NAIROBI (Kenya) â Members of the International Maize Improvement Consortium (IMIC) and other partners had a chance to go on a field visit to the Kiboko and Naivasha research stations in Kenya on September 18 and 19, 2018. The International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agriculture & Livestock Research Organization (KALRO) held their annual partner field days to share the latest developments in maize and wheat research.
On the first day, CIMMYT invited IMIC researchers to evaluate Material Under Development at the Kiboko site. These maize lines are not publicly released yet but are available to IMIC partners, so they can select the most promising ones for their research and crop improvement work.
Each seed company was looking for certain traits to develop new hybrid varieties. For instance, Samit Fayek, from Fine Seeds Egypt was looking for âerect typeâ maize, as he wants higher crop density and grains that look big. Christopher Volbrecht, from Lake Agriculture in South Africa, was looking for âcobs that stick out as this is what farmers want.â Josephine Okot, from Victoria Seeds in Uganda, said that âseed companies often look at drought tolerance only, but we need now to integrate resistance to Maize Lethal Necrosis.â
Using Doubled Haploid breeding in Kiboko
Some of the workers at Kiboko station sorting out maize seed varieties. (Photo: Joshua Masinde/CIMMYT)
Next on the tour to Kiboko, partners visited various stress-tolerant breeding materials, sustainable intensification cropping demonstrations and the Doubled Haploid facility. Vijaya Chaikam, Maize Doubled Haploid Scientist, explained how CIMMYT uses this methodology to cut down breeding time from six to two cycles, which drastically reduces costs.
According to B.M. Prasanna, director of CIMMYTâs Global Maize Program and the CGIAR Research Program MAIZE, doubled haploid breeding is possibly the biggest innovation to speed up genetic gain since the inception of hybrid technology a century ago. âIn the next 4 or 5 years, CIMMYT aims at 80 percent use of double haploid lines for new hybrid development; breeding will be faster and much cheaper that way,â Prasanna said. âFor now, breeders and seed companies need to know how to use double haploid lines to cost-efficiently crossbreed with their varieties for high-quality hybrids.â
At the end of the visit to Kiboko, CIMMYT officially opened a new maize seed storage cold room. This facility will serve to keep seeds in good condition and to better manage inventory. At the opening were the director of KALROâs Food Crops Research Institute, Joyce Malinga, CIMMYTâs Africa Regional Representative, Stephen Mugo, and CIMMYTâs Technical Lead for the Global Maize Program, Aparna Das.
Fighting Maize Lethal Necrosis and rust in Naivasha
A worker at the Naivasha MLN research station conducts a mock inoculation (Photo: Joshua Masinde/CIMMYT)
On the second day, partners visited the Naivasha research station. There, CIMMYT presented the latest efforts to contain Maize Lethal Necrosis (MLN), a devastating maize viral disease first reported in Kenya in 2011 which caused severe crop losses across Eastern Africa, causing severe crop losses. The Naivasha research station is home to a world-class facility to screen for Maize Lethal Necrosis, jointly managed by CIMMYT and KALRO.
At the facility, maize lines are evaluated for MLN resistance. The best lines and varieties are nominated for further development and shared with partners. National Agriculture Research partners can request MLN screening at no cost, while private seed companies are charged for the service. In the last four years, more than 150,000 germplasm have been screened.
CIMMYT wheat scientist Mandeep Randhawa explained how to recognize the different types of wheat rust diseases: stem, stripe and leaf rusts. He emphasized the Ug99 black stem rust strain, which appeared in Uganda in 1998 and has since severely impacted wheat production in the region and globally. Randhawa explained how CIMMYT develops varieties resistant to stem rust using a phenotyping platform and marker-assisted selection.
These two field days were a great opportunity to showcase progress in developing more resilient maize varieties in a fast and cost-effective way. This responsiveness is crucial as pests and diseases continue to threaten the livelihoods of African smallholders. Such impact could not happen without the strong collaboration between CIMMYT and KALRO.
The director of KALRO’s Food Crops Research Institute, Joyce Malinga (left), the director of CIMMYT Global Maize Program, B.M. Prasanna (center), and CIMMYT’s Regional Representative, Stephen Mugo, open the maize seed cold room in Kiboko (Photo: Joshua Masinde/CIMMYT)
The Doubled Haploid Facility in Kiboko and the Maize Lethal Necrosis screening facilty in Naivasha were opened in 2013 with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation.
The International Maize Improvement Consortium (IMIC) is a public-private partnership initiative launched in May 2018 as part of CIMMYTâs mission to ramp up seed breeding and production innovations.
The new lines are specifically adapted  to tropical/subtropical maize production environments in Africa, Asia and Latin America, and are freely available to both public and private sector breeders worldwide. Â
CML582, one of the 26 new CIMMYT maize lines released by the Center. (Photo: CIMMYT)
CIMMYT is pleased to announce the release of a set of 26 new CIMMYT maize lines (CMLs). These CMLs were developed by the CIMMYT Global Maize Programâs multi-disciplinary teams of scientists at breeding locations in sub-Saharan Africa, Latin America and Asia. These lines are adapted to the tropical/subtropical maize production environments targeted by CIMMYT and partner institutions. CMLs are freely available to both public and private sector breeders worldwide under the standard material transfer agreement (SMTA).
CIMMYT seeks to develop improved maize inbred lines with superior performance and multiple stress tolerance to improve maize productivity for resource-constrained smallholder farmers. To achieve this aim, CMLs are released after intensive evaluation in hybrid combinations under various abiotic and biotic stresses. Suitability as either seed or pollen parent is also thoroughly evaluated.
Release of a CML does not guarantee high combining ability or per se performance in all environments; rather, it indicates that the line is promising or useful as a hybrid component or parent for pedigree breeding for one or more target mega-environments. The descriptions of the lines include heterotic group classification, along with information on their specific combining ability with widely-used CIMMYT lines.
For a summary of the 26 new CMLs, please click here.
Further details on all CMLs, including the pedigrees, are available here.
A limited quantity of seed of the CMLs can be obtained from the CIMMYT Germplasm Bank. To send a request, please contact Denise Costich, Head of the Maize Genetic Resources Center: d.costich@cgiar.org.
For further details, please contact B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Director of CIMMYT’s Global Maize Program: b.m.prasanna@cgiar.org.
Involving diverse segments of a target population in agricultural innovation interventions allows for more inclusive and equitable processes while stimulating local innovation and development outcomes. But what are the key characteristics of rural innovators? And how are their experiences similar for women and men, and how are they different?
To examine these questions, a team of researchers from CIMMYT, collaborating CGIAR centers, and Wageningen University and Research conducted individual interviews with 336 rural women and men known in their communities for trying out new things in agriculture. The results of this study are collected in 84Â GENNOVATE community case studies from 19 countries across Africa, Asia, and Latin America.
Building on study participantsâ own reflections and experiences with innovation in their agricultural livelihoods, the research team combined variable-oriented analysis with analysis of specific individualsâ lived experience. The study provides in-depth knowledge on how the characteristics and experiences of individual innovators interlink with the social setting to facilitate or impede innovation.
Results indicate that factors related to personality and agency are what most drive capacity to innovate. Access to resources is not a prerequisite but an important enabling aspect. Women have great potential for local innovation, but structural inequalities mean that men are often better positioned to access resources and leverage support – as a result when women challenge the status quo, men’s support is important.
This paper draws on data collected as part of GENNOVATE case studies funded by the CGIAR Research Programs on Wheat, Maize, Grain Legumes, Humid Tropics and Rice, as well as RTB (Roots, Tubers and Bananas), A4NH (Agriculture for Nutrition and Health) and FTA (Forests, Trees and Agroforestry).
Development of research design and field methodology was supported by the CGIAR Gender & Agricultural Research Network, the World Bank, the governments of Mexico and Germany, and the CGIAR Research Programs on Wheat and Maize. Data analysis was supported by the Bill & Melinda Gates Foundation.
Women farmers in Nepal use a mini tiller for direct seeding. (Photo: P.Lowe/CIMMYT)
Check out other recent publications by CIMMYT researchers below:
Facilitating change for climate-smart agriculture through science-policy engagement. Dinesh, D., Zougmore, R., Vervoort, J., Totin, E., Thornton, P.K., Solomon, D., Shirsath, P.B., Pede, V.O., Lopez-Noriega, I., LÀderach, P., Korner, J., Hegger, D., Girvetz, E.H,. Friis, A.E., Driessen, P.P.J., Campbell, B.M. In: Sustainability v. 10, no. 8, art. 2616.
Assessment of management options on striga infestation and maize grain yield in Kenya. Kanampiu, F., Makumbi, D., Mageto, E.K., Omanya, G., Waruingi, S., Musyoka, P., Ransom, J. K. In: Weed Science v. 66, no. 4, p. 516-524.
Maize combined insect resistance genomic regions and their co-localization with cell wall constituents revealed by tissue-specific QTL meta-analyses. Badji, A., Otim, M., Machida, L., Odong, T., Kwemoi, D.B., Okii, D., Agbahoungba, S., Mwila, N., Kumi, F., Ibanda, A., Mugo, S.N., Kyamanywa, S., Rubaihayo, P. In: Frontiers in Plant Science v. 9, art. 895.
Gender and equitable benefit-sharing mechanisms through agricultural innovation platforms in Rwanda. Adam, R.I., Misiko, M.T., Dusengemungu, L., Rushemuka, P.N., Mukakalisa, Z. In:  Community Development vol. 49, no. 4, p. 380-397
Genomic-enabled prediction models using multi-environment trials to estimate the effect of genotype Ă environment interaction on prediction accuracy in chickpea. Roorkiwal, M., JarquĂn, D., Muneendra K. Singh., Pooran M. Gaur., Chellapilla Bharadwaj., Abhishek Rathore., Howard, R., Samineni Srinivasan., Ankit Jain., Vanika Garg., Sandip Kale., Annapurna Chitikineni., Shailesh Tripathi., Jones, E., Robbins, K., Crossa, J., Varshney, R. K. In: Scientific Reports v. 8, art. 11701.
NAIROBI (Kenya) â As the invasion of the voracious fall armyworm threatens to cause US$3-6 billion in annual damage to maize and other African food staples, 35 organizations announced today the formation of a global coalition of research for development (R4D) partners, focused on developing technical solutions and a shared vision of how farmers should fight against this pest. After causing extensive crop damage in Africa, the presence of the fall armyworm was recently confirmed in India.
The new Fall Armyworm R4D International Consortium will serve to develop and implement a unified plan to fight this plant pest on the ground. Focusing on applied research, the consortium joins other global efforts and coordinates with international bodies working against this pest. The Fall Armyworm R4D International Consortium will be co-led by the International Maize and Wheat Improvement Center (CIMMYT) and the International Institute of Tropical Agriculture (IITA).
âThis pest caught us all by surprise and it continues eating away at maize and other crops that are important for the food security and livelihoods of African farmers. We can no longer afford to work in isolation,â said the Director General of CIMMYT, Martin Kropff. âMany organizations in the public and private sector are working intensively on different approaches,â he added, âbut farmers are not interested in half solutions. They want to have integrated solutions, supported by strong science, which work effectively and sustainably.â
Consortium members will coordinate efforts to pursue a wide range of options for fighting fall armyworm, with a strong emphasis on integrated pest management, which includes host plant resistance, environmentally safer chemical pesticides, biological and cultural control methods, and agronomic management.
The Deputy Director General for Partnerships for Delivery at IITA, Kenton Dashiell, said that efforts are underway to identify and validate biopesticides, or âvery safe products that donât harm the environment or people but kill the pest.â In some areas, Dashiell explained, farmers may need to consider temporarily switching to a food crop that is not susceptible to armyworm.
A fall armyworm on a damaged leaf in Nigeria, 2017. (Photo: G. Goergen/IITA)
The Vice President of Program Development and Innovation at the Alliance for a Green Revolution in Africa (AGRA), Joe DeVries, said his organization is serving as a bridge between scientists and farmers. AGRA is developing a network of âvillage-based advisersâ across 15 countries who will be connected to farmers via a âprivate sector-ledâ extension system to help farmers deal with fall armyworm infestations. AGRA and its partners already have trained more than 1,000 advisers and expect to add several thousand more who can âquickly bring to farmers the latest knowledge about the best methods of control.â
The Chief Scientist at the Bureau of Food Security of the United States Agency for International Development (USAID), Rob Bertram, expressed his excitement about the formation of the consortium, both for its immediate relevance for fighting fall armyworm and as a forerunner of âmore resilientâ agriculture systems in Africa, which is likely to see similar threats in the future. CIMMYT and USAID, together with global experts, developed an integrated pest management guide to fight fall armyworm, available in English, French and Portuguese.
The Director General of Development at the Center for Agriculture and Biosciences (CABI), Dennis Rangi, noted that the ability for people to more rapidly travel around the world is also making it easier for plant pests to hop from continent to continent. âToday we are focusing on the fall armyworm, tomorrow it could be something different,â he said.
The members of the Fall Armyworm R4D International Consortium will hold their first face-to-face meeting on October 29-31, 2018, in Addis Ababa, Ethiopia. This international conference will be organized by CIMMYT, IITA, AGRA, CABI, FAO, icipe, FAO, USAID and the African Union Commission.
The technical coordinators of the consortium are B.M. Prasanna, Director of the CGIAR Research Program MAIZE and Global Maize Program at CIMMYT, and May-Guri Saethre, Deputy Director General of Research for Development at IITA.
PARTNERS OF THE FALL ARMYWORM R4D INTERNATIONAL CONSORTIUM
Leads:
International Maize and Wheat Improvement Center (CIMMYT)
International Institute of Tropical Agriculture (IITA)
Members:
African Agricultural Technology Foundation (AATF)
Agricultural Research Service (ARS) of the United States Department of Agriculture (USDA)
Alliance for a Green Revolution in Africa (AGRA)
Bayer
Bill & Melinda Gates Foundation
Biorisk Management Facility (BIMAF)
Brazilian Agricultural Research Corporation (Embrapa)
Center for Agriculture and Biosciences (CABI)
Corteva
CropLife International
Deutsche Gesellschaft fĂŒr Internationale Zusammenarbeit (GIZ)
Food and Agriculture Organization of the United Nations (FAO)
Forum for Agricultural Research in Africa (FARA)
International Centre of Insect Physiology and Ecology (icipe)
International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)
Lancaster University
Leibniz Institute DSMZ (German Collection of Microorganisms and Cell Cultures)
Michigan State University (MSU)
Mississippi State University (MSU)
North-West University (NWU)
Norwegian Institute of Bioeconomy Research (NIBIO)
Oregon State University (OSU)
Rothamsted Research
Syngenta
UK Department for International Development (DFID)
United States Agency for International Development (USAID)
University of Bonn
University of Florida (UFL)
University of Greenwich
Virginia Polytechnic Institute and State University (Virginia Tech)
Wageningen University and Research (WUR)
West and Central African Council for Agricultural Research (CORAF/WECARD)
World Agroforestry Centre (ICRAF)
MEDIA CONTACTS
For more information, please contact:
GeneviĂšve Renard, Head of Communication, CIMMYT g.renard@cgiar.org, +52 (55) 5804 2004, ext. 2019.
Katherine Lopez, Head of Communication, IITA k.lopez@cgiar.org, +234 0700800, ext. 2770
The 2018 MAIZE Youth Innovators Awards – Asia recognize the contributions of young women and men who can inspire fellow young people to get involved in maize-based research, social change and farming. The awards are sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with Young Professionals for Agricultural Development (YPARD).
The awardees have been invited to attend the 13th Asian Maize Conference in Ludhiana, India, where they will present their work and receive their awards.
The winners in the two categories are:
RESEARCHER
Dinesh Panday, Nepal
Focus: Soil fertility and nutrient management
Dinesh Panday.
Dinesh Pandayâs family has a long history in agriculture, which strongly rooted his passions in the field of soil science. He is a Doctorate Graduate Research Assistant in Soil Fertility and Nutrient Management at the University of Nebraska-Lincoln under the supervision of Bijesh Maharjan and Richard Ferguson.
His research aims to determine the effectiveness of high carbon char in reducing environmental nitrogen loss and improving nitrogen fertilizer use efficiency in fertilized soils in semi-arid regions. Using active and passive sensors to detect maize nitrogen stress, predict grain yield and determine in-season and additional side-dress applications of nitrogen fertilizer it is possible to reduce environmental impacts.
Jie Xu, China
Focus: Drought stress in maize root systems
Jie Xu.
An associate researcher at Sichuan Agricultural University, China, Jie Xu is interested in how maize roots influence performance under drought stress. By studying maize inbred lines that exhibit different drought tolerance, her research explores their genome and transcriptome variations to understand the genetic basis of plant adaptation to drought. The findings can then be used in breeding drought-tolerant maize.
Jie Xu and her team have developed methods to dissect the genetic and epigenetic mechanisms underlying maize drought stress response. This work involves the identification of non-synonymous SNPs and corresponding candidate genes for drought tolerance using analyses such as common variant and clustering techniques. Her team also revealed the impact smRNAs and histone modifications have in the regulation of maize drought stress response.
Vignesh Muthusamy, India
Focus: Development of biofortified provitamin-A rich QPM maize hybrids
Vignesh Muthusamy.
Vignesh Muthusamy is from a farming community in the Namakkal district in Tamil Nadu. A Senior Scientist at the Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, he specializes in maize genetics and breeding. His research demonstrates the use of modern biotechnological tools in crop improvement. He was associated with the development of Indiaâs first provitamin A enriched maize hybrid âPusa Vivek QPM 9 Improvedâ and with the development of three quality protein maize hybrids that possess high lysine and tryptophan in protein. These biofortified maize hybrids offer tremendous scope to address widespread human malnutrition. Further research work includes the development of a high-yielding sweet corn hybrid and several novel maize genetic resources for nutritional quality traits.
Muthusamy has received many prestigious awards from different societies and scientific organizations, including Jawaharlal Nehru Award for Outstanding Doctoral Thesis Research in Agricultural and Allied Sciences from Indian Council of Agricultural Research. As Principal Investigator, he is handling projects funded by Department of Biotechnology and Department of Science & Technology, Government of India for development of nutritionally rich maize and specialty corn genotypes. Besides research, he is also actively involved in teaching and guidance of post graduate students of the institute.
CHANGE AGENT
Samjhana Khanal, Nepal
Focus: Social inclusion of young people and site-specific nutrient management (SSNM) using Nutrient ExpertÂź
Samjhana Khanal.
Samjhana Khanal, an agricultural graduate, has founded and co-founded various social organizations at a local level in Nepal to involve young minds in the development of innovative strategies to work towards sustainable agriculture and zero hunger.
Besides taking part in agricultural trainings, workshops and conferences during her undergraduate degree, Samjhana worked as a R&D Research Assistant at the Eastern Regional Agricultural Directorate in Nepal and has published a number of research papers. Her most recent research involves the productivity and profitability of hybrid maize using the Nutrient ExpertÂź Maize model in eastern Terai, Nepal. Using Nutrient ExpertÂź, a dynamic nutrient management tool based on site-specific nutrient management (SSNM) principles, farm-specific fertilizer recommendations for maize are possible, resulting in higher grain yield and improved productivity and profits for farmers.
CIMMYT maize germplasm bank staff preparing the order for the repatriation of Guatemalan seed varieties. (Photo: CIMMYT)
The International Maize and Wheat Improvement Center (CIMMYT) maize germplasm bank recently received an award in recognition of its contributions towards the Buena Milpa initiative in Guatemala, which aims to enhance the sustainability of maize systems in the country. Denise Costich, head of the maize germplasm bank, received the award on behalf of CIMMYT during the event âMaize of Guatemala: Repatriation, conservation and sustainable use of agro-biodiversity,â held on September 7, 2018, in Guatemala City.
The seed varieties stored in the CIMMYT germplasm bank were of vital importance in efforts to restore food security in the aftermath of Hurricane Stan, which swept through Guatemala in 2005, leading to 1,500 deaths. Many farmers lost entire crops and some indigenous communities were unable to harvest seed from their traditional maize varieties, known as landraces. Generations of selection by farmers under local conditions had endowed these varieties with resistance to drought, heat, local pests and diseases. Such losses were further exacerbated by the discovery that the entire maize seed collection in Guatemalaâs national seed bank had been damaged by humidity; the seeds were vulnerable to insects and fungus and could not be replanted.
In 2016, drawing upon the backup seed stored in its maize germplasm bank in Mexico, CIMMYT sent Guatemalan collaborators seed of 785 native Guatemalan maize varieties, including some of the varieties that had been lost. Collaborators in Guatemala subsequently planted and multiplied the seed from the historic CIMMYT samples, ensuring the varieties grow well under local conditions. On completion of this process, the best materials will be returned to local and national seedbanks in Guatemala, where they will be available for farmers and researchers to grow, study and use in breeding programs.
Jointly hosted by the government of Guatemala through the Ministry of Agriculture, Livestock and Food and the Ministry of Culture and Sport, the recent ceremony signified the official delivery of the repatriated seed into the national system. Attendees celebrated the importance of maize in Guatemala and witnessed the presentation of repatriated maize collections to local and national Guatemalan seedbank authorities, including the Institute of Agricultural Science and Technology (ICTA).
âSupporting the seed conservation networks, on both the national and community levels in countries like Guatemala, is a key part of the mission of the CIMMYT Germplasm Bank,â said Costich. âOur collaboration with the Buena Milpa project has enabled the transfer of both seed and seed conservation technologies to improve the food security in communities with maize-centered diets.â
The Buena Milpa initiative in Guatemala is improving storage practices in community seed reserves: tiny, low-tech seed banks meant to serve as backups for villages in cases of catastrophic seed loss. So far, Buena Milpa has enabled 1,800 farmers to access community seed reserves. In addition, 13,000 farmers have applied improved practices and technologies.
The CIMMYT maize germplasm bank, headquartered in Mexico, serves as a backup for farmers and researchers in times of catastrophic seed loss by safeguarding maize genetic diversity, a crucial building block in global food security.
Aflatoxins are harmful compounds produced by the fungi Aspergillus flavus, which can be found in the soil, plants and grain of a variety of cereals and commodities including maize, nuts, cottonseed, spices and dried fruit. The toxic carcinogenic qualities of aflatoxins pose serious health hazards to humans and animals when contaminated crops are ingested. These health risks include cancers of the liver and gallbladder, stunted development in children, premature births and abnormal fetal development.
Not all strains of A. flavus produce aflatoxins however, so it is important to be able to detect and distinguish between A. flavus strains that are benign (atoxigenic) and those that produce dangerous toxins (aflatoxigenic). Current methods of detection are often complicated by the fact that the fungal strains display very similar physiological and molecular traits, thus a new approach is required.
In the study, a novel approach to detect and distinguish A. flavus strains was tested. Using soil samples from a CIMMYT experimental maize field in Mexico, fungal isolates were chemically treated in-line with a method recently developed in Japan, resulting in a color change indicative of toxicity. The method was found to be effective and accurate in the detection of the aflatoxigenic strains of the fungus.
This study is foundational work in the development of a simple, cost-effective and efficient method of detecting aflatoxigenic strains of A. flavus, which will help inform growers about the potential aflatoxin contamination of their crops. This is of particular importance in the developing world, where the resources for effective control of the fungus are often lacking.
To read the original study, âDetection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the DichlorvosâAmmonia (DVâAM) Methodâ, please click here.
Original citation: Kushiro, M.; Hatabayashi, H.; Yabe, K.; Loladze, A. Detection of Aflatoxigenic and Atoxigenic Mexican Aspergillus Strains by the DichlorvosâAmmonia (DVâAM) Method. Toxins2018, 10, 263.
Maize ear infected with Aspergillus flavus. (Photo: Maize Pathology Laboratory/CIMMYT)
Check out other recent publications by CIMMYT researchers below:
Genetic analysis of tropical midaltitude-adapted maize populations under stress and nonstress conditions. 2018. Makumbi, D., Assanga, S., Diallo, A., Magorokosho, C., Asea, G., Regasa, M.W., BĂ€nziger, M. In: Crop Science v. 58, no. 4, p. 1492-1507.
Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line ‘Arula’. 2018. Randhawa, M.S., Caixia Lan, Basnet, B.R., Bhavani, S., Huerta-Espino, J., Forrest, K.L., Hayden, M., Singh, R.P. In: Australian Journal of Crop Science v. 12, no. 6, p. 1023-1033.
Practical breeding strategies to improve resistance to Septoria tritici blotch of wheat. 2018. Tabib Ghaffary, S.M., Chawade, A., Singh, P.K. In: Euphytica v. 214, art. 122.
Sashaydiall : A SAS program for haymanâs diallel analysis. 2018. Makumbi, D., Alvarado BeltrĂĄn, G., Crossa, J., Burgueño, J. In: Crop Science v. 58, no. 4, p. 1605-1615.
Soil bacterial diversity under conservation agriculture-based cereal systems in indo-gangetic plains. 2018. Choudhary, M., Sharma, P.C., Jat, H. S., Dash, A., Rajashekar, B., McDonald, A., Jat, M.L. In: 3 Biotech v. 8, art. 304.
A fall armyworm found on maize plants in Khamman district, Telangana state, India. (Photo: ICAR-Indian Institute of Maize Research)
The fall armyworm (FAW), Spodoptera frugiperda, a devastating insect-pest, has been identified for the first time on the Indian subcontinent. Native to the Americas, the pest is known to eat over 80 plant species, with a particular preference for maize, a main staple crop around the world. The fall armyworm was first officially reported in Nigeria in West Africa in 2016, and rapidly spread across 44 countries in sub-Saharan Africa. Â Sightings of damage to maize crops in India due to fall armyworm mark the first report of the pest in Asia.
Scientists from the College of Agriculture at the University of Agricultural and Horticultural Sciences (UAHS) confirmed the arrival of the pest in maize fields within campus grounds in Shivamogga, in the state of Karnataka, southern India. Both morphological and molecular techniques confirmed the identity as FAW.
A pest alert published on July 30 by the National Bureau of Agricultural Insect Resources (NBAIR), part of the Indian Council of Agricultural Research (ICAR), further confirmed a greater than 70% prevalence of fall armyworm in a maize field in the district of Chikkaballapur, in the state of Karnataka. Â Unofficial reports of incidence of FAW are rapidly emerging from several states in India, including Andhra Pradesh, Maharashtra and Telangana.
The pest has the potential to spread quickly not only within India, but also to other neighboring countries in Asia, owing to suitable climatic conditions.
Leaf damage from fall armyworm on maize plants in Khamman district, Telangana state, India. (Photo: ICAR-Indian Institute of Maize Research)
âThe strategies outlined in this manual can be of great importance to farmers in India when dealing with this insect pest. FAW is indeed one of the most destructive crop pests, and there is no option than to adopt an integrated pest management strategy to effectively tackle this complex challenge,â said B.M. Prasanna, director of MAIZE and the Global Maize Program at CIMMYT. âMAIZE and partners are dedicated to finding solutions to this problem that will protect the food security and incomes of smallholder farmers across Asia and Africa.â
Other regions are at risk as well. Researchers have warned of the potential impacts if FAW spreads to Europe, where customs inspectors have already reported having discovered and destroyed the pest on quarantined crops imported from Africa on several occasions.
Global experts on maize and key stakeholders in Asia will gather together in Ludhiana, India, on October 8-10, 2018, for the 13th Asian Maize Conference to discuss pressing issues to the crop across the continent, including the spread of fall armyworm. The conference, organized by the Indian Council of Agricultural Research (ICAR), the Indian Institute of Maize Research (IIMR), CIMMYT, MAIZE, Punjab Agricultural University (PAU) and the Borlaug Institute for South Asia (BISA), is expected to attract more than 250 participants from almost all the major maize-growing countries in Asia.
Nominations are open for the 2018 Maize-Asia Youth Innovators Awards. The first edition of these awards recognizes the contributions of young women and men below 35 years of age who are implementing innovations in Asian maize-based agri-food systems.
The awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems.
Winners will be given the opportunity to present their work at the 13th Asian Maize Conference in Ludhiana, India (October 8-12, 2018). They will also join a platform for young innovators from around the world to network and share their experiences.
MAIZE invites CGIAR researchers and partners to nominate young innovators for any of the following three categories:
a) Researcher: Maize research-for-development (in any discipline)
b) Farmer: Maize farming systems in Asia
c) Change agent: Maize value chains (i.e., extension agents, input and service suppliers,
transformation agents).
Ashley Muzhange eats sadza with her family in rural Zimabwe. Her sadza is made with vitamin A orange maize, a variety improving the nutrition of children and families in the nation. Photo: Matthew O’Leary/ CIMMYT
In the rural Chiweshe Communal Area, about two hours north of Zimbabweâs capital Harare, 18-month-old Ashley Muzhange tucks into a bowl of vitamin A orange maize sadza. Sadza, a thickened porridge made from finely ground maize grain with a side of stewed vegetables, is the staple dish for rural families.
Ashleyâs sadza is made from biofortified maize, conventionally bred by researchers at the International Maize and Wheat Improvement Center (CIMMYT) under the work of HarvestPlus to contain a higher amount of nutritious vitamin A.
Recent prolonged drought pushed malnutrition to levels not seen in over 15 years, with almost 33,000 children in need of urgent treatment for severe acute malnutrition, according to the United Nations Childrenâs Fund (UNICEF). Many experience micronutrient deficiencies, since their diets lack the vitamins and minerals required for growth and development.
Ashley’s mother, Lilian Muzhange, prepares fritas made with vitamin A orange maize grown on their family farm. Photo: Matthew O’Leary/ CIMMYT
According to the World Health Organization, 35.8 percent of preschool aged children suffer from vitamin A deficiency. The leading cause of preventable blindness in children, it compromises the immune system increasing the risk of death from diseases like measles, diarrhea and respiratory infections.
Biofortification increases the density of vitamins and minerals in a crop through conventional plant breeding or agronomic practices. When consumed regularly, biofortified crops generate measurable improvements in health and nutrition. The process develops crops rich in nutrients for consumers as well as the agronomic characteristics like drought and disease resistance valued by farmers. It is considered a sustainable way to bring micronutrients to populations with limited access to diverse diets.
Even though baby Ashley is unaware her sadza not only fills her stomach, but also provides her with a dose of vitamin A, her family is conscious of the benefits.
âThis orange maize assures me that my daughter gets a nutritious meal and means we donât only rely on the supplements provided by the government,â said Lilian Muzhange, her mother.
Orange the color of health
The farming family first began trialing the biofortified vitamin A orange maize in 2015 and are now growing it in place of traditional white maize. The nutritious variety contains high levels of beta-carotene, a vitamin A precursor that produces the rich orange color and once ingested is converted into the micronutrient, acting as an antioxidant to protect cells.
âOur family now prefers the new vitamin A orange maize over the white maize, as it has great health benefits for my children and granddaughter and the taste is delicious. The sadza truly is better,â said Ashleyâs grandfather Musonza Musiiwa. âI was also pleased the variety is drought tolerant. Despite a dry spell in January my maize was able to yield a good harvest.â
Orange maize conventionally bred to contain high amounts of vitamin A is fighting child malnutrition in Zimbabwe. (Photo: Matthew O’Leary/ CIMMYT)
Rural diets mainly consist of what farming families can grow, which is predominantly maize, said CIMMYT maize breeder Thokozile Ndhlela. The majority of rural households do not meet minimum dietary diversity, reliant on a cereal-based diet where meat is a rarity, the Zimbabwe Food and Nutrition Council finds.
âWhite maize traditionally used for the staple sadza is predominantly starch and very low in nutritional value,â said Ndhlela, who leads CIMMYTâs biofortified breeding efforts in Zimbabwe. âBiofortifying this staple crop ensures consumers have access to nutritious food season after season as farmers continue to grow it.â
Musiiwa not only sees the health and agronomic benefits of vitamin A orange maize, but has also identified its economic opportunity. The farmer is planning to increase the amount he grows to capitalize on the market he believes is set to grow.
Getting vitamin A maize into farmersâ fields and onto plates
Sakile Kudita, HarvestPlus researcher, explains the benefits of of vitamin A orange maize to seed company and government representatives. Photo: Matthew O’Leary/ CIMMYT
For the new biofortified maize to be part of the food system it must be commercialized creating a full value chain, said Sakile Kudita, a demand creation researcher with HarvestPlus, a program improving nutrition and public health by developing and promoting biofortified food crops.
âVitamin A orange maize needs to be a product millers take up and processed foods are made of, so that seed companies have an incentive to keep producing seed and farmers have an incentive to grow more than just for consumption but also sale in order to generate income,â she said.
The efforts of HarvestPlus and CIMMYT to engage government, food processors and seed companies at field days, where they learn about the nutritional and agronomic benefits and taste the orange maize have yielded success, said Kudita. Working with the government, four biofortified varieties have been commercialized since 2015.
Prime Seed Co, a subsidiary of the regional certified seed company Seed Co, was the first company commissioned by the government to commercialize vitamin A orange maize in Zimbabwe and now sells the variety Musiiwa uses in his field.
Prime Seed Co worked with CIMMYT, HarvestPlus and the Zimbabwe government to release the first vitamin A orange maize variety onto the market. Photo: Thoko Ndhlela/ CIMMYT
âThrough our partnership with CIMMYT and HarvestPlus we are developing a market for vitamin A orange maize in Zimbabwe,â said Masimba Kanyepi, a sales manager at Prime Seed Co. âWe have seen our sales improve since launching the first variety and expect an increase.â
Kanyepi is confident the market will grow following a new government regulation requiring all processed maize products to contain added micronutrients, including vitamin A, through fortification.
Food industry representatives taste-test foods made with vitamin A orange maize at an open day. Photo: Matthew O’Leary/ CIMMYT
âAdding vitamin A to maize at the processing stage is expensive for food companies due to the cost of importing the vitamin from overseas,â said Kanyepi. âBuying vitamin A orange maize grown by local farmers already biofortified at the same price as the white variety makes economic sense.â
Food companies see the saving with Zimbabwe manufacturer, Cairns Foods, confirming itâs taking steps to include biofortified maize in its cereals and biofortified beans in its canned products.
With food processors and millers buying vitamin A orange maize there is demand for farming families like the Musiiwas to grow more, ensuring not only a boost to their health but also their livelihood, said Kudita.
Breeding for a more nutritious future
Vitamin A orange maize in a farmer’s field. Photo: Matthew O’Leary/ CIMMYT
The crop diversity found in the maize species is key to nutritional gain. The plant grows in distinct environments and has developed a diverse range of valuable traits including nutritional properties.
Following a lengthy analysis of thousands of samples in the CIMMYT Maize Germplasm Bank researchers discovered native landraces and varieties from South and Central America containing increased levels of beta-carotene, explained Ndhlela. These were included in breeding programs in Africa and crossed with local varieties to ensure they were fit for the subtropical climate and were tolerant to local biotic and abiotic stresses.
Working alongside Zimbabweâs national breeding program Ndhlela continually monitors, improves and combines dozens of characteristics, which include high yield potential, nitrogen use efficiency, and tolerance to drought, into new varieties that meet farmersâ preferences.
The most recent biofortified varieties contain about 39 percent more vitamin A compared to the first, she said.
âCIMMYTâs support through free access to maize germplasm and breeding expertise has allowed us to continue developing this nutritious maize,â said Prince Matova, a maize breeder with the Zimbabwe Ministry of Agriculture. âIn the next few years we expect to release two more varieties.â
At the end of the day, farming is a business and farmers value varieties with high yield, adapted to stress conditions. The breeders are currently trialing new vitamin A maize varieties with the hope of identifying those with the potential to yield as much as the traditional white varieties and are already garnering positive feedback from farmers.
CIMMYT maize breeder Thoko Ndhlela shows food industry representatives the agronomic benefits of vitamin A orange maize in the field. Photo: Matthew O’Leary/ CIMMYT
CIMMYTâs biofortified vitamin A maize breeding is  supported by HarvestPlus. HarvestPlus improves nutrition and public health by developing and promoting biofortified food crops that are rich in vitamins and minerals, and providing global leadership on biofortification evidence and technology. HarvestPlus is part of the CGIAR Research Program on Agriculture for Nutrition and Health (A4NH). CGIAR is a global agriculture research partnership for a food secure future. Its science is carried out by its 15 research centers in collaboration with hundreds of partner organizations. The HarvestPlus program is coordinated by two of these centers, the International Center for Tropical Agriculture (CIAT) and the International Food Policy Research Institute (IFPRI).
HarvestPlusâ principal donors are the UK Government; the Bill & Melinda Gates Foundation; the US Governmentâs Feed the Future initiative; the European Commission; and donors to the CGIAR Research Program on Agriculture for Nutrition and Health. HarvestPlus is also supported by the John D. and Catherine T. MacArthur Foundation.
Two experimental lines of provitamin A-enriched orange maize, Zambia. Photo: CIMMYT.
A new study from the International Maize and Wheat Improvement Center (CIMMYT) and Wageningen University examines the preferences and needs of maize processors and consumers in Sub-Saharan Africa (SSA). According to the authors, the demand for maize, a staple crop in SSA, will triple by 2050 due to rapid population growth. At the same time, the effects of climate change, such as erratic rainfall and drought, threaten agricultural productivity and the ability to meet this growing demand, while persistently high malnutrition pose additional challenges to the region. The authors suggest six objectives to enhance maize breeding programs for better food security and nutrition in SSA.
First, they recommend breeding programs enhance the nutrient density of maize through biofortification to help reduce deficiencies in vitamin A, zinc and protein. Since wheat is difficult to grow in most of SSA and expensive to import, they also suggest that programs breed to enhance the suitability of maize for making bread and snacks. The authors recommend breeding to improve maize for use as âgreen maizeâ â the first crop to reach the marketplace after the dry season. If suitable green maize varieties are available, the hunger gap between seasons could be significantly reduced.
The authorsâ fourth suggestion is breeding to improve characteristics that enhance the efficiency of local processing. For example, soft maize is preferred for traditional dry and wet milling, but hard maize is usually preferred for pounding or refining processes in the home. Lastly, the authors suggest breeding to reduce waste by maximizing useful product yield and minimizing nutrient losses, and breeding to reduce anti-nutrient concentrations in grains. For example, phytate or phytic acid is a naturally occurring compound found in cereals that binds with minerals and prevents their absorption. Transgenic and gene editing approaches may offer viable options for reducing phytate production.
The authors emphasize that none of these opportunities to enhance breeding strategies are âmagic bulletâ solutions. Sustainable, diversified crop production and post-harvest management strategies will play an important role in improving nutrition, food security and livelihoods.
Bayesian functional regression as an alternative statistical analysis of high-throughput phenotyping data of modern agriculture. Montesinos-López, A., Montesinos-Lopez, O.A., De los Campos, G., Crossa, J., Burgueño, J., Luna-Vazquez, F.J. In: Plant Methods v. 14, art. 46.
Exploring the physiological information of sun-induced chlorophyll fluorescence through radiative transfer model inversion. Celesti, M., van derâ Tol, C., Cogliati, S., Panigada, C., Peiqi Yang, Pinto Espinosa, F., Rascher | Miglietta, F., Colombo, R., Rossini, M. In: Remote Sensing of Environment v. 215, p. 97-108.
Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Juliana, P., Singh, R.P., Singh, P.K., Poland, J.A., Bergstrom, G.C., Huerta-Espino, J., Bhavani, S., Crossa, J., Sorrells, M.E. In: Theoretical and Applied Genetics v. 131, no. 7, p. 1405-1422.
High-throughput method for ear phenotyping and kernel weight estimation in maize using ear digital imaging. Makanza, R., Zaman-Allah, M., Cairns, J.E., Eyre, J., Burgueño, J., Pacheco Gil, R. A., Diepenbrock, C., Magorokosho, C., Amsal Tesfaye Tarekegne, Olsen, M., Prasanna, B.M. In: Plant Methods v. 14, art. 49.
IPM to control soil-borne pests on wheat and sustainable food production. Dababat, A.A., Erginbas-Orakci, G., Toumi, F., Braun, H.J., Morgounov, A.I., Sikora, R.A. In: Arab Journal of Plant Protection v. 36, no. 1, p. 37-44.
Long-term impact of conservation agriculture and diversified maize rotations on carbon pools and stocks, mineral nitrogen fractions and nitrous oxide fluxes in inceptisol of India. Parihar, C.M., Parihar M.D., Sapkota, T.B., Nanwal, R.K., Singh, A.K., Jat, S.L., Nayak, H.S., Mahala, D.M., Singh, L.K., Kakraliya, S.K., Stirling, C., Jat, M.L. In: Science of the Total Environment v. 640-641, p. 1382-1392.
Major biotic maize production stresses in Ethiopia and their management through host resistance. Keno, T., Azmach, G., Dagne Wegary Gissa, Regasa, M.W., Tadesse, B., Wolde, L., Deressa, T., Abebe, B., Chibsa, T., Mahabaleswara, S. In: African Journal of Agricultural Research v. 13, no. 21, p. 1042-1052.
Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). Sharma, S., Ranabir Sahu, Sudhir Navathe, Vinod Kumar Mishra, Chand, R., Singh, P.K., Joshi, A.K., Pandey, S.P. In: Frontiers in Plant Science v. 9, art. 636.
Population structure of leaf pathogens of common spring wheat in the West Asian regions of Russia and North Kazakhstan in 2017. Gultyaeva, E.I., Kovalenko, N.M., Shamanin, V.P., Tyunin, V.A., Shreyder, E.R., Shaydayuk, E.L., Morgunov, A.I. In: Vavilovskii Zhurnal Genetiki i Selektsii v. 22, no. 3, p. 363-369.
The ADRA2A rs553668 variant is associated with type 2 diabetes and five variants were associated at nominal significance levels in a population-based caseâcontrol study from Mexico City. Totomoch-Serra, A., Muñoz, M. de L., Burgueño, J., Revilla-Monsalve, M.C., Perez-Muñoz, A., Diaz-Badillo, A. In: Gene v. 669, p. 28-34.
The third installment of the 2018 maize lethal necrosis (MLN) phenotyping (screening/ indexing) cycle will be held in July 2018 at the MLN artificial inoculation screening site in Naivasha, Kenya. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.
CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm (for hybrid, inbred and open pollinated varieties) against MLN in a quarantined environment.
This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 120,000 accessions (more than 210,000 rows of maize) from more than 15 multinational and national seed companies and national research programs.
Partners can now plan for annual MLN Phenotyping (Screening / Indexing) during 2018 with the below mentioned schedule. The improved and streamlined approach for MLN phenotyping should enable our partners to accelerate breeding programs to improve resistance for Maize MLN for sub-Saharan Africa.
Schedule for 2018 â annual phenotyping (Indexing / Screening).
When the seeds are availableÂ
Planting Period â Planned
MLN Screening / Indexing
December
Second Week of January
MLN Indexing
March
Second week of April
MLN Screening
June
Second Week of July
MLN Indexing
August
Second Week of September
MLN Screening
October
Second week of November
MLN Indexing
More information about the disease and resources for farmers can be found on CIMMYTâs MLN portal.
Please note that it can take up to six weeks to process imports and clear shipments.
For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:
Dr. L.M. Suresh
Tel: +254 20 7224600 (direct)
Email:Â l.m.suresh@cgiar.org
CIMMYTâKenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041â00621
Nairobi, Kenya.
Last yearâs maize-growing season in Pakistan yielded a record-breaking six-million tons, decreasing the countryâs dependence on imported maize seed and boosting local sales and exports of maize-based products.
Officials and growers attribute this surge in yields extensive use of inputs such as fertilizer, high-yielding improved maize hybrid new varieties and collaborative programs that focus on targeting maize seed improvement to the local environment.
During the recently held 5th Annual maize working group meeting, partners representing 25 public and private institutions discussed what can be done following efforts to consolidate and sustain innovative interventions by AIP. Approximately 50 Participants from Pakistan attended this two-day meeting, where participants shared progress on their respective maize activities, updates on the status of seed production and product identification under AIP, and future prospects.
In a thematic group discussion, participants helped to identify gaps, recognize the role of stakeholders, and develop doable recommendations across the value chain.
Yusuf Zafar, chairman of the Pakistan Agricultural Research Council (PARC), said he appreciated the contributions of CIMMYT and USAID to Pakistanâs maize sector. âThe collaboration and partnership of the public and private sectors under AIP is an exemplary one. We will continue supporting the continuation of this platform with all available means and resourcesâ said Zafar while ensuring PARCâs commitment to this initiative after the completion of the project.
While presenting the annual review, Muhammad Imtiaz, CIMMYT Country Representative for Pakistan discussed the status of the project. AIP will continue under a no-cost extension until 2019 and the project is looking for assistance from the private sector in order to continue into the future.
In closing, Anjum Ali, Member Plant Sciences Division, Pakistan Agricultural Research Council, PARC, acknowledged the effort of CIMMYT in bringing all the stakeholders of maize including academia, public and private R&D institutions, policymakers under one umbrella. He further added, âPARC will channel all the deliberations from this meeting and will work with relevant government bodies to come up with amicable solutions for the problems faced by the private sector in products testing and marketing.â The timely and doable recommendations of the working group will serve as a working document for the government in the future, Ali added.
On April 11, 2018 representatives from the Embassy of Canada in Ethiopia, Ivan Roberts, Head of Development Cooperation and Carolyn MacLeod, Development Team leader for Human Development, Environment and Agriculture, visited the Ethio Veg Fru Farm, one of the main field sites of the NuME project.
âWe were very much interested and happy to see such a success story as the Ethio Veg Fru Farm,â said MacLeod. Roberts and MacLeod both said they appreciated the efforts made by the NuME project in working collaboratively with private seed companies to fill the seed shortage of QPM varieties. They were also happy with the field performance of the crop under production.
MacLeod said she looked forward to continued collaboration with CIMMYT and indicated continued support to projects such as NuME under the International Assistance Policy of Canada, in which agricultural development must benefit women and girls.
The NuME projectâs goal is to bring nutritious, quality protein maize (QPM) to rural maize producers in the Ethiopian maize belt and beyond.
Maize lacks two essential amino acids â lysine and tryptophan, making maize protein less useful for humans. In the southern region of Ethiopia, where maize accounts for more than 60 percent of the dietary protein intake, an estimated 85 to 90 percent of the population â especially young children and women â are at risk of inadequate lysine intake and protein deficiency.
In Ethiopia, maize now ranks first among cereals for production, and second in area planted. Ethiopian families increasingly rely on maize as a staple due to its higher productivity and lower production costs, compared to other cereals.
QPM looks and tastes the same as normal maize but contains up to twice as much lysine and tryptophan. Studies have shown that children who consume QPM grow roughly 10 percent more in both height and weight.
Over the last few years the Ethiopian government has been stepping up nutrition interventions targeting women and children, with aims for a 3 percent annual reduction in the number of stunted and underweight children. As part of this initiative, the Ethiopian government allocates around 10 percent of the total national budget to agriculture, and the Ministry of Agriculture and Natural Resource (MoANR) has officially made QPM part of their extension agenda.
The EthioVeg Fru Farm Plc., with the financial and technical support of the NuME Project, is multiplying parental lines of BHQPY545 under irrigation. BHQPY545, developed from CIMMYT lines, is a highly popular single cross QPM hybrid released by the Ethiopia Institute of Agricultural Research.
Although the variety has been quite popular, seed companies have been reluctant to produce and market the seed due to it low seed-yield potential, making it more difficult for seed companies to produce a sufficient supply. Due to the stigma of low seed-yield, NuME organized a high-level field day on March 27, 2018 to demonstrate the genetic potential of the parental lines and effectiveness offseason maize seed multiplication with irrigation.
Seed company managers briefed on QPM seed multiplication during visitors day. (Photo: CIMMYT)
Visitors to the field day included the state minister for agricultural development from MoANR, Tesfaye Mengiste, general managers of public and private seed companies and a Farmersâ Cooperative Union that work in partnership with the NuME project.
Mengiste stressed maize as the number one strategic food crop for the country as it is the most produced and consumed cereal. He thanked NuME for bringing QPM technologies to the country and said it has to be up to the extension system now to reach every farmer.
Impressed by the field performances he saw, Mengiste probed seed company managers about why they have not multiplied seeds during the offseason to overcome seed scarcity and help reach the annual target of 200,000 ha land planted with QPM, approximately 10 percent of land currently devoted to maize production.
Mengiste wondered why there seems to be a QPM seed paradox, where farmers criticize seed unavailability while seed companies complain about the lack of demand. He said that QPM is essential for the national food and nutrition security and urged seed companies to make all possible effort to produce and sell QPM seeds, as part of their responsibility to reach rural smallholder farmers in exchange for government support.
Most seed companies had considered the inbred lines incompetent and weak but the field visit made them realize the potential of the lines, even under high plant density. They were convinced that the poor field performance previously noticed was not due to lack of inherent potential, but to the agro-techniques applied.
The general manager of the South Seed Enterprise (SSE), Ato Belay Hariso said he learned a lot from the field day and will use the experience to produce seed using irrigation during the off-season to fill seed supply shortages.
After seeing the crop in the field and knowing that QPM is useful to curb malnutrition in the country, seed mangers expressed great enthusiasm to increase seed production of BHQPY545 and other QPM varieties.
Mengiste recommended a number of efforts to help increase the scalability of QPM seeds, starting with continued dissemination of QPM varieties by NuME and the governmental extension system until sustainable demand is created. He suggested that seed company managers must seriously plan QPM seed production for the coming main season and perhaps  look for more private seed companies, who have the interest and capacity to produce QPM seed to partner with. Mengiste said that seed enterprises should be able to sell all the QPM seed they produce by promoting the nutritional advantages of QPM, with support of the NuME project and the extension system.
The Nutritious Maize for Ethiopia project is funded by Global Affairs Canada (GAC) and implemented by CIMMYT-Ethiopia in collaboration with various stakeholders from agriculture, nutrition and health sectors. The project is designed to contribute to the reduction of malnutrition, especially among women and young children, and to increase food security for resource-poor smallholder farmers in Ethiopia through the widespread adoption, production and utilization of QPM varieties and crop management practices that increase farm productivity.
Figure: Maize-producing counties in the USA that are vulnerable to Tar Spot Complex (TSC) of maize, developed based on climate analogue model analysis procedure matching historic climatic data of 13 counties where TSC has been detected.
A new study shows that nearly 12 million hectares of the maize-growing USA, approximately 33 percent of the entire maize-growing area of the country, might be vulnerable to a disease called Tar Spot Complex (TSC).
Native to Latin America, one of the two major fungal pathogens involved in TSC of maize was detected for the first time in the United States in 2015. In Latin America, TSC can cause up to 50 percent losses in maize yields, but the impact of one fungal pathogen alone on maize yields unknown. There is a hypothetical likelihood that the second fungal pathogen involved in TSC, could migrate to the US. If this happens, the devastating TSC disease in the US could cause significant economic damages.
Even a one percent loss in maize production caused by the disease in this area could lead to a reduction in maize production of 1.5 million metric tons of grain, or approximately $231.6 million in losses. Such production losses would not only affect the $51.5 billion US maize industry, but also the food security in a number of low-income countries that are heavily dependent on maize imports from the US.
The emergence and spread of new crop diseases or new variants of already established diseases around the globe over the last decades have generated serious threats for food safety and security. Therefore, the improvement of crop disease resistance has become one of the key focus topics of research at the International Maize and Wheat Improvement Center (CIMMYT).
The intent of this study is to raise public awareness regarding potential TSC outbreaks and to develop strategies and action plans for such scenario.
This study was published by an interdisciplinary team of CIMMYT scientists in the journal of Mitigation and Adaptation Strategies for Global Change regarding the potential threats of TSC in the US and its global consequences. Within this article, ex-ante impact assessment techniques were combined with climate analogue analysis to identify the maize growing regions that may be vulnerable to potential TSC outbreaks in the USA.