Skip to main content

research: Maize

Policy forum in Mozambique recommends scaling sustainable agriculture practices

A woman stands on a field intercropping beans and maize in Sussundenga, Manica province, Mozambique. (Photo: Luis Jose Cabango)
A woman stands on a field intercropping beans and maize in Sussundenga, Manica province, Mozambique. (Photo: Luis Jose Cabango)

For many small farmers across sub-Saharan Africa, the crop yields their livelihoods depend on are affected by low-quality inputs and severe challenges like climate change, pests and diseases. Unsustainable farming practices like monocropping are impacting soil health and reducing the productivity of their farms.

Sustainable intensification practices based on conservation agriculture entail minimal soil disturbance, recycling crop plant matter to cover and replenish the soil, and diversified cropping patterns. These approaches maintain moisture, reduce erosion and curb nutrient loss. Farmers are encouraged and supported to intercrop maize with nitrogen-fixing legumes — such as beans, peas and groundnuts — which enrich the soil with key nutrients. Farmers are equally advised to cultivate their crops along with trees, instead of deforesting the land to create room for farming.

These practices result in higher incomes for farmers and better food and nutrition for families. Adopting conservation agriculture also improves farmers’ climate resilience. Combined with good agronomic practices, conservation agriculture for sustainable intensification can increase yields up to 38 percent.

Since 2010, the Sustainable Intensification of Maize and Legume Cropping Systems for Food Security in Eastern and Southern Africa (SIMLESA) project has promoted effective ways to produce more food while protecting the environment across Eastern and Southern Africa. In particular, the SIMLESA project aims at sustainably increasing the productivity of maize and legume systems in the region.

The SIMLESA project demonstrated the advantages of deploying low-carbon and low-cost mechanization adapted to smallholder farming: it addresses labor shortages at critical times like planting or weeding, boosting farmers’ productivity and yields. The SIMLESA project introduced mechanization in different phases: first improved manual tools like the jab planter, later draft power machinery innovations such as rippers, and finally motorized mechanization in the form of small four-wheel tractors.

Farmers visit a field from Total LandCare demonstrating conservation agriculture for sustainable intensification practices in Angónia, Tete province, Mozambique.
Farmers visit a field from Total LandCare demonstrating conservation agriculture for sustainable intensification practices in Angónia, Tete province, Mozambique.

From proof of concept to nation-wide adoption

In Mozambique, conservation agriculture-based sustainable intensification practices have significantly expanded: from 36 farmers in six villages in four districts in 2010, to over 190,000 farmers in more than 100 villages in nine districts by the end of 2018. This remarkable result was achieved in collaboration with partners such as the Mozambican Agricultural Research Institute (IIAM), extension workers, communities and private companies.

“Smallholder agriculture mechanization reduced the amount of labor required for one hectare of land preparation, from 31 days to just 2 hours. This enabled timely farming activities and a maize yield increase of about 170 kg per hectare, reflecting an extra 3-4 months of household food security,” said the national coordinator for SIMLESA in Mozambique, Domingos Dias.

Following its successes, SIMLESA and its partners have embarked on a series of meetings to discuss how to leverage public-private partnerships to expand conservation agriculture practices to other regions.

Throughout February and March 2019, a series of policy forums at sub-national and national levels will be held across the seven SIMLESA countries: Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania and Uganda.

The first policy dialogue took place on February 7 in Chimoio, in Mozambique’s district of Manica. Key agriculture stakeholders attended, including representatives from CIMMYT, IIAM, the Ministry of Agriculture, as well as policy makers, private sector partners and international research institutes.

Participants of the SIMLESA policy forum in Chimoio, Manica province, Mozambique, pose for a group photo.
Participants of the SIMLESA policy forum in Chimoio, Manica province, Mozambique, pose for a group photo.

“We are delighted at SIMLESA’s unique strategy of involving multiple partners in implementing conservation agriculture for sustainable intensification practices. This has, over the years, allowed for faster dissemination of these practices and technologies in more locations in Mozambique, thereby increasing its reach to more farmers,” said Albertina Alage, Technical Director for Technology Transfer at IIAM. “Such policy forums are important to showcase the impact of conservation agriculture to policy makers to learn and sustain their support for scaling up conservation agriculture for sustainable intensification,” she added.

Forum participants called for better coordination between the public and the private sector to deliver appropriate machinery for use by smallholders in new areas. They recommended adequate support to enable farmers to better integrate livestock and a diverse cropping system, as well as continue with conservation agriculture trials and demonstration activities. Besides involving farmers, their associations and agro-dealer networks in scaling conservation agriculture initiatives, participants agreed to promote integrated pest and disease management protocols. This is considering the recent outbreak of the fall armyworm, which devasted crops in many countries across sub-Saharan Africa.

“The SIMLESA project is and will always be a reference point for our research institute and the Ministry of Agriculture in our country. The good progress of SIMLESA and the results of this forum will help to draw strategies for continuity of this program implemented by government and other programs with the aim to increase production and productivity of farmers,” Alage concluded.

The SIMLESA project is a science for development alliance, funded by the Australian Centre for International Agricultural Research (ACIAR) and led by the International Maize and Wheat Improvement Center (CIMMYT), in collaboration with national research institutes in Ethiopia, Kenya, Malawi, Mozambique and Tanzania.

The missing seed market

Workers at Mgommera seed firm in Malawi sort out seed. (Photo: KipenzFilms/CIMMYT)
Workers at Mgommera seed firm in Malawi sort out seed. (Photo: KipenzFilms/CIMMYT)

In Ethiopia, a World Bank study found that female farm managers produce 23 percent less yield per hectare compared to their male counterparts. This difference is explained partly by unequal access to information on improved seed varieties and what best agricultural practices to use. Despite half the farming workforce being women, the seed companies do not typically adapt their seed marketing strategy according to gender.

The “Gender-Responsive Approaches for the Promotion of Improved Maize Seed in Africa” guidebook, developed by the International Maize and Wheat Improvement Center (CIMMYT), is filling this gap. Designed for seed companies, extension workers and development organizations, it explains how best to package information about improved seed and farming technologies for men and women, with the goal of increasing adoption rates.

“Since seeing is believing, the field demonstrations approach allows farmers to witness firsthand how well improved seed varieties perform on their farms right from planting to harvesting, compared to old or other varieties,” said Rahma Adam, gender and development specialist at CIMMYT. “But too often, not enough care is given in the selection of women as lead farmers. This minimizes opportunities for reaching out to more women.”

Based on research, the guidebook recommends that half of the demonstration plots should be managed by women. In fact, the panel of lead farmers should be diverse, representing different age, socioeconomic status and ethnic groups, among others. Indeed, an understanding and importance of the various agronomic practices from the time of planting, weed control or fertilizer application would vary across gender, age and socioeconomic groups.

“Given the turnover of seed varieties due to genetic improvements, men and women extension workers need to keep abreast not only of new technologies, but also of new ways of fostering awareness and encouraging adoption, for instance using digital platforms for faster and cheaper outreach,” the guidebook concludes.

A farmer buys seed at a Meru seed shop in Arusha, Tanzania. (Photo: KipenzFilms/CIMMYT)
A farmer buys seed at a Meru seed shop in Arusha, Tanzania. (Photo: KipenzFilms/CIMMYT)

Tools for field days and budgeting

A complementary handbook, “Gender-responsive tools for demos and field days data collection”, is under preparation. It will guide seed companies and extension workers on how to consider the diversity of the public attending farmer field days.

Another toolkit, “Gender-Responsive Budgeting Tool for the Promotion of Improved Maize Seed in Africa”, proposes how to efficiently allocate resources to reach out to targeted farmers to promote new varieties and farming practices. If, for instance, women farmers do not know as much as men farmers about certain improved maize varieties, then the best approach would be to direct the resources towards promoting the seed varieties among the women. Better still, since women are involved in making decisions about purchasing improved seeds in both male-headed and female-headed households, it is logical to allocate more resources targeting women farmers. An effective strategy would be to allocate a portion of the budget to field days, farm demonstrations, distribution of small seed packs, informational leaflets, showcase videos and disseminate radio messages, among others. “In fact, local radio is quite effective in informing farmers about upcoming field days or farm demonstration days,” said Simon Kiio, a field officer at Dryland Seed Ltd, a Kenyan seed company which distributes drought-tolerant SAWA and VIGA maize hybrids, among others, across Kenya.

“Whenever we make announcements on local radio to inform farmers about dates and locations for demo farm activities, we usually get more women attending than men. These women act as good marketing ambassadors for our products within their networks or groups,” Kiio explained.

Ultimately, by building gender-sensitive and cost-effective seed promotion programs, seed companies would generate more seed sales of improved maize varieties: seeds that are more tolerant to major stresses, better adapted to poor soils, and yielding more than the local, older varieties on the market.

The Stress Tolerant Maize for Africa (STMA) project seeks to develop maize cultivars with tolerance and resistance to multiple stresses for farmers, and support local seed companies to produce seed of these cultivars on a large scale. STMA aims to develop a new generation of over 70 improved stress tolerant maize varieties, and facilitate production and use of over 54,000 metric tons of certified seed.

The STMA project is funded by the Bill & Melinda Gates Foundation and USAID.

New CIMMYT pre-commercial maize hybrids available from eastern and southern Africa breeding programs

Maize-to-farm simple version YOU ARE HEREThe International Maize and Wheat Improvement Center (CIMMYT) is offering a new set of improved maize hybrids to partners in eastern and southern Africa and similar agro-ecological zones, to scale up production for farmers in these areas.

National agricultural research systems and seed companies are invited to apply for the allocation of these pre-commercial hybrids, after which they will be able to register, produce and offer the improved seed to farming communities.

The deadline to submit applications to be considered during the next round of allocations is March 17th, 2019. Applications received after that deadline will be considered during the following round of product allocations.

Information about the newly available hybrids, application instructions and other relevant material is available below.

Download all documents

Or download individual files below:

Announcement of the Results of the Maize Regional Trials Conducted by CIMMYT-ECARO 2017 and 2018 Seasons (including Appendix 1)

Appendix 2: Available Hybrids (IHYB18) (Product profile 1A)

Appendix 3: Available MLN tolerant Hybrids (MLN-HYB18) (Product profile 1A)

Appendix 4: Available Hybrids (ILHYB18) (Product profile 2)

Appendix 5: Available Hybrids (EHYB18) (Product profile 3)

Appendix 6a: Available Pro-A HYBS-17 (Product profile 3, southern Africa)

Appendix 6b: Available Pro-A HYBS-18 (Product profile 3, southern Africa)

Appendix 7: Trial Summary information 2018-eastern Africa

To apply, please fill out the CIMMYT Improved Maize Product Allocation Application Forms, available for download at the links below. Each applicant will need to complete one copy of Form A for their organization, then for each hybrid being requested a separate copy of Form B. Please be sure to use these current versions of the application forms.

FORM A – Application for CIMMYT Improved Maize Product Allocation

FORM B – Application for CIMMYT Improved Maize Product Allocation

Please send completed forms via email to GMP-CIMMYT@cgiar.org.

Meet the role models for the next generation of women and girls in science

CIMMYT scientist Gemma Molero speaks at the 9th International Wheat Congress in Sydney, Australia, in 2015. (Photo: Julie Mollins/CIMMYT)
CIMMYT scientist Gemma Molero speaks at the 9th International Wheat Congress in Sydney, Australia, in 2015. (Photo: Julie Mollins/CIMMYT)

“We need to encourage and support girls and women to achieve their full potential as scientific researchers and innovators,” says UN Secretary General, Antonio Guterres. And he is right. Bridging the gender gap in science is central to achieving sustainable development goals and fulfilling the promises of the 2030 Agenda.

Unfortunately, this is easier said than done. While in recent years the global community has increased its efforts to engage women and girls in science, technology, engineering and mathematics (STEM), they remain staggeringly underrepresented in these fields. According to UNESCO, less than 30 percent of the world’s researchers are women, and only one in three female students in higher education selects STEM subjects.

“Science is male-dominated,” agrees CIMMYT wheat physiologist Gemma Molero. “It’s challenging being a woman and being young — conditions over which we have no control but which can somehow blind peers to our scientific knowledge and capacity.”

Samjhana Khanal surveys heat-tolerant maize varieties in Ludhiana, India, during a field day at the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Samjhana Khanal surveys heat-tolerant maize varieties in Ludhiana, India, during a field day at the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

Investing in the science education for women and girls is a key part of changing this reality. Samjhana Khanal, a Nepali agricultural graduate, social entrepreneur and recipient of a 2018 MAIZE-Asia Youth Innovator Award testifies to this. She cites support from her family as a driving factor in allowing her to pursue her education, particularly her mother, who “despite having no education, not being able to read or write a single word, dreamed of having a scientist daughter.”

Enhancing the visibility of established female scientists who can serve as role models for younger generations is equally important.

“One of the most important factors that register subconsciously when undergraduates consider careers is what the person at the front of the room looks like,” claims the Association for Women in Science, “and women and underrepresented minorities visibly perceive their low numbers in fields like engineering and physical sciences.”

Visiting researcher Fazleen Abdul Fatah is studying the the growing importance of maize and wheat in emerging economies.
Visiting researcher Fazleen Abdul Fatah is studying the the growing importance of maize and wheat in emerging economies.

Fazleen Abdul Fatah is a senior lecturer in agricultural economics, trade and policy at Universiti Teknologi MARA (UITM), Malaysia, who recently spent three months as a visiting researcher based at CIMMYT’s global headquarters in Mexico. She acknowledges the importance of raising the visibility of minority female scientists who can serve as role models for young girls by demonstrating that careers in STEM are attainable.

“I had an amazing professor during my undergraduate degree who really inspired me to move forward in the field,” says Abdul Fatah. “She was a wonderful example of how to do great maths, lead successful national and international projects, work in the STEM field, and be a mom.”

With support from CIMMYT, Molero, Khanal and Abdul Fatah are helping pave the way for the next generation of female scientists. Whether working on crop physiology, nutrient management or food consumption patterns, their careers serve as an inspiration for young and early career researchers around the world.

Read their stories here:

Breaking Ground: Gemma Molero sheds light on wheat photosynthesis

Let’s make hunger history: Samjhana Khanal

Visiting researcher from Malaysia studies growing importance of maize and wheat in the country

Explore CIMMYT’s job openings and training and research opportunities.

Cobs & Spikes: Jump-starting Haiti’s maize seed sector

Haiti has the lowest maize yields in Latin America and the Caribbean, and around half of the population is undernourished. Five hurricanes in the past decade and a magnitude 7.0 earthquake in 2010 have only exacerbated these issues. In 2017, CIMMYT sent 150 tons of new and improved maize seed to the Caribbean nation to jump-start its maize seed sector, improve food security and decrease malnutrition. It was the largest seed shipment to any country in CIMMYT’s history.

In this episode, CIMMYT’s Seed Systems Lead for Africa and Latin America, Arturo Silva Hinojosa, discusses why CIMMYT sent this seed and organized trainings, how they overcame major roadblocks, and what’s in store for the future.

Learn more about the project by reading “Seeds of Hope” from the CIMMYT 2017 Annual Report.

You can listen to our podcast here, or subscribe on iTunes, Spotify, Stitcher, SoundCloud, or Google Play.

Researchers and friends recall John Mihm, former CIMMYT maize entomologist

John Mihm working at CIMMYT in the 1980s.
John Mihm working at CIMMYT in the 1980s.

The community of the International Maize and Wheat Improvement Center (CIMMYT) joins former colleagues of John A. Mihm, CIMMYT’s maize entomologist during the 1970s-90s, in honoring his memory and valuable work. John passed away on January 25, 2019, at the age of 72.

Special maize populations developed by Mihm and his CIMMYT contemporaries are critical in today’s global quest for new maize varieties to resist the fall armyworm (Spodoptera frugiperda), according to B.M. Prasanna, director of the CIMMYT Global Maize Program and the CGIAR Research Program on Maize.

“The insect-resistant maize germplasm developed by Mihm is proving an invaluable resource in our fight against this pest, underpinning progress in the development of resistant varieties,” said Prasanna.

Crop entomologists were laboriously placing young insect larvae onto plants in greenhouses and in the field until 1976, when Mihm developed the “bazooka.” A plastic tube with a valve that quickly and easily delivered a uniform mixture of corn grits and insect larvae into individual maize plants, the innovation allowed researchers to infest hundreds of plants in a single morning.
Crop entomologists were laboriously placing young insect larvae onto plants in greenhouses and in the field until 1976, when Mihm developed the “bazooka.” A plastic tube with a valve that quickly and easily delivered a uniform mixture of corn grits and insect larvae into individual maize plants, the innovation allowed researchers to infest hundreds of plants in a single morning.

Originally from the Americas, fall armyworm has caused major damage to maize crops in Africa since 2016. The pest is now spreading rapidly in Asia, with incidence on maize crops confirmed in India, Bangladesh, Sri Lanka, Myanmar, Thailand, and southern China.

“Without proper controls, fall armyworm could reduce maize grain harvests in Africa alone by an amount worth as much as US$4.6 billion,” Prasanna explained, citing a 2018 report from the Centre for Agriculture and Biosciences International (CABI).

With support from UNDP, Mihm greatly refined CIMMYT practices to rear larvae of maize insect pests and to apply them efficiently so that researchers could identify resistant plants and use them to breed elite, resilient varieties.

After leaving CIMMYT in 1994, Mihm worked for the U.S. company “French Agricultural Research” in studies on sources of resistance in maize to corn rootworm (Diabrotica spp). He eventually retired happily to his farm in Minnesota, according to Florentino Amasende, a former CIMMYT field assistant who was a close friend and colleague of Mihm.

“John was a friend, a mentor and even a father figure for me,” said Amasende, who with support from Mihm for his university studies rose to seed production specialist in leading seed companies. “My family and I are eternally grateful for the opportunities he gave me.”

Call for nominees for the 2019 Maize Youth Innovators Awards – Africa

2019 Maize Youth Innovators Awards – Africa

Nominations are now open for the 2019 MAIZE Youth Innovators Awards – Africa! These awards are part of the efforts that the CGIAR Research Program on Maize (MAIZE) is undertaking to promote youth participation in maize-based agri-food systems. These awards recognize the contributions of young women and men below 35 years of age who are implementing innovations in African maize-based agri-food systems, including research for development, seed systems, agribusiness, and sustainable intensification.

Young people are the key to ensuring a food-secure future and agricultural sustainability. However, rural youth face many challenges related to unemployment, underemployment and poverty. According to the Food and Agriculture Organization (FAO) of the United Nations, facilitating young people’s participation in agriculture has the potential to drive widespread rural poverty reduction among young people and adults alike. In Africa, where over 300 million smallholder-farming families grow and consume maize as a staple crop, the human population stands at 1.2 billion people, 60 percent of whom are below the age of 25.

The MAIZE Youth Innovators Awards aim to identify young innovators who can serve to inspire other young people to get involved in maize-based agri-food systems. Part of the vision is to create a global network of young innovators in maize-based systems from around the world.

Award recipients will be invited to attend the annual Stress Tolerant Maize for Africa (STMA) project meeting in Lusaka, Zambia, from May 7 to May 9, where they will receive their awards and will be given the opportunity to present their work. The project meeting and award ceremony will also allow these young innovators to network and exchange experiences with MAIZE researchers and partners. Award recipients may also get the opportunity to collaborate with MAIZE and its partner scientists in Africa on implementing or furthering their innovations.

MAIZE invites young innovators to apply and CGIAR researchers and partners to nominate eligible applicants for any of the following three categories:

  1. Researcher: Maize research for development (in any discipline)
  2. Farmer: Maize farming systems in Africa
  3. Change agent: Maize value chains (i.e., extension agents, input and service suppliers, transformation agents, etc.)

We ask nominators/applicants to take into account the following criteria and related questions:

  • Novelty and innovative spirit: To which specific novel findings or innovation(s) has this young person contributed? (in any of the three categories mentioned above)
  • Present or potential impact: What is the present or potential benefit or impact of the innovation(s) in maize-based agri-food systems?

Applications should be submitted online through this form by March 15, 2019.

Key dates:

  • Opening date for nominations: January 21, 2019
  • Closing date for nominations: March 15, 2019 (Please note: Nominations received after the closing date will not be considered)
  • Notification of winners: March 22, 2019

Information documents:

  • A PDF version of this Call for Nominees is available here.
  • Nomination/Application Guidelines can be found here.
  • The Application Form can be found here and is also available on the MAIZE and YPARD websites.

For any questions or issues, contact maizecrp@cgiar.org.

This award is sponsored by the CGIAR Research Program on Maize (MAIZE) in collaboration with YPARD (Young Professionals for Agricultural Development).

Seeds go digital

Seed Assure app testing in the field in Kiboko, Kenya. Photo credit: CIMMYT.
Seed Assure app testing in the field in Kiboko, Kenya. (Photo: CIMMYT)

Many Kenyan maize farmers are busy preparing their seed stock for the next planting season. Sowing high quality seeds of stress-tolerant varieties is a cost-effective way for African smallholder farmers to boost their harvests while being resilient to evolving crop pests and diseases as well as an erratic climate. However, even if a majority of farmers buy their seeds, they are often of dubious quality or of old, outdated varieties, which do not cope well against increasing drought and heat shocks or emerging diseases.

Insufficient seed quality control

The African seed sector has long been plagued by counterfeit seeds and a complex and costly certification process, which hampers access to better, higher-yielding, wide-ranging varieties for farmers.

Since the 1990s, national agencies could not keep up with the seed trade growth to handle the certification processes. Backlogs of certification requests and erroneous seed checks make it costly for private seed companies to produce and commercialize new varieties. As a result, maize varieties grown by farmers in sub-Saharan Africa are old: 28 years old on average for hybrids and up to 40 years old for open-pollinated varieties.

“A lot of the national certification systems in the region are overwhelmed. They do not have enough seed inspectors with proper training and tools to carry out compliance checks effectively and in a timely manner. The licensing, labeling and branding protocols and regulations are equally not in full force, and much of the work still needs to be digitized. This slows the entire process,” said Kate Fehlenberg, Drought Tolerant Maize for Africa Seed Scaling (DTMASS) Project Manager at the International Maize and Wheat Improvement Center (CIMMYT), at a recent Common Market for Eastern and Southern Africa (COMESA) seed policies’ harmonization event in Nairobi.

Go digital

To solve this certification bottleneck, seed actors are looking at digital solutions for faster, more accurate seed quality checks for both seed producers and regulators. One Kenyan company, Cellsoft Ltd., has developed SeedAssure, a cloud-based platform that enables digital seed inspections. Data necessary for quality seed production, pest and disease surveillance, and the required checks to apply for a commercial license can be shared in real-time on a common platform that links seed companies, inspectors and local authorities.  Such a tool not only enables optimal quality in seed production, but expedites the licensing, certification and trade processes with traceable data records.

SeedAssure is rapidly being rolled out across eastern and southern Africa with support across the seed value chain. This includes regional trade bodies like COMESA and the Southern African Development Community (SADC), national regulators such as the Seed Control and Certification Institute (SCCI), to research and development organizations like CIMMYT and the Alliance for a Green Revolution in Africa (AGRA). So far, 15 seed companies in seven countries in the region have been testing SeedAssure.

Transboundary data-sharing to boost regional seed trade

Kinyua Madhan from Zamseed and Nicolai NASECO testing SeedAssure on smartphone in the field in Kiboko, Kenya. Photo credit: CIMMYT.
Visitors test SeedAssure on a smartphone during a field visit in Kiboko, Kenya. (Photo: CIMMYT)

To boost regional seed trade, all actors along the seed value chain and across the region must embrace this digital revolution and “speak the same language”. This means adopting the same rules to identify and register a new variety, and using a common platform to easily share data between countries.

Currently, despite efforts to harmonize seed trade policies across the region, such as the COMESA Seed Harmonization Implementation Program (COMSHIP), passed in 2014, most countries still use different protocols to name and register seed varieties. One variety could have a different name in each country it is sold in. Data used for quality control are still often on paper rather than online, with each country performing its own tests. Seed companies must apply for new variety registration, with new data for each country they operate in. This all costs them time and money.

Adopting a unique identifier for seed products and digitalization can help alleviate this harmonization issue, easing comparable data sharing across border. Since November 2017, CIMMYT has adopted a Variety Identification Number (VIN) system. It is like a unique barcode for each variety which contains information about the organization that produced the variety, the year of release, the crop and specific traits such as drought-tolerance, the country where it is produced, etc. SADC and COMESA have just adopted this VIN system. COMSHIP is setting digital seed variety catalogues using the VIN, and soon regional seed labels. It will facilitate cross-border seed trade and help track seed fraud.

The  2019 Global Forum for Food and Agriculture (GFFA) held this week in Berlin is debating how digitalization is transforming the farming sector. This is particularly relevant for the African seed sector as digital innovations could make seed certification and quality control cheaper, faster and more transparent, while narrowing the space for fake seed. Seed companies would then be encouraged to release more new improved varieties, and ultimately accelerate our research impact for African farmers.

Breaking Ground: Breeder Marcela C. Andrade bolsters maize with hardiness from ancestral races

Postcard_Marcela CarvalhoAs the world heats up and water grows scarce, threatening the productivity of humankind’s preferred crops, breeder Marcela Carvalho Andrade and her colleagues at the International Maize and Wheat Improvement Center (CIMMYT) are working to toughen maize, drawing resilience traits from landraces, the forerunners of modern maize.

For decades, scientists have sought to utilize the hardiness of maize landraces, which evolved over millennia of farmer selection for adaptation to diverse and sometimes harsh local settings in Mexico, Central and South America.

But crossing elite varieties with landraces brings along wild traits that are difficult and costly to purge, including lower grain yields, excessive tallness or a tendency to fall over in strong winds. For this and for their genetic complexity, landraces are seldom used directly in breeding programs, according to Andrade.

Crosses that home in on genetically complex traits

“Our strategy is to cross selected landraces with elite maize lines, thus developing improved lines that can be directly incorporated and recycled in breeding programs,” explained Andrade, who joined CIMMYT in 2016.

The traits sought include better resilience under high temperatures, drought conditions or the attacks of rapidly-evolving crop diseases. “All these features will be critical for the future productivity of maize,” said Andrade.

One of the world’s three most important crops, maize contributes over 20% of the calories in human diets in 21 low-income countries, as well as being used in industry, biofuels, and feed for livestock and poultry.

Andrade and the maize breeding team develop new lines that carry a 75 percent genetic contribution from the elite source and 25 percent from a landrace. The aim she said is to get the good components from both sides, while broadening maize’s genetic diversity for use by breeders and ultimately farmers.

The resulting lines and hybrids are tested for yield, resilience and overall agronomic performance, under both normal growing conditions and “stressed” environments; for example, in plots grown at sites with high temperatures or reduced water availability.

“We can thus identify landraces that offer traits of interest, as well as generating improved breeding lines to strengthen the resilience of elite maize without reducing its yield,” said Andrade, noting that the research employs conventional cross-pollination and selection.

According to Andrade, CIMMYT has carried out large-scale molecular analysis of its maize seed collections, which number around 28,000 and comprise landraces from 70 countries.

“Over the past years, CIMMYT has used genetic diversity analyses of its maize collections to select landraces for use in drought tolerance breeding or for finding lines that are resistant to newly important diseases such as  Maize Lethal Necrosis or Tar Spot,” she explained. “Genetic diversity analysis allows us to narrow the number of candidate landrace sources that we need to cross and assess in the field.”

The viral disease Maize Lethal Necrosis (MLN) has devastated crops in eastern Africa since its appearance there in 2011.

The researchers have also found landrace sources of resilience against Tar Spot Complex, a maize disease of the Americas that can cause 50 percent or greater yield losses in infected crops.

Benefiting breeding and farmers

Andrade said the breeding team expects to release a first wave of landrace-derived, improved maize lines in 2019, some featuring enhanced drought tolerance and others that provide better resistance to Tar Spot.

“The lines we offer will be freely available to breeders worldwide and must yield well and show superior resilience,” Andrade explained. “They will have reasonable agronomics—ear and plant height and standability, for example. The lines will not be perfect, but breeders won’t hesitate to use them because we’ve ensured that they are superior for at least one crucial trait and reasonably competitive for most other traits.”

From Brazil to the world

Growing up in a small town and having direct contact with her father’s dairy farm in Minas Gerais, a mainly rural state in Brazil, Andrade finds her CIMMYT work enormously satisfying. “My dad and a few uncles were farmers and complained some years that their crops didn’t yield well,” she says. “I knew I wanted to help them somehow.”

Andrade obtained Bachelor and Master’s degrees in agronomy/plant science from the Universidade Federal de Lavras (UFLA), one of Brazil’s premier institutions of higher education. She later completed a Doctorate in Genetics and Plant Breeding at UFLA, in partnership with Ohio State University.

She credits CIMMYT maize scientist Terry Molnar, her supervisor and mentor, with teaching her the complex ins and outs of maize breeding. “I am a plant breeder and worked previously with vegetables, but I learned the practical aspects of maize breeding from Terry.”

Looking ahead, Andrade sees herself continuing as a plant breeder. “I don’t see myself working in anything else. I would eventually like to lead my own program but, at this point in my career, I’m happy to help transfer landrace traits to modern maize varieties.”

Reducing high yield gaps with decision-support apps

Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)
Farmer Gudeye Leta harvests his local variety maize in Dalecho village, Gudeya Bila district, Ethiopia. (Photo: Peter Lowe/CIMMYT)

Ethiopia is Africa’s third largest producer of maize, after Nigeria and South Africa. Although the country produces around 6.5 million tons annually, the national average maize yield is relatively low at 3.5 tons compared to the attainable yield of 8.5 tons. This high yield gap — the difference between attainable and actual yields — can be attributed to a number of factors, including crop varieties used, farm management practices, and plant density.

The Taking Maize Agronomy to Scale (TAMASA) project aims to narrow maize yield gaps in Ethiopia, Nigeria and Tanzania through the development and scaling out of decision-support tools, which provide site-specific recommendations based on information held in crop and soil databases collected from each country. These help farmers to make decisions based on more accurate variety and fertilizer recommendations, and can contribute to improving maize production and productivity.

One such tool is Nutrient Expert, a free, interactive computer-based application. It can rapidly provide nutrient recommendations for individual farmers’ fields in the absence of soil-testing data. The tool was developed by the International Plant Nutrition Institute in collaboration with the International Maize and Wheat Improvement Center (CIMMYT), the International Institute of Tropical Agriculture (IITA), and research and extension service providers.

Nutrient Expert user interface.
Nutrient Expert user interface.

In Ethiopia, regional fertilizer recommendations are widely used, but soil fertility management practices can vary greatly from village to village and even between individual farmers. This can make it difficult for farmers or extension agents to receive accurate information tailored specifically to their needs. Nutrient Expert fills this gap by incorporating information on available fertilizer blends and giving customized recommendations for individual fields or larger areas, using information on current farmer practices, field history and local conditions. It can also provide advice on improved crop management practices such as planting density and weeding, thereby helping farmers to maximize net returns on their investment in fertilizer.

Data calibration was based on the results of 700 multi-location nutrient omission trials conducted in major maize production areas in Ethiopia, Nigeria and Tanzania. These trials were designed as a diagnostic tool to establish which macro-nutrients are limiting maize growth and yield, and determine other possible constraints.

In Ethiopia, CIMMYT scientists working for the TAMASA project conducted nutrient omission trials on 88 farmer fields in Jimma, Bako and the Central Rift Valley in 2015 to produce a version of Nutrient Expert suitable for the country. Researchers trialed the app on six maize-belt districts in Oromia the following year, in which Nutrient Expert recommendations were compared with soil-test based and regional ones.

Researchers found that though the app recommended lower amounts of phosphorus and potassium fertilizer, overall maize yields were comparable to those in other test sites. In Ethiopia, this reduction in the use of NPK fertilizer resulted in an investment saving of roughly 80 dollars per hectare.

Results from Nutrient Expert trials in Ethiopia, Nigeria and Tanzania showed improved yields, fertilizer-use efficiency and increased profits, and the app has since been successfully adapted for use in developing fertilizer recommendations that address a wide variety of soil and climatic conditions in each of the target countries.

The World Bank’s 2016 Digital Dividends report states that we are currently “in the midst of the greatest information and communications revolution in human history.” This shifting digital landscape has significant implications for the ways in which stakeholders in the agricultural sector generate, access and use data. Amidst Africa’s burgeoning technology scene, CIMMYT’s TAMASA project demonstrates the transformative power of harnessing ICTs for agricultural development.

Learn more about different versions of Nutrient Expert and download the free software here.

TAMASA is a five-year project (2014-2019) funded by the Bill & Melinda Gates Foundation, seeking to improve productivity and profitability for small-scale maize farmers in Ethiopia, Nigeria and Tanzania. Read more about the project here.

International Maize Improvement Consortium for Africa ramps up seed innovations

Group photo during the IMIC-Africa inception workshop in Harare, Zimbabwe, in May 2018. (Photo: CIMMYT)
Group photo during the IMIC-Africa inception workshop in Harare, Zimbabwe, in May 2018. (Photo: CIMMYT)

Maize is the most important staple food crop in sub-Saharan Africa, providing food security and a source of income to more than 200 million households. Nonetheless, maize yields in this region rank among the lowest worldwide.

The International Maize and Wheat Improvement Center (CIMMYT) launched the International Maize Improvement Consortium for Africa (IMIC-Africa) in May 2018, to better engage with a committed set of partners from the public and private sector, and to achieve enhanced maize yields in Africa.

Members of IMIC-Africa share a vision: meeting the challenges of maize production by scaling out and fully exploiting the potential of improved climate-resilient and stress-tolerant varieties in sub-Saharan Africa.

Cultivated on over 35 million hectares of typically rainfed land across sub-Saharan Africa, maize is subject to the vagaries of climate, suffering occasional to frequent drought stress. Other regional challenges include poor soil quality, characterized by nitrogen deficiency, and the ongoing threat of transboundary pathogens and pests, such as the voracious fall armyworm. In addition, farmers generally have inadequate access to improved seed that could help them achieve higher yields.

Although the challenges are complex, the effective use of improved, climate-resilient and multiple-stress-tolerant maize varieties has achieved tangible results in this region. Elite drought-tolerant (DT) maize hybrids developed by CIMMYT have demonstrated at least 25-30 percent grain yield advantage over non-DT maize varieties in sub-Saharan Africa under drought stress. CIMMYT has also derived elite heat-tolerant maize hybrids for sub-Saharan Africa, and during the recent outbreak of maize lethal necrosis (MLN), the rapid development and deployment of elite MLN-resistant hybrids was instrumental in the containment of this threat to eastern Africa.

Modelled on its successful counterpart initiatives in Asia (IMIC-Asia) and Latin America (IMIC-LatAm), there is hope that IMIC-Africa will follow a similar pattern of success.

The consortium is comprised of a diverse array of member institutions, including seed companies, national programs and foundations.

Its key objective is to enhance members’ capacity for germplasm development in their own breeding programs through provision of early generation or advanced maize lines. The subsequent multi-location testing of elite pre-commercial maize hybrids throughout sub-Saharan Africa by members will serve to identify products that can advance to commercialization and deployment.

“IMIC-Africa has a growing membership aimed at formalizing the sharing of maize lines under development with public and private maize breeding programs,” said CIMMYT scientist and Africa regional representative Stephen Mugo. “The consortium will also support a vibrant germplasm testing network, offer opportunities for training and cross learning among members, and grant access to other special services offered by CIMMYT including MLN testing, doubled haploid development and molecular quality assurance/quality control.”

The work of the consortium will ultimately benefit the farming community through the targeted development of maize varieties that express traits jointly identified and prioritized by consortium members and that are specifically adapted to the suite of agro-ecologies in sub-Saharan Africa. Traits of relevance include tolerance to abiotic stresses, disease and insect-pest resistance and higher yielding hybrids.

“IMIC-Africa will contribute to food security in Africa by broadening access to and use of stress-tolerant improved maize germplasm as well as strengthening maize breeding programs, thus improving farmers’ access to improved maize varieties,” Mugo explained.

In September 2018, members of IMIC-Africa held their first annual field day and visited the CIMMYT and Kenya Agriculture and Livestock Research Organization (KALRO) facilities in Kiboko and Naivasha.

Membership of IMIC-Africa is open to all organized and registered private commercial seed companies, corporations, and organized and registered public agencies or organizations involved in maize crop research and improvement, hybrid seed production or maize seed marketing.

For further information about membership and eligibility, please contact B.M. Prasanna, Director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize: b.m.prasanna@cgiar.org.

Best of 2018: Editors’ picks

In 2018, our editors continued to cover exciting news and events related to maize and wheat science around the world. Altogether, we published more than 200 stories.

It is impossible to capture all of the places and topics we reported on, but here are some highlights and our favorite stories of the year.

Thank you for being a loyal reader of CIMMYT’s news and features. We are already working on new stories and platforms for 2019. Stay tuned!

New technical guide to help farmers protect against fall armyworm

In response to the spread of the fall armyworm across Africa, CIMMYT and its partners published a technical guide for integrated pest management. Produced by international experts, it offers details on the best management practices to help smallholder farmers effectively and safely control the pest while simultaneously protecting people, animals and the environment.

The voracious fall armyworm was on the news again in July, as its presence was reported in India, giving this issue a global scale.

CIMMYT and IITA are co-leading the new Fall Armyworm R4D International Consortium, composed of 40 partners, which held an international conference in Ethiopia in October.

Foliar damaged by full-grown fall armyworm larva in Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)
Foliar damaged by full-grown fall armyworm larva in Zimbabwe. (Photo: Christian Thierfelder/CIMMYT)

Cobs & Spikes podcast: Blue maize opportunities for Mexican farmers

This year we launched our new podcast, Cobs & Spikes, where you can listen to stories from the field, interviews and explainers.

The most popular episode so far was about blue maize, a distinctive feature of Mexico’s food culture. Valued for its rich flavor and texture, it is also catching the attention of some food processing companies and high-end culinary markets. CIMMYT researchers are helping Mexican farmers tap into two emerging markets that could boost incomes while conserving culture and biodiversity.

Blue maize tortillas. (Photo: Luis Figueroa)
Blue maize tortillas. (Photo: Luis Figueroa)

Scientists confirm value of whole grains and wheat for nutrition and health

A review of scientific studies on cereal grains and health showed that gluten- or wheat-free diets are not inherently healthier for the general populace and may actually put individuals at risk of dietary deficiencies.

Based on a compilation of 12 reports, eating whole grains is actually beneficial for brain health and associated with reduced risk of diverse types of cancer, coronary disease, diabetes, hypertension, obesity and overall mortality.

Whole wheat bread. (Photo: Rebecca Siegel/Flickr)
Whole wheat bread. (Photo: Rebecca Siegel/Flickr)

African youth find entrepreneurial opportunity in agricultural mechanization

Mechanized agricultural services have traditionally only been used by large-scale farmers who could afford them, but small and medium-sized machines are fast becoming affordable options for family farmers through the advent of service providers. An increasing number of young people across eastern and southern Africa are creating a stable living as entrepreneurs, providing agricultural mechanization services.

CIMMYT is offering training courses to promote mechanization in Ethiopia, Kenya, Tanzania and Zimbabwe. Trainings equip entrepreneurs with essential business skills and knowledge, tailored to rural environments, so they can support farmers with appropriate mechanization services that sustainably intensify their production.

After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)
After receiving training from CIMMYT, this group of young men started a small business offering mechanized agricultural services to smallholder farmers near their town in rural Zimbabwe. (Photo: Matthew O’Leary/CIMMYT)

New wheat gene map will speed breeding and help secure grain supplies

In a scientific breakthrough, the International Wheat Genome Sequencing Consortium presented an annotated reference genome with a detailed analysis of gene content among subgenomes and the structural organization for all the chromosomes. The research was published on Science.

A BBC news report on this discovery mentioned CIMMYT as a leader in wheat research to help feed the world’s rapidly expanding population.

Improved wheat growing in Pakistan. (Photo: A. Yaqub/CIMMYT)
Improved wheat growing in Pakistan. (Photo: A. Yaqub/CIMMYT)

Better together: Partnership around zinc maize improves nutrition in Guatemala

Over 46 percent of children under five in Guatemala suffer from chronic malnutrition. More than 40 percent of Guatemala’s rural population is deficient in zinc, an essential micronutrient that plays a crucial role in pre-natal and post-natal development and is key to maintaining a healthy immune system.

CIMMYT is working with partners HarvestPlus and Semilla Nueva to reduce malnutrition and zinc deficiency in the country, through the development and deployment of Guatemala’s first biofortified zinc-enriched maize.

Last year we also reported on the release of a new zinc-enriched maize variety in Colombia and how vitamin A orange maize is improving nutrition in Zimbabwe.

Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)
Rómulo González’s daughter holds a corncob. (Photo: Sarah Caroline Mueller)

Innovation, partnerships and knowledge for African farmers meet at AGRF 2018

CIMMYT was present at the African Green Revolution Forum in Kigali, Rwanda. Leaders discussed practical ways to transform policy declarations into impact on the ground, at a time when farmers are facing the challenge of climate change and the threat of emerging pests and diseases.

On the occasion of this event, CIMMYT’s Director General, Martin Kropff, and the Regional Representative for Africa, Stephen Mugo, authored an op-ed on agricultural innovation in Africa, published by Thomson Reuters (in English) and Jeune Afrique (in French).

The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion "Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit." (Photo: CIMMYT)
The director general of CIMMYT, Martin Kropff, was the keynote speaker of the AGRF 2018 round-table discussion “Quality Means Quantity – Seed Processing Technology and Production Approaches for Agricultural Benefit.” (Photo: CIMMYT)

International experts discuss progress and challenges of maize research and development in Asia

More than 280 delegates from 20 countries gathered in Ludhiana, in the Indian state of Punjab, for the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security.

Technical sessions and panel discussions covered topics such as novel tools and strategies for increasing genetic gains, stress-resilient maize, sustainable intensification of maize-based cropping systems, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.

Four young people were distinguished in the first edition of the 2018 MAIZE-Asia Youth Innovators Award. One of them wrote a blog about her personal story and her commitment to make hunger history.

Conference participants pose for a group photo at the field visit site during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Conference participants pose for a group photo at the field visit site during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

Researchers find “hotspot” regions in the wheat genome for high zinc content, new study shows

An international team of scientists applied genome-wide association analysis for the first time to study the genetics that underlie grain zinc concentrations in wheat.

Analyzing zinc concentrations in the grain of 330 bread wheat lines across diverse environments in India and Mexico, the researchers uncovered 39 new molecular markers associated with the trait, as well as two wheat genome segments that carry important genes for zinc uptake, translocation, and storage in wheat.

Around the same time, a study confirmed the nutritional and health benefits of zinc-biofortified wheat in India. It showed that when vulnerable young children in India consume foods with wheat-enriched zinc, the number of days they spend sick with pneumonia and vomiting significantly diminishes.

The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: Rocio Quiroz/CIMMYT)
The reported work by wheat scientists paves the way for expanded use of wild grass species, such as Aegilops tauschii (also known as goat grass; pictured here) as sources of new genes for higher grain zinc in wheat. (Photo: Rocio Quiroz/CIMMYT)

Study in Ethiopia links healthy soils to more nutritious cereals

A study in Ethiopia found that wheat grown in areas closer to the forest had more nutrients, like zinc and protein. Soils in these areas are rich in organic matter — about 1% higher — due to decomposing trees and plants, as well as manure of livestock grazed in the forest.

Increasing organic matter by 1 percent was associated with an increase in zinc equivalent to meet the daily needs of 0.2 additional people per hectare and an increase in protein equivalent to meeting the daily needs of 0.1 additional people per hectare. These modest increases in soil organic matter contribute a small, but important, increase in nutrients found in wheat.

Although these nutrient increases are not enough to address hidden hunger on their own, they reveal how healthy soils are an additional tool — alongside diet diversity and the biofortification of food — to fight malnutrition.

Annual report 2017

In 2018 we published our latest annual report, highlighting CIMMYT’s global work and collaboration with partners. It features infographics and case studies from Bangladesh, Ethiopia, Haiti, Mexico and Pakistan.

It is a good way to understand how CIMMYT’s science improves livelihoods around the world.

You can read the web version or the PDF of the report, or watch the video summary below.

International experts discuss progress and challenges of maize research and development in Asia

The importance of maize in Asian cropping systems has grown rapidly in recent years, with several countries registering impressive growth rates in maize production and productivity. However, increasing and competing demands — food, feed, and industry — highlight the continued need to invest in maize research for development in the region. Maize experts from around the world gathered to discuss these challenges and how to solve them at the 13th Asian Maize Conference and Expert Consultation on Maize for Food, Feed, Nutrition and Environmental Security, held from October 8 to 10, 2018, in Ludhiana, Punjab, India.

More than 280 delegates from 20 countries attended the conference. Technical sessions and panel discussions covered diverse topics such as novel tools and strategies for increasing genetic gains, stress-resilient maize, sustainable intensification of maize-based cropping systems, specialty maize, processing and value addition, and nutritionally enriched maize for Asia.

The international conference was jointly organized by the Indian Council of Agricultural Research (ICAR), the International Maize and Wheat Improvement Center (CIMMYT), the Indian Institute of Maize Research (ICAR-IIMR), Punjab Agricultural University (PAU), the CGIAR Research Program on Maize (MAIZE), and the Borlaug Institute for South Asia (BISA).

In Asia, maize is rapidly growing in its importance, due to high demand. Maize productivity in the region is growing by 5.2 percent annually compared to a global average of 3.5 percent. However, this is not enough. “Asia produces nearly 80 million tons of maize annually, but demand will be double by the year 2050,” said Martin Kropff, CIMMYT director general, in his opening address at the conference. “We need to produce two times more maize in Asia, using two times less inputs, including water and nutrients. Climatic extremes and variability, especially in South and South East Asia, will make this challenge more difficult. Continued funding for maize research is crucial. We need to work together to ensure that appropriate innovations reach the smallholder farmers.”

Field visit in Ludhiana, India, during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)
Field visit in Ludhiana, India, during the 13th Asian Maize Conference. (Photo: Manjit Singh/Punjab Agricultural University)

Climate-resilient maize and sustainable intensification

A major theme emphasized at the conference was climate resilience in maize-based systems. South Asia is a hotspot for vulnerability due to climate change and climate variability, which poses great risks to smallholder farmers. “Climate resilience cannot be brought by only a single technology — it has to be through a judicious mix of several approaches,” said B.M. Prasanna, director of CIMMYT’s Global Maize Program and the CGIAR Research Program on Maize.

Great advances have been made in developing climate-resilient maize for Asia since the last Asian Maize Conference, held in 2014. Many new heat- and drought-tolerant maize varieties have been developed through various projects, such as the Heat Stress Tolerant Maize for Asia (HTMA), and Affordable, Accessible, Asian (AAA) maize projects. Through the HTMA project, over 50 CIMMYT-derived elite heat-tolerant maize hybrids have been licensed to public and private sector partners in Asia during the last three years, and nine heat-tolerant maize hybrids have been released so far in Bangladesh, India and Nepal.

Sustainable intensification of maize-based farming systems has also helped farmers to increase yields while reducing environmental impact, through conservation agriculture and scale-appropriate mechanization. Simple technologies are now available to reduce harvest time by up to 80 percent and hired labor costs by up to 60 percent. Researchers across the region are also working to strengthen the maize value chains.

B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. (Photo: Manjit Singh/Punjab Agricultural University)
B.S. Dhillon (center) receives the MAIZE Champion Award for his pioneering work in maize breeding. (Photo: Manjit Singh/Punjab Agricultural University)

Science and appropriate technologies

CIMMYT has been focusing on developing and deploying new technologies that can enhance the efficiency of maize breeding programs; these include doubled haploid (DH) technology, high-throughput field-based phenotyping, and genomics-assisted breeding. The conference emphasized on the need for Asian institutions to adapt such new tools and technologies in maize breeding programs.

Another topic of interest was the fall armyworm, an invasive insect pest that has spread through 44 countries in Africa and was recently reported in India for the first time. “This pest can migrate very quickly and doesn’t require visas and passports like we do. It will travel, and Asian nations need to be prepared,” Prasanna said. “However, there is no need for alarm. We will be looking at lessons learned from other regions and will work together to control this pest.”

In addition to grain for food and feed, specialty maize varieties can provide beneficial economic alternatives for smallholder maize farmers. Conference participants had the opportunity to hear from Indian farmers Kanwal Singh Chauhan and Yugandar Y, who have effectively adopted specialty maize varieties, such as baby corn, sweet corn and popcorn, into life-changing economic opportunities for farming communities. They hope to inspire other farmers in the region to do the same.

On October 10, conference delegates participated in a maize field day organized at the BISA farm in Ladhowal, Ludhiana. Nearly 100 improved maize varieties developed by CIMMYT, ICAR and public and private sector partners were on display, in addition to scale-appropriate mechanization options, decision support tools, and precision nutrient and water management techniques.

The conference concluded with a ceremony honoring the winners of the 2018 MAIZE-Asia Youth Innovators Award. The awards were launched in collaboration between the CGIAR Research Program on Maize and YPARD (Young Professionals for Agricultural Development) to recognize the contributions of innovative young women and men who can inspire fellow youth to get involved in improving maize-based agri-food systems in Asia. Winners of the first edition of the awards include Dinesh Panday of Nepal, Jie Xu of China, Samjhana Khanal of Nepal, and Vignesh Muthusamy of India.

Participants listen to a briefing during the field visit of the 13th Asian Maize Conference, in Ludhiana, India. (Photo: Manjit Singh/Punjab Agricultural University)
Participants listen to a briefing during the field visit of the 13th Asian Maize Conference, in Ludhiana, India. (Photo: Manjit Singh/Punjab Agricultural University)

With multi-sector support for climate-sensitive practices, African farmers can boost food security and resilience

Support for smallholder farmers to trial and select sustainable practices suited to their varying conditions is essential to build resilient farms needed to feed Africa’s soaring population, said economist Paswel Marenya at the Second African Congress on Conservation Agriculture in Johannesburg this October.

Farmers face different agroecological, socioeconomic and institutional environments across Africa. The mounting challenges brought by climate change also vary from place to place. Family farmers are born innovators, with government and industry support they can develop a resilient farming system that works for them, said the researcher from the International Maize and Wheat Improvement Center (CIMMYT).

One of the emerging paradigms of sustainable agriculture resilient to climatic changes is conservation agriculture — defined by minimal soil disturbance, crop residue retention and diversification through crop rotation. Although not a one-size-fits-all approach, it is a promising framework to be applied and adapted to meet farmers’ unique contexts, he said.

“Conservation agriculture’s potential to conserve soils, improve yields and limit environmental impacts makes it one of the elements that should be given prominence in efforts to secure sustainable and resilient farming in Africa,” he told audiences at the conference dedicated to discuss conservation agriculture systems as the sustainable basis for regional food security.

Along with eleven other researchers, Marenya presented evidence gathered over eight years researching the development of locally-adapted conservation agriculture-based practices as part of the Sustainable Intensification of Maize and Legume Systems for Food Security in Eastern and Southern Africa (SIMLESA).

“Research shows that with a network of appropriate support, farmers can access the tools and knowledge to experiment, learn, adapt and adopt these important principles of conservation agriculture,” he said.

“Their farming can thus evolve to practices that have low environmental impacts, diversify their cropping including intercropping maize with legumes, and test affordable machinery for efficient, timely and labor-saving operations. In the end, each farmer and farming community have the ability to tailor a conservation agriculture-based system based on what works best given their unique socioeconomic settings,” said Marenya.

Trialing sustainable practices leads to adoption

Through the project over 235,000 farming households in the region have trialed sustainable practices reporting positive results of improved soil fertility, reduced labor costs, and increased food production and maize yields despite erratic weather, said collaborating investigator Custudio George from the Mozambique Institute of Agricultural Research.

“The majority of these farmers have gone on to adopt their preferred practices throughout their whole farm and now actively promote conservation agriculture to other farmers,” he added

Women undertake the majority of agricultural activities in sub-Saharan Africa. When they are empowered to try sustainable practices they overwhelmingly adopt those technologies identifying them as an economically viable way to overcome challenges and increase household food security, said Maria da Luz Quinhentos, who is an agronomist with the Mozambique Institute of Agricultural Research.

Maria da Luz Quinhentos, from the Mozambique Institute of Agricultural Research (IIAM).
Maria da Luz Quinhentos, from the Mozambique Institute of Agricultural Research (IIAM).

Forming networks to support farmer resilience

The research project took a multidisciplinary approach bringing together sociologists, economists, agronomists and breeders to study how maize-legume conservation agriculture-based farming can best benefit farmers in seven countries; including Ethiopia, Kenya, Malawi, Mozambique, Tanzania and Uganda.

In this vein, the project sought to connect farmers with multi-sector actors across the maize-legume value chain through Innovation platforms. Innovation Platforms, facilitated by SIMLESA, are multi-stakeholder forums connecting farmer groups, agribusiness, government extension, policy makers and researchers with the common goal to increase farm-level food security, productivity and incomes through the promotion of maize-legume intercropping systems.

“Having a network of stakeholders allows farmers to test and adopt conservation agriculture-based techniques without the risk they would have if they tried and failed alone,” said Michael Misiko who studies farmer adoption as part of SIMLESA.

“Farmers form groups to work with governments to gain access to improved seed, learn new farming practices and connect with local agribusinesses to develop markets for their produce,”

“When new problems arise stakeholders in local and regional innovation platforms can diagnose barriers and together identify mutual solutions,” he said.

Researchers and governments learn from innovation platforms and can use results to recommend productive climate-smart practices to other farmers in similar conditions, Misiko added.

Climate-smart agriculture key to achieve Malabo Declaration

The results from SIMLESA provide African governments with evidence to develop policies that achieve the Malabo Declaration to implement resilient farming systems to enhance food security in the face of a growing climate risks, said Marenya.

Hotter temperatures, increased dry spells and erratic rainfall are major concerns to farmers, who produce the majority of the region’s food almost entirely on rain-fed farms without irrigation.

If these smallholders are to keep up with food demand of a population set to almost double by 2050 while overcoming challenges they need productive and climate-resilient cropping systems.

CIMMYT research identifies that the defining principles of conservation agriculture are critical but alone are not enough to shield farmers from the impacts of climate change. Complementary improvements in economic policies, markets and institutions — including multi-sectoral linkages between smallholder agriculture and the broader economy — are required to make climate-resilient farming systems more functional for smallholder farmers in the short and long term, said Marenya.

Screening cycle for deadly MLN virus set to begin in Kenya during 2019

CIMMYT partners visit the Maize Lethal Necrosis screening facility in Kenya. (Photo: Joshua Masinde/CIMMYT)
CIMMYT partners visit the Maize Lethal Necrosis screening facility in Kenya. (Photo: Joshua Masinde/CIMMYT)

The maize lethal necrosis (MLN) artificial inoculation screening site in Naivasha, Kenya, will begin its phenotyping (screening/ indexing) cycle of 2019 at the beginning of January 2019 and in other four intervals throughout the year. Interested organizations from both the private and public sectors are invited to send maize germplasm for screening.

In 2013, the International Maize and Wheat Improvement Center (CIMMYT) and the Kenya Agricultural & Livestock Research Organization (KALRO) jointly established the MLN screening facility at the KALRO Naivasha research station in Kenya’s Rift Valley with support from the Bill & Melinda Gates Foundation and the Syngenta Foundation for Sustainable Agriculture.

MLN was first discovered in Kenya in 2011 and quickly spread to other parts of eastern Africa; the disease causes premature plant death and unfilled, poorly formed maize cobs, and can lead to up to 100 percent yield loss in farmers’ fields.

CIMMYT and partners are dedicated to stopping the spread of this deadly maize disease by effectively managing the risk of MLN on maize production through screening and identifying MLN-resistant germplasm. The MLN screening facility supports countries in sub-Saharan Africa to screen maize germplasm (for hybrid, inbred and open pollinated varieties) against MLN in a quarantined environment.

This is the largest dedicated MLN screening facility in East Africa. Since its inception in 2013, the facility has evaluated more than 180,000 accessions (more than 270,000 rows of maize) from more than 15 multinational and national seed companies and national research programs.

Partners can now plan for annual MLN Phenotyping (Screening / Indexing) during 2019 with the schedule below. The improved and streamlined approach for MLN phenotyping should enable our partners to accelerate breeding programs to improve resistance for Maize MLN for sub-Saharan Africa.

2019 annual phenotyping (indexing / screening) schedule:

When the seeds are available  Planting Period – Planned MLN Screening / Indexing
December Second Week of January MLN Indexing
March Second week of April MLN Screening
June Second Week of July MLN Indexing
August Second Week of September MLN Screening
October Second week of November MLN Indexing

More information about the disease and resources for farmers can be found on CIMMYT’s MLN portal.

Please note that it can take up to six weeks to process imports and clear shipments.

For assistance in obtaining import permits and necessary logistics for the upcoming screening, please contact:

Dr. L.M. Suresh
Tel: +254 20 7224600 (direct)
Email: l.m.suresh@cgiar.org

CIMMYT–Kenya, ICRAF House
United Nations Avenue, Gigiri
P.O. Box 1041–00621
Nairobi, Kenya.