deteriorate over time after its release. The DUS also helps to determine if an identical variety already exists and is registered, in order to avoid conflict among companies that are responsible for variety commercialization. The characteristics used to compare these materials are developed by breeders, and help distinguish different varieties. The length of time for DUS test varies by country, but on average the minimum is two planting seasons, about two years in most countries, or one year in others.

Finally, the government approves the variety for release and commercialization. In some countries, such as Tanzania, there is an extra classification of seed know as quality declared seed which is certified seed that has been through fewer steps of certification. It is perceived to be of a lower quality than regular certified seeds, and is therefore cheaper. Seed certification protects farmers from unscrupulous traders who would otherwise sell poor quality seed or grain packaged as seed.

Seed certification and commercialization can take 6-11 years, depending on how efficient a country’s system is. This lengthy and costly process can sometimes create backlogs, slowing release and commercialization of new varieties. This can discourage some seed companies from producing improved varieties, thus sticking to tried, tested and profitable varieties no matter how old they are. Commercializing a new variety is a huge investment in terms of cost, expertise, promotion and labor, so the longer certification process draws out, the more costs a company incurs. Farmers in turn continue to purchase the varieties that are always available, keeping them in demand.

Expecting seed companies to replace an old variety for an improved one is somewhat complicated, since this is a purely business decision where profits are priority. In some cases, dropping a popular variety to promote a new one could jeopardize a company’s market share, brand recognition and potentially put them out of business. This is why old varieties like Matuba in Mozambique, SC513 in Zimbabwe and H614 D in Kenya remain popular, despite being decades old.

Older seed dominating the market causes both farmers and seed companies to miss out on potential benefits and profits higher-performing seed can bring. Several strategies to retire old maize varieties and build demand for improved ones can be used, including demonstrating old and new varieties side by side in areas where target markets exist. This way, farmers themselves drive the process and start the switch to new varieties. Seed producers can emphasize a specific characteristic in the variety that will benefit the farmer. For instance, farmers in an area prone to maize lethal necrosis (MLN) are more likely to adopt a resistant variety, and eventually make a permanent switch once this characteristic is proven to be true.

Government policies can also encourage the retirement of old varieties, for instance through subsidies on seed production with requirements to only include new materials. CIMMYT, through its various projects, gives competitive financial grants only to companies that produce improved maize seed. An extreme and potentially detrimental option would be to cut off funding and other support to seed companies that refuse to phase out old varieties.

The Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project works in six countries in eastern and southern Africa to produce and deploy affordable drought tolerant, stress resilient, and high-yielding maize varieties for smallholder farmers. DTMASS employs innovative and impactful strategies to promote uptake and adoption of these improved seed varieties, as well as sharing agronomy and other agricultural information directly with farmers to improve crop management.

Led by CIMMYT and funded by the United States Agency for International Development, DTMASS is implemented through strategic partnerships with national agricultural research systems, as well as public and private seed producers.

CIMMYT renames lab to honor Evangelina Villegas, World Food Prize laureate

Surinder K. Vasal, former CIMMYT maize scientist and World Food Prize laureate, with Natalia Palacios, head of the CIMMYT maize quality laboratory, and Martin Kropff, CIMMYT director general, helped unveil the plaque in honor of Dr. Evangelina Villegas. (Photo: A. Cortés/CIMMYT)
Surinder K. Vasal, former CIMMYT maize scientist and World Food Prize laureate, with Natalia Palacios, head of the CIMMYT maize quality laboratory, and Martin Kropff, CIMMYT director general, helped unveil the plaque in honor of Dr. Evangelina Villegas. (Photo: A. Cortés/CIMMYT)

El BATAN, Mexico, (CIMMYT) – To celebrate and expand the legacy of the late Evangelina Villegas Moreno, a pioneering Mexican cereal chemist who won the 2000 World Food Prize for co-developing quality protein maize, the International Maize and Wheat Improvement Center (CIMMYT) has named its maize quality laboratory in her honor.

A memorial plaque was unveiled on 6 June by Martin Kropff, CIMMYT’s director general, at the entrance of the CIMMYT lab that generates crucial grain quality data for the center’s global maize breeding efforts.

“What better way to honor Dr. Villegas’ accomplishments than to have a CIMMYT maize quality lab named after her?” Kropff said. “The center is proud to have counted among its ranks a professional like Dr. Villegas, a pioneering Mexican scientist whose contributions to nutrition and food security will continue to resonate in impoverished regions.”

Breeding lines and populations from CIMMYT’s maize program are used in 100 countries and result in high-yielding, resilient varieties and hybrids grown on at least 20 million hectares throughout the tropics and subtropics.

One derivative of that work, known as quality protein maize (QPM), was developed by Villegas and Surinder K. Vasal, another former CIMMYT maize breeder and distinguished scientist, with whom she shared the 2000 World Food Prize.

Maize grain is rich in carbohydrates but poor in protein. In particular, it is lacking in the amino acids lysine and tryptophan, which are key protein building blocks in human diets. QPM grain contains more of those amino acids and so offers better nutrition for people with heavily maize-based diets, as is the case in parts of Latin America and sub-Saharan Africa.

A 2009 study in the science journal Food Policy found that eating QPM instead of conventional maize resulted in respective 12 and 9 percent increases in growth rates for weight and height, in infants and young children with mild-to-moderate undernutrition and where maize constituted the major staple food.

“Today, almost 30 years after Villegas retired from CIMMYT, the chemical and analytical approaches she developed still underpin work to monitor protein quality in QPM,” said Natalia Palacios, CIMMYT maize nutrition quality specialist and current head of the renamed lab. Together with Kropff, Vasal and Villegas’ sister, Juana Villegas Moreno, Palacios helped unveil the new plaque in a ceremony attended by 100 current and former CIMMYT personnel and Villegas’ family members.

Groundbreaker in science and society

Known as “Eva” to colleagues, Villegas, who passed away in April 2017, was born in Mexico City in 1924 and earned a Bachelor of Science degree in chemistry and biology at Mexico’s National Polytechnic Institute, at a time when higher education for women was still a novelty.

In 1950, she began her career as a chemist and researcher at Mexico’s National Institute of Nutrition and at the Office of Special Studies, an initiative funded by the Rockefeller Foundation and the Mexican government that was CIMMYT’s precursor.

She returned to CIMMYT in 1967, after earning a Master of Science degree in cereal technology from Kansas State University and a doctoral degree in cereal chemistry and breeding from North Dakota State University.

Villegas worked with Vasal in CIMMYT’s QPM breeding program, which operated from 1970 to 1985. Requiring the capacity to select for intricate gene combinations before the advent of DNA markers or genetic engineering, the program could not have succeeded without the support of Villegas’ lab and science, according to Vasal.

“I would call it exemplary interdisciplinary work (for) a breeder and a biochemist,” said Vasal. “Her lab analyzed 26,000 grain samples or more a year and provided the data in time for us to sow or pollinate experimental lines. Eva also furnished valuable critical suggestions that improved our breeding work.”

In a message read at the unveiling, Sanjaya Rajaram, 2014 World Food Prize recipient and former CIMMYT wheat scientist and program director, recalled Villegas’s significant contributions to the center’s wheat breeding research, which included establishing the center’s wheat industrial quality lab.

An inspiration in science to improve nutrition

Villegas’ prizes and professional recognitions include the 2000 Woman of the Year award of the Mexican Women’s Association, presented to her by former Mexican President Ernesto Zedillo. In 2001 Villegas was named to Alpha Delta Kappa’s prestigious list of International Women of Distinction and received the Lazaro Cardenas Medal from the National Polytechnic Institute. In 2013 Kansas State University (KSU) honored Villegas with an Outstanding Alumni Award.

“As a scientist, as a woman and as a Mexican, Villegas will continue to inspire future generations working to enhance food security and nutrition for the disadvantaged,” said Palacios.

CIMMYT museum highlights cultural aspects of maize and wheat

TEXCOCO, Mexico (CIMMYT) – A new museum in Mexico provides historical background and context for scientific research into maize and wheat, emphasizing agricultural achievements in the developing world.

The inaugural exhibition at the museum opened on Wednesday to coincide with the 50th anniversary celebrations of the International Maize and Wheat Improvement Center (CIMMYT).

“The interactive displays in this vibrant and informative space underscore the significance of 50 years of maize and wheat research conducted throughout the world,” said Martin Kropff, CIMMYT director general. “We now have a space at CIMMYT that allows visitors to dig into the history, present and future of the center in an innovative way.”

CIMMYT has helped reduce the proportion of hungry people from about half the global population in the 1960s to below 20 percent today. Yearly economic benefits from its research and training activities, conducted on a budget of $180 million, are conservatively estimated at $4 billion.

The 200-square-meter (2,150-square-foot) museum is based at CIMMYT’s El Batan headquarters, promoting the work of CIMMYT’s scientific research and focusing on achievements and on the ground impacts in the world and raising awareness of future challenges. It features information and displays about staff achievements, including those of Nobel Peace Prize laureate Norman Borlaug. Scientists working at CIMMYT have been honored with the Nobel Peace Prize, three World Food Prizes and many other significant awards.

The museum represents a bridge between two of CIMMYT’s director generals, with former Director General Thomas Lumpkin spearheading the initiative and Kropff carrying out and completing this vision during the ceremony today.

Visitors to the museum can explore the cultural and historical significance of maize and wheat.

“The museum engages visitors in the cultural aspects of research that can amplify understanding of its socio-cultural impact and generate dialogue,” said Richard Fulss, head of CIMMYT’s knowledge management unit in charge of the museum. “It expresses CIMMYT’s scientific developments in new ways, illustrating it in various themes and topics showcasing its global scope and impacts.”

Interactive illustrations of maize and wheat portray origins, historical influence on emerging nations and how the crops are consumed in different parts of the world.

Of key importance to the museum will be how staple maize and wheat crops have evolved over time, including the role of tools and technology, work in the research labs and the diversity of seeds kept by CIMMYT.

Young African scientists gain inspiration from experienced maize researchers

CIMMYT team and scientists from the Africa Plant Breeding Academy. Credit: CIMMYT
CIMMYT team and scientists from the Africa Plant Breeding Academy. Credit: CIMMYT

NAIROBI, Kenya (CIMMYT) – “The focus of the CIMMYT Global Maize Program includes elements that are key to many breeding programs in Africa. It has made important strides in sub-Saharan Africa.”

These words were delivered by Rita Mumm, a member of the International Maize and Wheat Improvement Center (CIMMYT) board of trustees and the coordinator of the Africa Plant Breeding Academy (AfPBA), which recently benefited from a wealth of knowledge shared by the CIMMYT Global Maize Program (GMP) team in Africa at the AfPBA training program held in June 2016 at the World Agroforestry Center.

The AfPBA is an initiative of the African Orphan Crop Consortium, a partnership of public and private organizations working together to sequence 101 crops of economic and nutritional importance to Africa. Students at AfPBA undergo a 13-month continuing education program delivered in three two-week sessions to learn about principles of plant breeding to enable use of advanced tools and technologies in breeding of crops relevant for Africa.

The CIMMYT team led by B.M Prasanna, director of CGIAR Research Program MAIZE and CIMMYT-GMP interacted with the trainees of the most recent session of the academy. The session was attended by 29 Ph.D. and master’s level scientists – including seven women – from 17 countries across Africa. The focus of the interactive session was to share knowledge on maize breeding work in sub-Saharan Africa and highlight the progress made in addressing various biotic and abiotic stresses affecting smallholders’ maize productivity in Africa.

The scientists learned about maize breeding work to develop improved maize varieties with farmer-preferred traits.  In particular, drought tolerance, nitrogen-use efficiency, nutritional enhancement, and disease resistance. In addition, presentation focused on the use of such modern technologies to increase efficiency and enhance genetic gains in tropical maize as molecular marker-assisted breeding and doubled haploid technology for maize improvement.

Students from the Africa Plant Breeding Academy during a visit at the MLN screening facility in Naivasha, Kenya. Credit: CIMMYT
Students from the Africa Plant Breeding Academy during a visit at the MLN screening facility in Naivasha, Kenya. Credit: CIMMYT

Collaborative efforts to strengthen the maize seed system for African farmers to access the improved new varieties was explained, as was the progress made with partners to increase farmer adoption as well as to replace the old varieties with the new climate resilient maize varieties.

“This is just one example of CIMMYT’s capacity development efforts that gives tremendous satisfaction. These breeding stories and highlights from Africa could have potential positive impact on the young scientists, as they are the key to further developing and deploying products that can make a difference in the livelihoods of the resource-poor smallholders in Africa,” said Prasanna.

The highlight of the training for many of the participants was the  tour to the Maize Lethal Necrosis (MLN) Screening Facility at Naivasha established jointly by CIMMYT and the Kenya Agricultural and Livestock Research Organisation (KALRO) to screen germplasm against MLN (under artificial inoculation), including germplasm from several private and public institutions. The participants received hands-on training to identify symptoms of MLN-causing viruses and how to score MLN disease severity by screening germplasm at the site. In addition, a demonstration was conducted on screening for MLN through artificial inoculation.

“Our global and regional mandate gives us the opportunity to support scientists across Africa to build their capacity in plant breeding work as well as in socioeconomics and sustainable intensification practices. Scienstists get the opportunity to learn, share their experiences and grow further. Through such  trainings, we  see improvements in  technology uptake and use in various countries and regions across Africa,” said Stephen Mugo, CIMMYT regional representative for Africa.

In addition to the CIMMYT team, instructors included Lago Hale from the University of New Hampshire, Bruce Walsh from the University of Arizona, Allen Van Deynze from the University of California–Davis, and Rita Mumm from the University of Illinois.

Drought-tolerant maize a boon to farmers in Zambia hit by El Niño

“With consistently impressive harvests thanks to DT maize varieties, I’m always assured that my family will have enough food, and I can earn a decent income from selling some grain," said Piri, a smallholder farmer in Petauke District, Zambia. Photo: CIMMYT/Rodney Lunduka.
“With consistently impressive harvests thanks to DT maize varieties, I’m always assured that my family will have enough food, and I can earn a decent income from selling some grain,” said Piri, a smallholder farmer in Petauke District, Zambia. Photo: CIMMYT/Rodney Lunduka.

NAIROBI, Kenya (CIMMYT) – Drought-related challenges in Africa call for proactive interventions rather than reactive ones. Every so often a drought hits, jolting the development community into action, and leading to the delivery of food aid to millions of people facing starvation — beneficial efforts in the short term, but futile for achieving lasting change.

The need for sustainable strategies that guarantee households remain food secure even when natural disasters strike is widely recognized throughout the international agriculture-for-development community and supported by the U.N. Sustainable Development Goals.

CIMMYT plays a significant role in supporting these efforts in Africa by developing drought-tolerant (DT) maize and wheat seeds that give smallholder farmers long-term solutions to recurring drought. Drought-tolerant maize varieties are scaled out through the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project.

The drought that has gripped much of southern Africa during the 2015/2016 agricultural season due to a disruptive El Niño went on record as the worst in 50 years, affecting an estimated 40 million people. While Malawi, Mozambique and Zimbabwe declared the drought a national disaster, Zambia managed to meet its national maize production average, thanks largely to smallholder farmers, who plant roughly 51% of the total cultivated land in the country.

As in most countries in sub-Saharan Africa, in Zambia rain performance determines crop performance; however, despite the late and erratic rains in 2015-2016, smallholder farmers have reason to smile. This good fortune is evident in Petauke district in Zambia’s Eastern Province, roughly 400 kilometers (250 miles) from the capital Lusaka, where granaries are packed to the brim thanks to the bountiful maize harvest.

At the recommendation of a fellow farmer, 36-year-old Miriam Piri, a mother of six, started planting a DT maize variety in 2013 under the Drought Tolerant Maize for Africa project. Realizing she was getting a bigger yield from the DT variety than a local one, Miriam continued to plant it.

“I grow DT maize variety PAN53 on roughly two hectares of land, and for the last three years my yields have been impressive,” said Piri. “I was a little anxious about my harvest because of poor rains, but I got the highest yield ever in three years!”

For its ability to thrive in both dry and wet conditions, and in low- to mid-altitude regions, PAN 53 is easily one of the most popular DT varieties in Zambia. In addition to its impressive yields, farmers enjoy the hybrid’s flint-type grain, which makes for easier and quicker pounding, and its densely packed cobs, which add up to more grain. PAN 53 is also resistant to leaf blight, gray leaf spot and ear rot.

Every season Piri plants 40 kilograms (90 pounds) of PAN 53, from which she harvested 45 50-kg bags in 2013. This was followed by yields of 35, 50 and 70 bags in 2014, 2015 and 2016, respectively.

“Going forward, I will plant both local and drought-tolerant varieties for my family’s consumption and sale, respectively. I sell the DT maize exclusively to the government and wholesalers, so I get a fair price. With this income, I can focus on other projects,” Mwanza said. Photo: Kelah Kaimenyi/CIMMYT
“Going forward, I will plant both local and drought-tolerant varieties for my family’s consumption and sale, respectively. I sell the DT maize exclusively to the government and wholesalers, so I get a fair price. With this income, I can focus on other projects,” Mwanza said. Photo: Kelah Kaimenyi/CIMMYT

PAN 53 is produced and distributed by Pannar, the largest independent seed group in South Africa, and one of the largest seed suppliers in sub-Saharan Africa. Pannar has the third largest market share in Zambia.

According to the Famine Early Warning Systems Network, Zambia is expected to substantially exceed national requirements this consumption year given its maize production of 2.87 million metric tons (MT) in 2016, combined with an estimated maize carryover stock of approximately 667,500 MT.

A few doors down from Piri is 66-year-old Piri Mwanza, who also plants DT maize. For Mwanza, planting a DT maize hybrid at the onset of this year’s drought was a risk he was willing to take. Throughout 44 years as a farmer, he knew only the local maize variety until an agro-dealer convinced him to try something new. He invested $37 to buy 20 kilograms of DT maize seed and fertilizer for his one-hectare farm. Despite poor rains, he harvested 55 bags of maize compared to 40 bags the previous year with the local variety.

“I’m impressed with my harvest, and will continue investing in DT maize even when the season gets better and the rains normalize,” said Mwanza.

Planting drought-tolerant varieties has proven to be a sustainable strategy for improving food security. Continuous efforts by CIMMYT’s DTMASS project to promote the benefits of improved varieties will go a long way toward convincing smallholder farmers to adopt them.

Maize seed systems in Africa: Understanding the basics

CIMMYT maize seed system specialist James Gethi inspects a maize field in Nzega, Tanzania. Photo: Kelah Kaimenyi/CIMMYT.
CIMMYT maize seed system specialist James Gethi inspects a maize field in Nzega, Tanzania. Photo: Kelah Kaimenyi/CIMMYT.

Maize is not only a staple in diets across sub-Saharan Africa – it is a cash crop that supports millions of farmer households. Maize is grown on over 33 million hectares in just 13 of 48 countries in the region – accounting for 72% of all maize produced in the region. This crop, without a doubt, is king.

However, rising temperatures and erratic rainfall patterns threaten maize production across the continent. Total crop loss occurs if there’s little or no rainfall at the flowering stage, when maize is most vulnerable. And when temperatures increase, soil moisture is quickly depleted and farmers have to resort to prolonged irrigation, a costly undertaking for smallholders.

Drought-tolerant (DT) maize varieties produce better yields both in good and bad seasons compared to most commercial varieties available in the region. Since 2006, CIMMYT has developed 200 drought-tolerant varieties and hybrids, many of which also possess desirable traits such as resistance to major diseases.

quick#In addition to developing quality maize that is high yielding and disease resistant, the Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project led by CIMMYT is working to ensure these improved varieties are affordable and attractive to farmers. Two and a half million smallholder farmers in Ethiopia, Kenya, Mozambique, Tanzania, Uganda and Zambia are expected to benefit from in-country partnerships and networks that boost production and distribution of DT maize seed. These countries account for 25 percent (or 252 million) of the population in sub-Saharan Africa, and 41 percent of maize production areas.

To access quality improved seed, farmers in Africa face various constraints such as high prices, low supply and limited knowledge about improved seeds. Through surveys conducted among nearly 5,000 farmer households in Kenya, Mozambique and Zambia, CIMMYT learned that when farmers buy seed, the traits they care most about are early crop maturity, yield, and tolerance/resistance to stresses such as drought and disease. In most cases, long-term use and preference for a particular seed variety influence buying habits, but now farmers are increasingly focusing on tolerance/resistance to drought, pests and diseases.

“Our key focus is on sustainable seed production and increasing demand,” said Kate Fehlenberg, DTMASS project manager. “This means building market skills for producers and creating an environment to entice risk-averse farmers to try new drought-tolerant varieties.”

Gender in seed systemsCIMMYT is working with partners to increase farmer preference for DT seed by supporting promotional and marketing activities, and improving seed production capacity. CIMMYT will also work to ensure local institutions have the technological and production capacity to independently produce and distribute seed throughout DTMASS target countries.

Scaling activities will allow DT seed to spread across various geographical areas (scaling “out”) and build the capacity of local institutions to independently control sustainable seed production (scaling “up”). Both scaling up and out rely on giving stakeholders in the maize value chain compelling reasons to continue producing, distributing and consuming DT maize varieties.

Over 50 selected small- and medium-scale seed companies will be supported through training workshops on seed production and seed business management. Seed companies will also receive financial grants to support expansion activities such as purchasing special seed processing and packing equipment, restoring seed storage and other facilities, and marketing.

The next big challenge for DTMASS is to increase adoption of drought-tolerant maize, which will strengthen seed systems in Africa. Photo: Kelah Kaimenyi/CIMMYT.
The next big challenge for DTMASS is to increase adoption of drought-tolerant maize, which will strengthen seed systems in Africa.
Photo: Kelah Kaimenyi/CIMMYT.

 

Kenyan maize nutrition and safety get boost from ancient Mexican technique

A milling machine for preparing nixtamalized maize dough was presented to KALRO through the Mexican Embassy. Photo: B. Wawa/CIMMYT
A milling machine for preparing nixtamalized maize dough was presented to Kenya Agricultural & Livestock Research Organization by the Mexican embassy in Nairobi, Kenya. CIMMYT/Brenda Wawa

NAIROBI, Kenya (CIMMYT) — Although maize is a staple food for millions of Kenyans it is usually consumed in one of five ways: roasted or boiled; mixed with beans, or in ugali (a dough-like dish made from maize flour, millet flour or sorghum flour) and porridge. This is nothing compared to over 600 dishes derived from maize in Mexico, about 300 of them made through a process called nixtamalization or lime-cooking.

The process includes cooking and steeping dried maize grain in water and food-grade lime (calcium hydroxide), rinsing the maize to remove the outer kernel cover (pericarp) and milling it to produce dough that can be consumed in different ways, according to Natalia Palacios, maize quality specialist at the International Maize and Wheat Improvement Center (CIMMYT). This method, first developed in Mesoamerica where the crop was originally cultivated, has existed in the region for thousands of years.

If adapted, modern nixtamalization technology could increase maize uses and offer Kenyans invaluable benefits. Food-grade lime is rich in calcium, providing nutritional and health benefits. Nixtamalized food products such as tortillas (small circular-shaped flatbreads) are said to have same nutritional value as milk. About 94 percent of Mexicans eat tortillas, with 79 kilograms (174 pounds) per capita being consumed in rural areas and 57 kilograms per capita in urban areas every year.

By removing the pericarp, the technology contributes to reduce aflatoxin fungal contamination levels in maize kernels by 30 to 60 percent. Due to aflatoxins, Kenya has suffered maize production losses and, more importantly, a loss of human lives. In 2004, 124 people died due to aflatoxin contamination, and 155,000 90-kilogram bags of maize had to be discarded, according to government reports. Nixtamalization technology may therefore also contribute to increasing food safety for Kenyan consumers, who, according to the U.N. Food and Agriculture Organization, are not fully aware of the harvest, drying and storage techniques necessary to prevent mycotoxin growth and contamination.

Participants prepare tortillas from nixtamalized dough. Photo: B. Wawa/CIMMYT
Participants prepare tortillas from nixtamalized dough. Photo: CIMMYT/Brenda Wawa

The benefits of nixtamalization will soon become a reality for Kenyans following the official presentation of nixtamalized maize mills to the Cabinet Secretary of Kenya’s Ministry of Agriculture, Livestock and Fisheries by Mexico’s ambassador to Kenya, Erasmo Martínez, which took place on 4 April 2016 in Nairobi. This event marked the official launch of a new project titled “Expanding maize utilization as food and enhancing nutrition improved health and development in Kenya through processing technologies from Mexico,” which will contribute to disseminating new technology across the country. The three-year project will be led by the Kenya Agricultural Livestock and Research Organisation (KALRO).

The launch was followed by a week of training of 27 trainers from the public and private sectors led by CIMMYT and its collaborators from the tortilla industry in Mexico City and the National Autonomous University of Mexico. The training focused on building the capacity of partners who will be the major drivers of the commercialization of nixtamalized products.

“Geographically Mexico is very far from Kenya, but we want to bring a technology that is benefiting millions of people in Mexico every day, and it’s my hope that this will go beyond Kenya,” Martínez said, lauding this milestone.  The Mexican embassy and the Mexican Agency for International Cooperation and Development played a crucial role in bringing the technology to Kenya.

“This technology is important because of its value addition to our food sector through reduction of aflatoxin exposure, increased market and income opportunities for youth and women, which will attract and improve their involvement in agribusiness,” said Sicily Kariuki, Cabinet Secretary for Public Service and Youth, who played a key role in the initial discussion on transferring this technology to Kenya.

KALRO will support raising awareness of the technology among small- and medium-sized companies, increasing their investment opportunities. KALRO is the custodian of the equipment donated by the Mexican government that is being used for training. CIMMYT will support this work by providing technical and capacity building expertise.

“We will help to evaluate and monitor grain quality besides developing resilient maize to ensure we have improved materials that fit the purpose of an efficient nixtamalization,” Palacios said. CIMMYT will also continue to collaborate with its partners on research aimed at finding further scientific evidence of the use of nixtamalization as a way of decreasing aflatoxin exposure.

Tanzania seed company increases demand for drought-tolerant maize

Emmanuel Mponda, IFFA Seed promotions manager. Photo: Kelah Kaimenyi/CIMMYT
Emmanuel Mponda, IFFA Seed promotions manager. CIMMYT/Kelah Kaimenyi

NAIROBI, Kenya (CIMMYT) — Locally adapted marketing initiatives by an innovative seed company are leading farmers in the area around one of Tanzania’s largest agricultural towns to plant Lubango, a high-performing, drought-tolerant maize variety.

Lubango, which means “blessed” in local Sukuma language, was first produced by IFFA Seed in 2015 and is already replacing traditional seeds on farms across Tanzania as a result of the company’s hands-on, targeted marketing approach. Headquartered in the city of Arusha since 2008, IFFA now dedicates more than 140 hectares (345 acres) of Nzega farmland to Lubango production to meet the increasing demand for the seed.

Demonstration plots in 10 of Tanzania’s 12 districts have made a big impact, said Emmanuel Mponda, IFFA seed promotions manager, who believes that demonstration plots are the most effective of all the marketing tools because they allow farmers to see direct benefits in their fields.

“Lubango was created with the smallholder farmer in mind,” Mponda said. “It’s drought-tolerant, affordable, high-yielding, and great tasting.”

“Visits from Mponda helped me realize that good farm practices are necessary for any kind of crop to flourish,” Michael Kumbere shares, adding, “I made sure to invest in fertilizer for Lubango, and I can already see that the yield benefits would outweigh any costs I incur.”
“Visits from Mponda helped me realize that good farm practices are necessary for any kind of crop to flourish,” said farmer Michael Kumbere. “I made sure to invest in fertilizer for Lubango, and I can already see that the yield benefits would outweigh any costs I incur.”

Part of Mponda’s work involves ensuring farmers are equipped with smart agronomic practices. For example, farmers who plant and space crops in a straight line, as opposed to haphazardly scattering seeds, create ample space for weeding,  save on inputs such as fertilizer and  efficiently use sunlight and soil nutrients.

“As seasons pass, I’m amazed at the progress farmers have made by accepting changes in their farming practices to maximize gains,” Mponda said, adding that novel promotion strategies are necessary to compete with the numerous other seed companies in the country.

“We’re certainly leveraging modern marketing methods to raise awareness on drought-tolerant varieties, and Lubango in particular. So far, audio-visual tools are a hit,” Mponda said.

 “This was my first try planting a drought-tolerant hybrid variety, and [after] seeing all this healthy maize, I am a believer,” says Daniel Reuben (above), a farmer of over 30 years regarding Lubango. “I can already tell that I will have a good harvest from the double cobs on each plant.” Normally, Reuben uses all his harvest to feed his family, but this year he expects to be able to produce more to sell and earn extra profit. Photo: Kelah Kaimenyi/CIMMYT.
“This was my first try planting a drought-tolerant hybrid variety, and [after] seeing all this healthy maize, I am a believer,” said Daniel Reuben (above), a farmer for more than 30 years, referring to Lubango.  With Lubango, farmers with more than two acres (.81 hectares) of land can save up to 50 percent on their seed purchase, at least $13 compared to similar brands, which can be invested in fertilizer or paid labor. Normally, Reuben uses all his harvest to feed his family, but this year he expects to be able to produce more to sell and earn extra profit. CIMMYT/Kelah Kaimenyi
IFFA Seed recently produced a short film detailing the life cycle of Lubango maize from planting to harvest, and sharing farming tips and tricks at every stage. The video will be screened at all farmer field days and other relevant events hosted or attended by the company. Audio announcements are broadcast at Nzega’s local railway station, a previously untapped channel, and the company produces flyers for distribution to farmers at events and seed purchase areas. Mponda is keen on large-scale visual outputs, and has identified billboards and television adverts as his next course of action.

Through technical and financial support and capacity building initiatives, CIMMYT’s Drought Tolerant Maize for Africa Seed Scaling (DTMASS) project works closely with IFFA Seed Company and other private partners throughout eastern and southern Africa to bring affordable, improved maize seed to 2.5 million people. DTMASS aims to meet demand and improve access to good-quality maize through production of improved drought-tolerant, stress-resilient and high-yielding maize varieties for smallholder farmers through 2020.

CIMMYT empowers a new generation of maize breeders in Zambia

Photo: Participants in the maize breeding course in Zambia. Photo: Cosmos Magorokosho/CIMMYT.
Photo: Participants in the maize breeding course in Zambia. Photo: Cosmos Magorokosho/CIMMYT.

CIMMYT recently conducted an intensive three-week training course in Zambia for 38 young maize breeders–including 12 women–to provide them the knowledge and skills needed to apply modern maize breeding methods in their agricultural research and development programs. Participants from national programs and private seed companies from 12 African countries and Pakistan attended the course.

Moses Mwale of the Zambia Agricultural Research Institute (ZARI) officially opened the course, and said the training was critical as agriculture contributes over 40% of Zambia’s gross domestic product and provides 70% of all employment in Africa; up to 80% of the African population lives in rural areas and is heavily dependent on agriculture for their livelihoods.

According to Mwale, “Despite its immense potential, maize has underperformed in Africa in recent years. The major cause is lack of investment, reliance on rainfed agriculture, low usage of improved seed, and the lack of adequate agricultural research and development, resulting in low production, productivity, and high transaction costs in agribusiness ventures.”

For the first time, a significant part of the course was devoted to the subjects of crop management and gender mainstreaming in maize research and development.

CIMMYT agronomist Isaiah Nyagumbo presented the crop management practices recommended to boost yields, productivity, and income, and to conserve natural resources. He emphasized that investments in maize breeding pay off when crop management on farm is improved. Nyagumbo also demonstrated new land preparation equipment recommended for use with conservation agriculture, including jab planters, dibble sticks, Li seeder or planting hoe, and animal traction rippers.

Vongai Kandiwa, CIMMYT gender specialist, spoke about “Leveraging Gender Awareness in Maize Breeding and Seed Deployment.” Revealing existing evidence of gender gaps in technology awareness and adoption, she highlighted the importance of developing maize technologies that meet the needs of both men and women farmers. Kandiwa also shared insights on gender-responsive approaches for conducting on-farm trials and building awareness, especially of newly released varieties.

During the training course, CIMMYT physiologist Jill Cairns briefed participants on preparing and making effective presentations––a challenge for both distinguished and new scientists.

Several scientists highlighted recent developments in maize improvement such as the use in maize breeding of doubled haploids, molecular tools, transgenics, and precision phenotyping. Key themes included advanced phenotyping by CIMMYT physiologist Zaman Mainasarra, who demonstrated the use of unmanned aerial vehicles for digital imaging and fast, cost-effective, and accurate phenotyping data collection.

Other subjects included theoretical conventional breeding, breeding for abiotic stress in line with climate change, breeding for biotic stresses with emphasis on preventing the spread of maize lethal necrosis (MLN) disease, and breeding for improved nutritional quality (quality protein maize and pro-vitamin A maize). Max Mbunji of HarvestPlus gave a presentation on Zambia’s progress on developing and delivering pro-vitamin A maize over the past seven years.

Variety release and registration, seed production, and seed business management in Africa were also featured during the course. Trainees learned how to scale up breeder seed to certified seed, maintain genetic purity and quality, and support upcoming seed companies, while complying with existing seed legislation, policies, and procedures in different countries.

Participants went on a field trip to HarvestPlus, where they learned more about pro-vitamin A analysis. They also visited ZARI’s Nanga Research Station to observe drought screening and seed production activities conducted by Zambia’s national maize breeding program.

At the end of the course, one of the participants, Annah Takombwa, acting technical affairs manager at Zimbabwe’s National Biotechnology Authority, said, “Many thanks for affording me the opportunity to take part in GMP’s New Maize Breeders Training. It was a great honor and privilege. I am already applying the skills and knowledge gained in my day-to-day activities.”

CIMMYT Global Maize Program (GMP) maize breeders Cosmos Magorokosho, Stephen Mugo, and Abebe Menkir of the International Institute of Tropical Agriculture (IITA) organized and coordinated the course. Participants were sponsored through various GMP projects, including Drought Tolerant Maize for Africa, Drought Tolerant Maize for Africa Seed Scale-up, the Doubled Haploids project, Water Efficient Maize for Africa, Improved Maize for African Soils, USAID Heat project, MLN project, HarvestPlus, and private seed companies ZAMSEED and SEECDCO.

Changing the pace of maize breeding in Africa through doubled-haploid technology

Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT
Participants being taken through the doubled-haploid breeding process by the DH Facility Manager, Sotero Bumagat (extreme right). B. Wawa/CIMMYT

Two words – accelerated breeding – are synonymous to doubled-haploid (DH) based maize breeding. This was the core message shared with 56 maize breeders from 10 African countries who recently participated in a two-day training workshop organized by CIMMYT’s Global Maize Program (GMP) in Nairobi, Kenya, from September 23–24, 2015. The breeders benefited from the knowledge and experience of resource persons from public and private institutions in France, Germany and USA who have dedicated years of research on the DH technology that is changing the pace of maize breeding.

The resource persons for the training workshop included Tim Cupka (AgReliant Genetics, USA), Thomas Lubberstedt (Iowa State University, USA), Wolfgang Schipprack (University of Hohenheim, Germany), Dominic Marc and Regis Brassart (Limagrain, France), and CIMMYT’s B.M. Prasanna, Vijay Chaikam, Yoseph Beyene and Sotero Bumagat.

The DH technology shortens the breeding cycle significantly by developing 100 percent homozygous lines within 2–3 seasons compared to conventional breeding that takes at least 7–8 seasons to develop inbred lines with 98–99 percent homozygosity. While tracing the evolution of DH technology in maize, B.M Prasanna, Director of both GMP and the CGIAR Research Program MAIZE remarked, “This is a significant reduction of time, labor and important resources. There is a great opportunity for maize breeders in Africa to modernize the breeding programs using DH technology, coupled with molecular markers. It is particularly important to enhance genetic gains while effectively dealing with an array of stresses crippling maize production in sub-Saharan Africa.”

While commercial seed industries across the world have benefited significantly from this technology, the uptake among the institutions of the national agricultural research systems (NARS) and the small- and medium-scale enterprise (SME) seed companies in sub-Saharan Africa (SSA) is significantly low. This is due to various reasons, particularly lack of awareness about the power of DH technology.

To address this challenge, CIMMYT in partnership with Kenya Agricultural and Livestock Research Organization (KALRO) established the maize DH facility – the first of its kind in SSA – at the Kiboko Maize Research Station in Kenya in September 2013. The facility offers DH development service to NARS and SME seed companies – with financial support from Bill & Melinda Gates Foundation.

“Establishing and operating such a facility requires significant technical know-how and is not an easy task,” said Prasanna. “It is more practical for our NARS and SME seed company partners to utilize the facility at Kiboko to develop DH lines with diverse genetic backgrounds through the DH development service offered by CIMMYT, make effective selections, and use well-selected DH lines in hybrid breeding programs. The purpose of the training workshop is to make breeders aware of the tremendous opportunities to integrate DH lines in maize breeding programs”.

Sure-footed progress – Africa’s maize breeding on the right path

It is estimated that about 70 to 80 percent of new maize hybrids being produced currently by major seed companies in the world, especially in North America and Europe, contain one or more doubled-haploid lines, with DH-based maize hybrids covering about 40 to 50 million hectares worldwide.

Tim Cupka, a highly experienced maize breeder at AgReliant Genetics, USA, emphasized that DH technology has changed the face of maize breeding in his organization. “The developed world is intensively practicing DH-based maize breeding. There is so much value that can be created through this technology not just for public and private maize breeding programs and seed companies in Africa, but ultimately for the farmers,” noted Tim.

For farmers and breeders, the greatest value is that DH technology reduces the amount of time (by one-third) it takes to create new commercial hybrids. “Instead of taking 12 years to develop a superior hybrid, we are now developing new hybrids within 6 to 7 years, which means we can get superior genetics to the farmers much faster than ever before! This is key to strengthening the livelihood of millions of farmers across the world. That is our success as breeders,” Tim concluded.

GMP in Africa has effectively integrated DH and molecular marker technologies in its product development pipeline. More than 92,000 DH lines have been developed so far from CIMMYT bi-parental populations at the DH facilities at Kiboko and Agua Fria, Mexico. In addition, significant contributions have been made over the last few years by Monsanto and DuPont Pioneer in developing DH lines in CIMMYT’s Africa-adapted maize genetic backgrounds through the Water Efficient Maize for Africa and Improved Maize for African Soils projects. “CIMMYT has so far released 32 DH-based maize hybrids in Kenya, Uganda, Tanzania, and South Africa between 2012 and 2015.These hybrids showed excellent performance under optimum, drought and low-nitrogen stress conditions,” reported Yoseph Beyene, a CIMMYT Maize Breeder based at Nairobi, Kenya. He also added that the five DH lines have been recently identified for release as CIMMYT maize lines.

In addition, more than 5,000 DH lines have been screened by CIMMYT for maize lethal necrosis (MLN) disease under artificial inoculation at the MLN Screening Facility at Naivasha, Kenya; promising lines have been identified offering tolerance to the disease. Therefore, DH technology can be a powerful tool to accelerate development of MLN-tolerant maize hybrids for sub-Saharan Africa.

Participants at the workshop got an opportunity to visit the DH facility at Kiboko in Makueni County, Kenya, where they saw the DH breeding process. The tour was facilitated by Sotero Bumagat, Maize DH Facility Manager, CIMMYT–Kenya. “This is a new experience and a very enriching one,” remarked Lwanga Kasozi from the Agricultural Research Institute in Tanzania. “I have seen and understood DH-based breeding both in theory as well as practice. It is my desire to see our organization in Tanzania embrace this technology. I will play my part to share this experience and knowledge.”.

Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT
Participants of the doubled-haploid maize breeding workshop. B. Wawa/CIMMYT

The Alliance for a Green Revolution in Africa (AGRA), also nominated its scientists to participate in the training workshop. In addition, AGRA sponsored the participation of nine maize breeders from different NARS institutions in SSA to participate in the workshop.

Maize that packs a punch in face of adversity: unveiling new branded varieties for Africa

Even in the best years, significant swathes of sub-Saharan Africa suffer from recurrent drought. Drought wreaks havoc on the livelihoods of millions of Africans – livelihoods heavily leaning on rain-dependent agriculture without irrigation, and with maize as a key staple. And that is not all: drought makes a bad situation worse. It compounds crop failure because its dry conditions amplify the susceptibility of maize in farmers’ fields to disease-causing pests, whose populations soar during drought.

Providing maize farmers with context-specific solutions to combat low yields and chronic crop failure is a key priority for CIMMYT and its partners, such as those in the Water Efficient Maize for Africa (WEMA) Project.

“Our main focus is to give famers durable solutions,” remarks Dr. Stephen Mugo, CIMMYT Regional Representative for Africa and a maize breeder, who also coordinates CIMMYT’s work in WEMA. “These seeds are bred with important traits that meet the needs of the farmers, with ability to give higher yields within specific environments.”

Farmers in Kenya, Uganda, Tanzania and South Africa will soon access WEMA’s high-yielding drought-tolerant maize hybrids. In total, 13 hybrids were approved for commercial production by relevant authorities in these countries. These approvals were spread between October 2014 and March 2015 in the various countries.

Kenya’s National Variety Release Committee (NVRC) approved four hybrids in February 2015 (WE2109, WE2111, WE2110 and WE2106), while neighboring Uganda’s NVRC also approved four hybrids at the end of 2014 (WE2101, WE2103, WE2104 and WE2106). Across Uganda’s southern border, in March 2015, the Tanzania Official Seed Certification Institute approved for commercial release WE3117, WE3102 and WE3117. Still further south, South Africa’s Department for Agriculture registered two hybrids (WE3127 and WE3128) in October 2014.

In each country, all the hybrids successfully underwent the mandatory National Performance Trials (NPTs) and the Distinctness, Uniformity and Stability (DUS) tests to ascertain their qualities and suitability for use by farmers.

Varieties that pack a punch
In Kenya, these new WEMA varieties boast significantly better yields when compared to varieties currently on the market as well as to farmer varieties in drought-prone areas of upper and lower eastern, coastal, central and western Kenya.

And that is not all: across them, the new hybrids also have resistance to rampant leaf diseases like maize streak virus, turcicum leaf spot and gray leaf spot.

Dr. Murenga Mwimali of the Kenya Agricultural and Livestock Research Organization, who is also WEMA’s Country Coordinator in Kenya, explains: “These hybrids are expected to give farmers an average yield of three tonnes per hectare in moderate drought and eight tonnes in good seasons. These are better seeds that will help Kenyans fight hunger through increased productivity.” According to the UN Food and Agricultural Organization, Kenya’s national average productivity in 2013 was a meager 1.6 tonnes per hectare. This compares poorly with South Africa’s 6 tonnes, Egypt’s 9 tonnes and USA’s 9–12 tonnes, as generally reported in other statistics.

Where to find them
The seed of these new varieties should be available in the market once selected seed companies in Uganda and Tanzania produce certified seeds by end of August 2015.

Dr. Allois Kullaya, WEMA Country Coordinator in Tanzania, applauded this achievement and the partnership that has made it possible. “Through the WEMA partnership, we have been able to access improved seed and breeding techniques. The hybrids so far released were bred by our partner CIMMYT and evaluated across different locations. Without this collaboration, it would not have been possible to see these achievements.” said Dr. Kullaya.

In South Africa, close to 10,000 half-kilo seed packs of WE3127 were distributed to smallholder farmers to create awareness and product demand through demonstrations to farmers and seed companies.

This seed-pack distribution was through local extension services in the provinces of Eastern Cape, Free State, KwaZulu–Natal, Limpopo, Mpumalanga and North-West.

Three seed companies also received the hybrid seed to plant and increase certified seed for the market.

Where it all begins – the CIMMYT ‘cradle’, crucible and seal for quality assurance
“In the WEMA partnership, CIMMYT’s role as the breeding partner has been to develop, test and identify the best hybrids for yield, drought tolerance, disease resistance and adaptability to local conditions,” says Dr. Yoseph Beyene, a maize breeder at CIMMYT and WEMA Product Development Co-leader.

To do this, more than 10, 000 new hybrids combinations are evaluated each year to identify new hybrids that will perform most consistently in various conditions. Hybrids that look promising are subjected to a rigorous WEMA-wide area testing. Only those that pass the test get the CIMMYT nod and ‘seal of approval’. But the tests do not end there: for independent and objevhe verfication, the final test  is that these select few advance to  – and are submitted for – country NPTs.

Dr. Beyene explains: “Because of these rigorous testing, hybrids that are adapted in two or three countries have been identified and released for commercial production to be done by regional and multinational seed companies which market hybrids in different countries. This eases the logistics for seed production, distribution and marketing.”

How to recognize the new varieties – distinctive shield against drought
All the hybrids released under the WEMA project will be sold to farmers under the trade-name DroughtTEGO™. ‘Tego’ is Latin for cover, protect or defend. The African Agricultural Technology Foundation (AATF), which coordinates the WEMA Project, has sub-licensed 22 seed companies from the four countries to produce DroughtTEGO™ seeds for farmers to buy.

WEMA’s achievements are premised on a powerful partnership of scientists from CIMMYT, national agricultural research institutes from the five WEMA target countries (Kenya, Tanzania, Uganda, Mozambique and South Africa), AATF and Monsanto.

WEMA is funded by the Bill & Melinda Gates Foundation, the United States Agency for International Development and the Howard G. Buffet Foundation.

Links: More on WEMA | WEMA 2015 annual meeting in Mozambique | Insect Resistant Maize in Africa Project (completed in 2014)

WEMA 3 w

Continue reading